/*
* Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include "cbcmodeshim.h"
#include <cryptopanic.h>
#include <cryptospi/cryptospidef.h>
#include <padding.h>
#include "cryptosymmetriccipherapi.h"
#include <cryptospi/plugincharacteristics.h>
#include "../common/inlines.h"
// CModeCBCEncryptorShim
CModeCBCEncryptorShim::CModeCBCEncryptorShim(CryptoSpi::CSymmetricCipher* aSymmetricCipherImpl) :
iSymmetricCipherImpl(aSymmetricCipherImpl)
{
}
CModeCBCEncryptorShim* CModeCBCEncryptorShim::NewL(CBlockTransformation* aBT, const TDesC8& aIv)
{
CModeCBCEncryptorShim* self(0);
// Check whether the block transform contains an SPI plug-in
TAny* implPtr(0);
TInt err = aBT->GetExtension(CryptoSpi::KSymmetricCipherInterface, implPtr, NULL);
if (err == KErrNone && implPtr)
{
CryptoSpi::CSymmetricCipher* impl(static_cast<CryptoSpi::CSymmetricCipher*>(implPtr));
const CryptoSpi::TCharacteristics* c(0);
impl->GetCharacteristicsL(c);
const CryptoSpi::TSymmetricCipherCharacteristics* cipherCharacteristics(
static_cast<const CryptoSpi::TSymmetricCipherCharacteristics*>(c));
// Verify that the plug-in supports CBC mode
if (err == KErrNone &&
cipherCharacteristics->IsOperationModeSupported(CryptoSpi::KOperationModeCBCUid))
{
// Set block transform to encrypt-cbc
impl->SetCryptoModeL(CryptoSpi::KCryptoModeEncryptUid);
impl->SetOperationModeL(CryptoSpi::KOperationModeCBCUid);
impl->SetIvL(aIv);
self = new(ELeave) CModeCBCEncryptorShim(impl);
CleanupStack::PushL(self);
self->ConstructL(aBT, aIv);
CleanupStack::Pop(self);
}
}
return self;
}
void CModeCBCEncryptorShim::ConstructL(CBlockTransformation* aBT, const TDesC8& aIv)
{
CModeCBCEncryptor::ConstructL(aBT, aIv);
}
void CModeCBCEncryptorShim::Reset()
{
iSymmetricCipherImpl->Reset();
}
TInt CModeCBCEncryptorShim::BlockSize() const
{
return BitsToBytes(iSymmetricCipherImpl->BlockSize());
}
TInt CModeCBCEncryptorShim::KeySize() const
{
return iSymmetricCipherImpl->KeySize();
}
void CModeCBCEncryptorShim::Transform(TDes8& aBlock)
{
// This function will never get called if a buffered
// encryptor is used because Process and ProcessFinalL call
// iSymmetricCipherImpl directly
iBT->Transform(aBlock);
}
void CModeCBCEncryptorShim::SetIV(const TDesC8& aIv)
{
TRAPD(err, iSymmetricCipherImpl->SetIvL(aIv));
if (err == KErrOverflow)
{
User::Panic(KCryptoPanic, ECryptoPanicInputTooLarge);
}
else if (err != KErrNone)
{
// SetIvL should only leave if the aIv is incorrect
User::Panic(KCryptoPanic, KErrArgument);
}
}
TInt CModeCBCEncryptorShim::Extension_(TUint aExtensionId, TAny*& a0, TAny* /*a1*/)
{
TInt ret(KErrExtensionNotSupported);
if (CryptoSpi::KSymmetricCipherInterface == aExtensionId)
{
a0=iSymmetricCipherImpl;
ret=KErrNone;
}
return ret;
}
// CModeCBCDecryptorShim
CModeCBCDecryptorShim::CModeCBCDecryptorShim(CryptoSpi::CSymmetricCipher* aSymmetricCipherImpl) :
iSymmetricCipherImpl(aSymmetricCipherImpl)
{
}
CModeCBCDecryptorShim* CModeCBCDecryptorShim::NewL(CBlockTransformation* aBT, const TDesC8& aIv)
{
CModeCBCDecryptorShim* self(0);
// Check whether the block transform contains an SPI plug-in
TAny* implPtr(0);
TInt err = aBT->GetExtension(CryptoSpi::KSymmetricCipherInterface, implPtr, NULL);
if (err == KErrNone && implPtr)
{
CryptoSpi::CSymmetricCipher* impl(static_cast<CryptoSpi::CSymmetricCipher*>(implPtr));
const CryptoSpi::TCharacteristics* c(0);
impl->GetCharacteristicsL(c);
const CryptoSpi::TSymmetricCipherCharacteristics* cipherCharacteristics(
static_cast<const CryptoSpi::TSymmetricCipherCharacteristics*>(c));
// Verify that the plug-in supports CBC mode
if (err == KErrNone &&
cipherCharacteristics->IsOperationModeSupported(CryptoSpi::KOperationModeCBCUid))
{
// Set block transform to encrypt-cbc
impl->SetCryptoModeL(CryptoSpi::KCryptoModeDecryptUid);
impl->SetOperationModeL(CryptoSpi::KOperationModeCBCUid);
impl->SetIvL(aIv);
self = new(ELeave) CModeCBCDecryptorShim(impl);
CleanupStack::PushL(self);
self->ConstructL(aBT, aIv);
CleanupStack::Pop(self);
}
}
return self;
}
void CModeCBCDecryptorShim::ConstructL(CBlockTransformation* aBT, const TDesC8& aIv)
{
CModeCBCDecryptor::ConstructL(aBT, aIv);
}
void CModeCBCDecryptorShim::Reset()
{
iSymmetricCipherImpl->Reset();
}
TInt CModeCBCDecryptorShim::BlockSize() const
{
return BitsToBytes(iSymmetricCipherImpl->BlockSize());
}
TInt CModeCBCDecryptorShim::KeySize() const
{
return iSymmetricCipherImpl->KeySize();
}
void CModeCBCDecryptorShim::Transform(TDes8& aBlock)
{
// This function will never get called if a buffered
// encryptor is used because Process and ProcessFinalL call
// iSymmetricCipherImpl directly
iBT->Transform(aBlock);
}
void CModeCBCDecryptorShim::SetIV(const TDesC8& aIv)
{
TRAPD(err, iSymmetricCipherImpl->SetIvL(aIv));
if (err == KErrOverflow)
{
User::Panic(KCryptoPanic, ECryptoPanicInputTooLarge);
}
else if (err != KErrNone)
{
// SetIvL should only leave if the aIv is incorrect
User::Panic(KCryptoPanic, KErrArgument);
}
}
TInt CModeCBCDecryptorShim::Extension_(TUint aExtensionId, TAny*& a0, TAny* /*a1*/)
{
TInt ret(KErrExtensionNotSupported);
if (CryptoSpi::KSymmetricCipherInterface == aExtensionId)
{
a0=iSymmetricCipherImpl;
ret=KErrNone;
}
return ret;
}