/*
* Copyright (c) 2002-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include "rc2.h"
#include "rc2table.h"
#include "../common/inlines.h"
#include <cryptostrength.h>
const TInt KRC2BlockBytes = 8;
/* CRC2Encryptor */
void CRC2::SetKey(const TDesC8& aKey, TInt aEffectiveKeyLenBits)
{
TUint keyLen = (TUint)aKey.Size();
iKey.Copy(aKey);
iEffectiveKeyLenBits = aEffectiveKeyLenBits;
TUint8 L[KRC2MaxKeySizeBytes];
Mem::Copy((TUint8*)&L[0], (TUint8*)&aKey[0], keyLen);
TInt maxKeySizeBytes = (TInt)KRC2MaxKeySizeBytes;
TInt expandedKeyLen = (TInt)KRC2ExpandedKeyLen;
TInt i = keyLen;
for (; i < maxKeySizeBytes; i++)
{
L[i] = RC2_TABLE::PITABLE[(L[i-1] + L[i-keyLen]) & 255];
}
TUint T8 = (aEffectiveKeyLenBits+7) / 8;
TUint8 TM = (TUint8)(255 >> ((8-(iEffectiveKeyLenBits%8))%8));
L[128-T8] = RC2_TABLE::PITABLE[L[128-T8] & TM];
for (i=127-T8; i>=0; i--)
L[i] = RC2_TABLE::PITABLE[L[i+1] ^ L[i+T8]];
for (i=0; i < expandedKeyLen; i++)
iK[i] = (TUint16)(L[2*i] + (L[2*i+1] << 8));
}
void CRC2::Reset()
{
SetKey(iKey, iEffectiveKeyLenBits);
}
TInt CRC2::BlockSize() const
{
return KRC2BlockBytes;
}
TInt CRC2::KeySize() const
{
return iKey.Size();
}
CRC2::CRC2(void)
{
}
/* CRC2Encryptor */
EXPORT_C CRC2Encryptor* CRC2Encryptor::NewL(const TDesC8& aKey,
TInt aEffectiveKeyLenBits)
{
CRC2Encryptor* me = CRC2Encryptor::NewLC(aKey, aEffectiveKeyLenBits);
CleanupStack::Pop(me);
return (me);
}
EXPORT_C CRC2Encryptor* CRC2Encryptor::NewLC(const TDesC8& aKey,
TInt aEffectiveKeyLenBits)
{
CRC2Encryptor* me = new (ELeave) CRC2Encryptor;
CleanupStack::PushL(me); // Does not leave but function requires it be Push-ed
me->SetKey(aKey, aEffectiveKeyLenBits);
// weak enough if either aKey or aEffectiveKeyLenBits is weak
TInt minKeySize = Min(aEffectiveKeyLenBits, BytesToBits(aKey.Size()));
TCrypto::IsSymmetricWeakEnoughL(minKeySize);
return (me);
}
#pragma warning (disable : 4244) // conversion from 'int' to 'unsigned short', possible loss of data
void CRC2Encryptor::Transform(TDes8& aBlock)
{
assert(aBlock.Size() == KRC2BlockBytes);
TUint16 R0, R1, R2, R3;
GetBlockLittleEndian((TUint8*)&aBlock[0], R0, R1, R2, R3);
TInt i = 0;
for (; i < 16; i++)
{
R0 += (R1 & ~R3) + (R2 & R3) + iK[4*i+0];
R0 = rotlFixed(R0, 1);
R1 += (R2 & ~R0) + (R3 & R0) + iK[4*i+1];
R1 = rotlFixed(R1, 2);
R2 += (R3 & ~R1) + (R0 & R1) + iK[4*i+2];
R2 = rotlFixed(R2, 3);
R3 += (R0 & ~R2) + (R1 & R2) + iK[4*i+3];
R3 = rotlFixed(R3, 5);
if (i == 4 || i == 10)
{
R0 += iK[R3 & 63];
R1 += iK[R0 & 63];
R2 += iK[R1 & 63];
R3 += iK[R2 & 63];
}
}
PutBlockLittleEndian((TUint8*)&aBlock[0], R0, R1, R2, R3);
}
#pragma warning (default : 4244) // conversion from 'int' to 'unsigned short', possible loss of data
CRC2Encryptor::CRC2Encryptor(void)
{
}
/* CRC2Decryptor */
EXPORT_C CRC2Decryptor* CRC2Decryptor::NewL(const TDesC8& aKey,
TInt aEffectiveKeyLenBits)
{
CRC2Decryptor* me = CRC2Decryptor::NewLC(aKey, aEffectiveKeyLenBits);
CleanupStack::Pop(me);
return (me);
}
EXPORT_C CRC2Decryptor* CRC2Decryptor::NewLC(const TDesC8& aKey,
TInt aEffectiveKeyLenBits)
{
CRC2Decryptor* me = new (ELeave) CRC2Decryptor;
CleanupStack::PushL(me); // Does not leave but function requires it be Push-ed
me->SetKey(aKey, aEffectiveKeyLenBits);
// weak enough if either aKey or aEffectiveKeyLenBits is weak
TInt minKeySize = Min(aEffectiveKeyLenBits, BytesToBits(aKey.Size()));
TCrypto::IsSymmetricWeakEnoughL(minKeySize);
return (me);
}
#pragma warning (disable : 4244) // conversion from 'int' to 'unsigned short', possible loss of data
void CRC2Decryptor::Transform(TDes8& aBlock)
{
assert(aBlock.Size() == KRC2BlockBytes);
TUint16 R0, R1, R2, R3;
GetBlockLittleEndian((TUint8*)&aBlock[0], R0, R1, R2, R3);
TInt i = 15;
for (; i >= 0; i--)
{
if (i == 4 || i == 10)
{
R3 -= iK[R2 & 63];
R2 -= iK[R1 & 63];
R1 -= iK[R0 & 63];
R0 -= iK[R3 & 63];
}
R3 = rotrFixed(R3, 5);
R3 -= (R0 & ~R2) + (R1 & R2) + iK[4*i+3];
R2 = rotrFixed(R2, 3);
R2 -= (R3 & ~R1) + (R0 & R1) + iK[4*i+2];
R1 = rotrFixed(R1, 2);
R1 -= (R2 & ~R0) + (R3 & R0) + iK[4*i+1];
R0 = rotrFixed(R0, 1);
R0 -= (R1 & ~R3) + (R2 & R3) + iK[4*i+0];
}
PutBlockLittleEndian((TUint8*)&aBlock[0], R0, R1, R2, R3);
}
#pragma warning (default : 4244) // conversion from 'int' to 'unsigned short', possible loss of data
CRC2Decryptor::CRC2Decryptor(void)
{
}