Fix for bug 5329. Added browserrootcertificates to package_definition.xml file. Also corrected the wrong spelling.
/*
* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include <asymmetrickeys.h>
#include <bigint.h>
#include <random.h>
#include <hash.h>
#include "../common/inlines.h"
#include "../bigint/mont.h"
const TUint SHASIZE = 20;
const TUint KMinPrimeLength = 512;
const TUint KMaxPrimeLength = 1024;
const TUint KPrimeLengthMultiple = 64;
/* CDSAParameters */
EXPORT_C const TInteger& CDSAParameters::P(void) const
{
return iP;
}
EXPORT_C const TInteger& CDSAParameters::Q(void) const
{
return iQ;
}
EXPORT_C const TInteger& CDSAParameters::G(void) const
{
return iG;
}
EXPORT_C CDSAParameters::~CDSAParameters(void)
{
iP.Close();
iQ.Close();
iG.Close();
}
EXPORT_C CDSAParameters* CDSAParameters::NewL(RInteger& aP, RInteger& aQ,
RInteger& aG)
{
CDSAParameters* me = new (ELeave) CDSAParameters(aP, aQ, aG);
return (me);
}
EXPORT_C TBool CDSAParameters::ValidatePrimesL(const CDSAPrimeCertificate& aCert)
const
{
TBool result = EFalse;
RInteger p;
RInteger q;
//Regenerate primes using aCert's seed and counter
TUint counter = aCert.Counter();
if(!CDSAParameters::GeneratePrimesL(aCert.Seed(), counter, p,
P().BitCount(), q, ETrue))
{
return result;
}
//this doesn't leave, no need to push p and q
if(p == P() && q == Q() && counter == aCert.Counter())
{
result = ETrue;
}
p.Close();
q.Close();
return result;
}
EXPORT_C TBool CDSAParameters::ValidPrimeLength(TUint aPrimeBits)
{
return (aPrimeBits >= KMinPrimeLength &&
aPrimeBits <= KMaxPrimeLength &&
aPrimeBits % KPrimeLengthMultiple == 0);
}
EXPORT_C CDSAParameters::CDSAParameters(RInteger& aP, RInteger& aQ,
RInteger& aG) : iP(aP), iQ(aQ), iG(aG)
{
}
EXPORT_C CDSAParameters::CDSAParameters(void)
{
}
TBool CDSAParameters::GeneratePrimesL(const TDesC8& aSeed, TUint& aCounter,
RInteger& aP, TUint aL, RInteger& aQ, TBool aUseInputCounter)
{
//This follows the steps in FIPS 186-2
//See DSS Appendix 2.2
//Note. Step 1 is performed prior to calling GeneratePrimesL, so that this
//routine can be used for both generation and validation.
//Step 1. Choose an arbitrary sequence of at least 160 bits and call it
//SEED. Let g be the length of SEED in bits.
if(!CDSAParameters::ValidPrimeLength(aL))
{
User::Leave(KErrNotSupported);
}
CSHA1* sha1 = CSHA1::NewL();
CleanupStack::PushL(sha1);
HBufC8* seedBuf = aSeed.AllocLC();
TPtr8 seed = seedBuf->Des();
TUint gBytes = aSeed.Size();
//Note that the DSS's g = BytesToBits(gBytes) ie. the number of random bits
//in the seed.
//This function has made the assumption (for ease of computation) that g%8
//is 0. Ie the seed is a whole number of random bytes.
TBuf8<SHASIZE> U;
TBuf8<SHASIZE> temp;
const TUint n = (aL-1)/160;
const TUint b = (aL-1)%160;
HBufC8* Wbuf = HBufC8::NewMaxLC((n+1) * SHASIZE);
TUint8* W = const_cast<TUint8*>(Wbuf->Ptr());
U.Copy(sha1->Final(seed));
//Step 2. U = SHA-1[SEED] XOR SHA-1[(SEED+1) mod 2^g]
for(TInt i=gBytes - 1, carry=ETrue; i>=0 && carry; i--)
{
//!++(TUint) adds one to the current word which if it overflows to zero
//sets carry to 1 thus letting the loop continue. It's a poor man's
//multi-word addition. Swift eh?
carry = !++(seed[i]);
}
temp.Copy(sha1->Final(seed));
XorBuf(const_cast<TUint8*>(U.Ptr()), temp.Ptr(), SHASIZE);
//Step 3. Form q from U by setting the most significant bit (2^159)
//and the least significant bit to 1.
U[0] |= 0x80;
U[SHASIZE-1] |= 1;
aQ = RInteger::NewL(U);
CleanupStack::PushL(aQ);
//Step 4. Use a robust primality testing algo to test if q is prime
//The robust part is the calling codes problem. This will use whatever
//random number generator you set for the thread. To attempt FIPS 186-2
//compliance, set a FIPS 186-2 compliant RNG.
if( !aQ.IsPrimeL() )
{
//Step 5. If not exit and get a new seed
CleanupStack::PopAndDestroy(&aQ);
CleanupStack::PopAndDestroy(Wbuf);
CleanupStack::PopAndDestroy(seedBuf);
CleanupStack::PopAndDestroy(sha1);
return EFalse;
}
TUint counterEnd = aUseInputCounter ? aCounter+1 : 4096;
//Step 6. Let counter = 0 and offset = 2
//Note 1. that the DSS speaks of SEED + offset + k because they always
//refer to a constant SEED. We update our seed as we go so the offset
//variable has already been added to seed in the previous iterations.
//Note 2. We've already added 1 to our seed, so the first time through this
//the offset in DSS speak will be 2.
for(TUint counter=0; counter < counterEnd; counter++)
{
//Step 7. For k=0, ..., n let
// Vk = SHA-1[(SEED + offset + k) mod 2^g]
//I'm storing the Vk's inside of a big W buffer.
for(TUint k=0; k<=n; k++)
{
for(TInt i=gBytes-1, carry=ETrue; i>=0 && carry; i--)
{
carry = !++(seed[i]);
}
if(!aUseInputCounter || counter == aCounter)
{
TPtr8 Wptr(W+(n-k)*SHASIZE, gBytes);
Wptr.Copy(sha1->Final(seed));
}
}
if(!aUseInputCounter || counter == aCounter)
{
//Step 8. Let W be the integer... and let X = W + 2^(L-1)
const_cast<TUint8&>((*Wbuf)[SHASIZE - 1 - b/8]) |= 0x80;
TPtr8 Wptr(W + SHASIZE - 1 - b/8, aL/8, aL/8);
RInteger X = RInteger::NewL(Wptr);
CleanupStack::PushL(X);
//Step 9. Let c = X mod 2q and set p = X - (c-1)
RInteger twoQ = aQ.TimesL(TInteger::Two());
CleanupStack::PushL(twoQ);
RInteger c = X.ModuloL(twoQ);
CleanupStack::PushL(c);
--c;
aP = X.MinusL(c);
CleanupStack::PopAndDestroy(3, &X); //twoQ, c, X
CleanupStack::PushL(aP);
//Step 10 and 11: if p >= 2^(L-1) and p is prime
if( aP.Bit(aL-1) && aP.IsPrimeL() )
{
aCounter = counter;
CleanupStack::Pop(&aP);
CleanupStack::Pop(&aQ);
CleanupStack::PopAndDestroy(Wbuf);
CleanupStack::PopAndDestroy(seedBuf);
CleanupStack::PopAndDestroy(sha1);
return ETrue;
}
CleanupStack::PopAndDestroy(&aP);
}
}
CleanupStack::PopAndDestroy(&aQ);
CleanupStack::PopAndDestroy(Wbuf);
CleanupStack::PopAndDestroy(seedBuf);
CleanupStack::PopAndDestroy(sha1);
return EFalse;
}
/* CDSAPublicKey */
EXPORT_C CDSAPublicKey* CDSAPublicKey::NewL(RInteger& aP, RInteger& aQ,
RInteger& aG, RInteger& aY)
{
CDSAPublicKey* self = new(ELeave) CDSAPublicKey(aP, aQ, aG, aY);
return self;
}
EXPORT_C CDSAPublicKey* CDSAPublicKey::NewLC(RInteger& aP, RInteger& aQ,
RInteger& aG, RInteger& aY)
{
CDSAPublicKey* self = NewL(aP, aQ, aG, aY);
CleanupStack::PushL(self);
return self;
}
EXPORT_C const TInteger& CDSAPublicKey::Y(void) const
{
return iY;
}
EXPORT_C CDSAPublicKey::CDSAPublicKey(void)
{
}
EXPORT_C CDSAPublicKey::CDSAPublicKey(RInteger& aP, RInteger& aQ, RInteger& aG,
RInteger& aY) : CDSAParameters(aP, aQ, aG), iY(aY)
{
}
EXPORT_C CDSAPublicKey::~CDSAPublicKey(void)
{
iY.Close();
}
/* CDSAPrivateKey */
EXPORT_C CDSAPrivateKey* CDSAPrivateKey::NewL(RInteger& aP, RInteger& aQ,
RInteger& aG, RInteger& aX)
{
CDSAPrivateKey* self = new(ELeave) CDSAPrivateKey(aP, aQ, aG, aX);
return self;
}
EXPORT_C CDSAPrivateKey* CDSAPrivateKey::NewLC(RInteger& aP, RInteger& aQ,
RInteger& aG, RInteger& aX)
{
CDSAPrivateKey* self = NewL(aP, aQ, aG, aX);
CleanupStack::PushL(self);
return self;
}
EXPORT_C const TInteger& CDSAPrivateKey::X(void) const
{
return iX;
}
CDSAPrivateKey::CDSAPrivateKey(RInteger& aP, RInteger& aQ, RInteger& aG,
RInteger& aX) : CDSAParameters(aP, aQ, aG), iX(aX)
{
}
EXPORT_C CDSAPrivateKey::CDSAPrivateKey(void)
{
}
EXPORT_C CDSAPrivateKey::~CDSAPrivateKey(void)
{
iX.Close();
}
/* CDSAKeyPair */
EXPORT_C CDSAKeyPair* CDSAKeyPair::NewL(TUint aKeyBits)
{
CDSAKeyPair* self = NewLC(aKeyBits);
CleanupStack::Pop();
return self;
}
EXPORT_C CDSAKeyPair* CDSAKeyPair::NewLC(TUint aKeyBits)
{
CDSAKeyPair* self = new(ELeave) CDSAKeyPair();
CleanupStack::PushL(self);
self->ConstructL(aKeyBits);
return self;
}
EXPORT_C const CDSAPublicKey& CDSAKeyPair::PublicKey(void) const
{
return *iPublic;
}
EXPORT_C const CDSAPrivateKey& CDSAKeyPair::PrivateKey(void) const
{
return *iPrivate;
}
EXPORT_C CDSAKeyPair::~CDSAKeyPair(void)
{
delete iPublic;
delete iPrivate;
delete iPrimeCertificate;
}
EXPORT_C CDSAKeyPair::CDSAKeyPair(void)
{
}
EXPORT_C const CDSAPrimeCertificate& CDSAKeyPair::PrimeCertificate(void) const
{
return *iPrimeCertificate;
}
void CDSAKeyPair::ConstructL(TUint aPBits)
{
//This is the first step of DSA prime generation. The remaining steps are
//performed in CDSAParameters::GeneratePrimesL
//Step 1. Choose an arbitrary sequence of at least 160 bits and call it
//SEED. Let g be the length of SEED in bits.
TBuf8<SHASIZE> seed(SHASIZE);
TUint c;
RInteger p;
RInteger q;
do
{
GenerateRandomBytesL(seed);
}
while(!CDSAParameters::GeneratePrimesL(seed, c, p, aPBits, q));
//Double PushL will not fail as GeneratePrimesL uses the CleanupStack
//(at least one push and pop ;)
CleanupStack::PushL(p);
CleanupStack::PushL(q);
iPrimeCertificate = CDSAPrimeCertificate::NewL(seed, c);
CMontgomeryStructure* montP = CMontgomeryStructure::NewLC(p);
--p;
// e = (p-1)/q
RInteger e = p.DividedByL(q);
CleanupStack::PushL(e);
--p; //now it's p-2 :)
RInteger h;
const TInteger* g = 0;
do
{
// find a random h | 1 < h < p-1
h = RInteger::NewRandomL(TInteger::Two(), p);
CleanupStack::PushL(h);
// g = h^e mod p
g = &(montP->ExponentiateL(h, e));
CleanupStack::PopAndDestroy(&h);
}
while( *g <= TInteger::One() );
CleanupStack::PopAndDestroy(&e);
++p; //reincrement p to original value
++p;
RInteger g1 = RInteger::NewL(*g); //take a copy of montP's g
CleanupStack::PushL(g1);
RInteger p1 = RInteger::NewL(p);
CleanupStack::PushL(p1);
RInteger q1 = RInteger::NewL(q);
CleanupStack::PushL(q1);
--q;
// select random x | 0 < x < q
RInteger x = RInteger::NewRandomL(TInteger::One(), q);
CleanupStack::PushL(x);
++q;
iPrivate = CDSAPrivateKey::NewL(p1, q1, g1, x);
CleanupStack::Pop(4, &g1); //x,q1,p1,g1 -- all owned by iPrivate
RInteger y = RInteger::NewL(montP->ExponentiateL(*g, iPrivate->X()));
CleanupStack::PushL(y);
RInteger g2 = RInteger::NewL(iPrivate->G());
CleanupStack::PushL(g2);
iPublic = CDSAPublicKey::NewL(p, q, g2, y);
CleanupStack::Pop(2, &y); //g2, y
CleanupStack::PopAndDestroy(montP);
CleanupStack::Pop(2, &p); //q, p
}
/* CDSAPrimeCertificate */
EXPORT_C CDSAPrimeCertificate* CDSAPrimeCertificate::NewL(const TDesC8& aSeed,
TUint aCounter)
{
CDSAPrimeCertificate* self = NewLC(aSeed, aCounter);
CleanupStack::Pop();
return self;
}
EXPORT_C CDSAPrimeCertificate* CDSAPrimeCertificate::NewLC(const TDesC8& aSeed,
TUint aCounter)
{
CDSAPrimeCertificate* self = new(ELeave) CDSAPrimeCertificate(aCounter);
CleanupStack::PushL(self);
self->ConstructL(aSeed);
return self;
}
EXPORT_C const TDesC8& CDSAPrimeCertificate::Seed(void) const
{
return *iSeed;
}
EXPORT_C TUint CDSAPrimeCertificate::Counter(void) const
{
return iCounter;
}
EXPORT_C CDSAPrimeCertificate::~CDSAPrimeCertificate(void)
{
delete const_cast<HBufC8*>(iSeed);
}
void CDSAPrimeCertificate::ConstructL(const TDesC8& aSeed)
{
iSeed = aSeed.AllocL();
}
EXPORT_C CDSAPrimeCertificate::CDSAPrimeCertificate(TUint aCounter)
: iCounter(aCounter)
{
}
EXPORT_C CDSAPrimeCertificate::CDSAPrimeCertificate(void)
{
}