/*
* Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* blocktransformationshim.cpp
*
*/
#include "bufferedtransformationshim.h"
#include <cryptospi/cryptospidef.h>
#include <padding.h>
#include "cryptosymmetriccipherapi.h"
#include <cryptospi/plugincharacteristics.h>
#include "../common/inlines.h"
// CBufferedEncryptorShim
CBufferedEncryptorShim::CBufferedEncryptorShim(CryptoSpi::CSymmetricCipher* aSymmetricCipherImpl) :
iSymmetricCipherImpl(aSymmetricCipherImpl)
{
}
CBufferedEncryptorShim* CBufferedEncryptorShim::NewL(CBlockTransformation* aBT, CPadding* aPadding)
{
CBufferedEncryptorShim* self(0);
// Check whether the block transform contains an SPI plug-in
TAny* implPtr(0);
TInt err = aBT->GetExtension(CryptoSpi::KSymmetricCipherInterface, implPtr, NULL);
if (err == KErrNone && implPtr)
{
CryptoSpi::CSymmetricCipher* impl(static_cast<CryptoSpi::CSymmetricCipher*>(implPtr));
const CryptoSpi::TCharacteristics* c(0);
impl->GetCharacteristicsL(c);
const CryptoSpi::TSymmetricCipherCharacteristics* cipherCharacteristics(
static_cast<const CryptoSpi::TSymmetricCipherCharacteristics*>(c));
// See if the padding mode is recognised by CryptoSpi and if so, check
// whether the plug-in supports that padding mode.
TUid paddingMode;
TAny* paddingPtr = &paddingMode;
err = aPadding->GetExtension(CryptoSpi::KPaddingInterface, paddingPtr, 0);
if (err == KErrNone && cipherCharacteristics->IsPaddingModeSupported(paddingMode))
{
impl->SetCryptoModeL(CryptoSpi::KCryptoModeEncryptUid);
impl->SetPaddingModeL(paddingMode);
self = new(ELeave) CBufferedEncryptorShim(impl);
CleanupStack::PushL(self);
self->ConstructL(aBT, aPadding);
CleanupStack::Pop(self);
}
}
return self;
}
void CBufferedEncryptorShim::ConstructL(CBlockTransformation* aBT, CPadding* aPadding)
{
CBufferedEncryptor::ConstructL(aBT, aPadding);
}
void CBufferedEncryptorShim::Process(const TDesC8& aInput, TDes8& aOutput)
{
TRAP_IGNORE(iSymmetricCipherImpl->ProcessL(aInput, aOutput);)
}
TInt CBufferedEncryptorShim::MaxOutputLength(TInt aInputLength) const
{
return iSymmetricCipherImpl->MaxOutputLength(aInputLength);
}
void CBufferedEncryptorShim::Reset()
{
iSymmetricCipherImpl->Reset();
}
TInt CBufferedEncryptorShim::BlockSize() const
{
return BitsToBytes(iSymmetricCipherImpl->BlockSize());
}
TInt CBufferedEncryptorShim::KeySize() const
{
return iSymmetricCipherImpl->KeySize();
}
void CBufferedEncryptorShim::ProcessFinalL(const TDesC8& aInput, TDes8& aOutput)
{
iSymmetricCipherImpl->ProcessFinalL(aInput, aOutput);
}
TInt CBufferedEncryptorShim::MaxFinalOutputLength(TInt aInputLength) const
{
return iSymmetricCipherImpl->MaxFinalOutputLength(aInputLength);
}
// CBufferedDecryptorShim
CBufferedDecryptorShim::CBufferedDecryptorShim(CryptoSpi::CSymmetricCipher* aSymmetricCipherImpl) :
iSymmetricCipherImpl(aSymmetricCipherImpl)
{
}
CBufferedDecryptorShim* CBufferedDecryptorShim::NewL(CBlockTransformation* aBT, CPadding* aPadding)
{
CBufferedDecryptorShim* self(0);
// Check whether the block transform contains an SPI plug-in
TAny* implPtr(0);
TInt err = aBT->GetExtension(CryptoSpi::KSymmetricCipherInterface, implPtr, NULL);
if (err == KErrNone && implPtr)
{
CryptoSpi::CSymmetricCipher* impl(static_cast<CryptoSpi::CSymmetricCipher*>(implPtr));
const CryptoSpi::TCharacteristics* c(0);
impl->GetCharacteristicsL(c);
const CryptoSpi::TSymmetricCipherCharacteristics* cipherCharacteristics(
static_cast<const CryptoSpi::TSymmetricCipherCharacteristics*>(c));
// See if the padding mode is recognised by CryptoSpi and if so, check
// whether the plug-in supports that padding mode.
TUid paddingMode;
TAny* paddingPtr = &paddingMode;
err = aPadding->GetExtension(CryptoSpi::KPaddingInterface, paddingPtr, 0);
if (err == KErrNone && cipherCharacteristics->IsPaddingModeSupported(paddingMode))
{
impl->SetCryptoModeL(CryptoSpi::KCryptoModeDecryptUid);
impl->SetPaddingModeL(paddingMode);
self = new(ELeave) CBufferedDecryptorShim(impl);
CleanupStack::PushL(self);
self->ConstructL(aBT, aPadding);
CleanupStack::Pop(self);
}
}
return self;
}
void CBufferedDecryptorShim::ConstructL(CBlockTransformation* aBT, CPadding* aPadding)
{
CBufferedDecryptor::ConstructL(aBT, aPadding);
}
void CBufferedDecryptorShim::Process(const TDesC8& aInput, TDes8& aOutput)
{
TRAP_IGNORE(iSymmetricCipherImpl->ProcessL(aInput, aOutput);)
}
TInt CBufferedDecryptorShim::MaxOutputLength(TInt aInputLength) const
{
return iSymmetricCipherImpl->MaxOutputLength(aInputLength);
}
void CBufferedDecryptorShim::Reset()
{
iSymmetricCipherImpl->Reset();
}
TInt CBufferedDecryptorShim::BlockSize() const
{
return BitsToBytes(iSymmetricCipherImpl->BlockSize());
}
TInt CBufferedDecryptorShim::KeySize() const
{
return iSymmetricCipherImpl->KeySize();
}
void CBufferedDecryptorShim::ProcessFinalL(const TDesC8& aInput, TDes8& aOutput)
{
iSymmetricCipherImpl->ProcessFinalL(aInput, aOutput);
}
TInt CBufferedDecryptorShim::MaxFinalOutputLength(TInt aInputLength) const
{
return iSymmetricCipherImpl->MaxFinalOutputLength(aInputLength);
}