diff -r 000000000000 -r 2c201484c85f crypto/weakcrypto/source/bigint/bigint.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/crypto/weakcrypto/source/bigint/bigint.cpp Wed Jul 08 11:25:26 2009 +0100 @@ -0,0 +1,1172 @@ +/* +* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies). +* All rights reserved. +* This component and the accompanying materials are made available +* under the terms of the License "Eclipse Public License v1.0" +* which accompanies this distribution, and is available +* at the URL "http://www.eclipse.org/legal/epl-v10.html". +* +* Initial Contributors: +* Nokia Corporation - initial contribution. +* +* Contributors: +* +* Description: +* +*/ + + +#include +#include +#include +#include +#include "words.h" +#include "algorithms.h" +#include "windowslider.h" +#include "stackinteger.h" +#include "mont.h" + +/** +* Creates a new buffer containing the big-endian binary representation of this +* integer. +* +* Note that it does not support the exporting of negative integers. +* +* @return The new buffer. +* +* @leave KErrNegativeExportNotSupported If this instance is a negative integer. +* +* @publishedPartner +* @released +*/ +EXPORT_C HBufC8* TInteger::BufferLC() const + { + if(IsNegative()) + { + User::Leave(KErrNegativeExportNotSupported); + } + TUint bytes = ByteCount(); + HBufC8* buf = HBufC8::NewMaxLC(bytes); + TUint8* bufPtr = (TUint8*)(buf->Ptr()); + TUint8* regPtr = (TUint8*)Ptr(); + + // we internally store the number little endian, as a string we want it big + // endian + for(TUint i=0,j=bytes-1; iPtr()); + TUint8* regPtr = (TUint8*)Ptr(); + for(TUint i=0,j=bytes-1; i(KBigintZero); + } + +/** + * Gets the TInteger that represents one + * + * @return The TInteger representing one + */ +EXPORT_C const TInteger& TInteger::One(void) + { + return *reinterpret_cast(KBigintOne); + } + +/** + * Gets the TInteger that represents two + * + * @return The TInteger representing two + */ +EXPORT_C const TInteger& TInteger::Two(void) + { + return *reinterpret_cast(KBigintTwo); + } + +EXPORT_C RInteger TInteger::PlusL(const TInteger& aOperand) const + { + RInteger sum; + if (NotNegative()) + { + if (aOperand.NotNegative()) + sum = PositiveAddL(*this, aOperand); + else + sum = PositiveSubtractL(*this, aOperand); + } + else + { + if (aOperand.NotNegative()) + sum = PositiveSubtractL(aOperand, *this); + else + { + sum = PositiveAddL(*this, aOperand); + sum.SetSign(TInteger::ENegative); + } + } + return sum; + } + +EXPORT_C RInteger TInteger::MinusL(const TInteger& aOperand) const + { + RInteger diff; + if (NotNegative()) + { + if (aOperand.NotNegative()) + diff = PositiveSubtractL(*this, aOperand); + else + diff = PositiveAddL(*this, aOperand); + } + else + { + if (aOperand.NotNegative()) + { + diff = PositiveAddL(*this, aOperand); + diff.SetSign(TInteger::ENegative); + } + else + diff = PositiveSubtractL(aOperand, *this); + } + return diff; + } + +EXPORT_C RInteger TInteger::TimesL(const TInteger& aOperand) const + { + RInteger product = PositiveMultiplyL(*this, aOperand); + + if (NotNegative() != aOperand.NotNegative()) + { + product.Negate(); + } + return product; + } + +EXPORT_C RInteger TInteger::DividedByL(const TInteger& aOperand) const + { + RInteger quotient; + RInteger remainder; + DivideL(remainder, quotient, *this, aOperand); + remainder.Close(); + return quotient; + } + +EXPORT_C RInteger TInteger::DividedByL(TUint aOperand) const + { + TUint remainder; + RInteger quotient; + DivideL(remainder, quotient, *this, aOperand); + return quotient; + } + +EXPORT_C RInteger TInteger::ModuloL(const TInteger& aOperand) const + { + RInteger remainder; + RInteger quotient; + DivideL(remainder, quotient, *this, aOperand); + quotient.Close(); + return remainder; + } + +EXPORT_C TUint TInteger::ModuloL(TUint aOperand) const + { + if(!aOperand) + { + User::Leave(KErrDivideByZero); + } + return Modulo(*this, aOperand); + } + +EXPORT_C RInteger TInteger::SquaredL() const + { + //PositiveMultiplyL optimises for the squaring case already + //Any number squared is positive, no need for negative handling in TimesL + return PositiveMultiplyL(*this, *this); + } + +EXPORT_C RInteger TInteger::ExponentiateL(const TInteger& aExponent) const + { + //See HAC 14.85 + + // 1.1 Precomputation + // g1 <- g + // g2 <- g^2 + RInteger g2 = SquaredL(); + CleanupStack::PushL(g2); + RInteger g1 = RInteger::NewL(*this); + CleanupStack::PushL(g1); + TWindowSlider slider(aExponent); + + // 1.2 + // For i from 1 to (2^(k-1) -1) do g2i+1 <- g2i-1 * g2 + TUint count = (1 << (slider.WindowSize()-1)) - 1; //2^(k-1) -1 + RRArray powerArray(count+1); //+1 because we append g1 + User::LeaveIfError(powerArray.Append(g1)); + CleanupStack::Pop(); //g1 + CleanupClosePushL(powerArray); + for(TUint k=1; k <= count; k++) + { + RInteger g2iplus1 = g2.TimesL(powerArray[k-1]); + //This append can't fail as the granularity is set high enough + //plus we've already called Append once which will alloc to the + //set granularity + powerArray.Append(g2iplus1); + } + + // 2 A <- 1, i <- t + RInteger A = RInteger::NewL(One()); + CleanupStack::PushL(A); + TInt i = aExponent.BitCount() - 1; + + // 3 While i>=0 do: + while( i>=0 ) + { + // 3.1 If ei == 0 then A <- A^2 + if(!aExponent.Bit(i)) + { + A *= A; + i--; + } + // 3.2 Find longest bitstring ei,ei-1,...,el s.t. i-l+1<=k and el==1 + // and do: + // A <- (A^2^(i-l+1)) * g[the index indicated by the bitstring value] + else + { + slider.FindNextWindow(i); + assert(slider.Length() >= 1); + for(TUint j=0; j>1]; + i -= slider.Length(); + } + } + CleanupStack::Pop(&A); + CleanupStack::PopAndDestroy(2, &g2); //powerArray, g2 + return A; + } + +EXPORT_C RInteger TInteger::ModularMultiplyL(const TInteger& aA, const TInteger& aB, + const TInteger& aMod) + { + RInteger product = aA.TimesL(aB); + CleanupStack::PushL(product); + RInteger reduced = product.ModuloL(aMod); + CleanupStack::PopAndDestroy(&product); + return reduced; + } + +EXPORT_C RInteger TInteger::ModularExponentiateL(const TInteger& aBase, + const TInteger& aExp, const TInteger& aMod) + { + CMontgomeryStructure* mont = CMontgomeryStructure::NewLC(aMod); + RInteger result = RInteger::NewL(mont->ExponentiateL(aBase, aExp)); + CleanupStack::PopAndDestroy(mont); + return result; + } + +EXPORT_C RInteger TInteger::GCDL(const TInteger& aOperand) const + { + //Binary GCD algorithm -- see HAC 14.4.1 + //with a slight variation -- our g counts shifts rather than actually + //shifting. We then do one shift at the end. + assert(NotNegative()); + assert(aOperand.NotNegative()); + + RInteger x = RInteger::NewL(*this); + CleanupStack::PushL(x); + RInteger y = RInteger::NewL(aOperand); + CleanupStack::PushL(y); + + // 1 Ensure x >= y + if( x < y ) + { + TClassSwap(x, y); + } + + TUint g = 0; + // 2 while x and y even x <- x/2, y <- y/2 + while( x.IsEven() && y.IsEven() ) + { + x >>= 1; + y >>= 1; + ++g; + } + // 3 while x != 0 + while( x.NotZero() ) + { + // 3.1 while x even x <- x/2 + while( x.IsEven() ) + { + x >>= 1; + } + // 3.2 while y even y <- y/2 + while( y.IsEven() ) + { + y >>= 1; + } + // 3.3 t <- abs(x-y)/2 + RInteger t = x.MinusL(y); + t >>= 1; + t.SetSign(TInteger::EPositive); + + // 3.4 If x>=y then x <- t else y <- t + if( x >= y ) + { + x.Set(t); + } + else + { + y.Set(t); + } + } + + // 4 Return (g*y) (equiv to y<<=g as our g was counting shifts not actually + //shifting) + y <<= g; + CleanupStack::Pop(&y); + CleanupStack::PopAndDestroy(&x); + return y; + } + +EXPORT_C RInteger TInteger::InverseModL(const TInteger& aMod) const + { + assert(aMod.NotNegative()); + + RInteger result; + if(IsNegative() || *this>=aMod) + { + RInteger temp = ModuloL(aMod); + CleanupClosePushL(temp); + result = temp.InverseModL(aMod); + CleanupStack::PopAndDestroy(&temp); + return result; + } + + if(aMod.IsEven()) + { + if( !aMod || IsEven() ) + { + return RInteger::NewL(Zero()); + } + if( *this == One() ) + { + return RInteger::NewL(One()); + } + RInteger u = aMod.InverseModL(*this); + CleanupClosePushL(u); + if(!u) + { + result = RInteger::NewL(Zero()); + } + else + { + //calculates (aMod*(*this-u)+1)/(*this) + result = MinusL(u); + CleanupClosePushL(result); + result *= aMod; + ++result; + result /= *this; + CleanupStack::Pop(&result); + } + CleanupStack::PopAndDestroy(&u); + return result; + } + + result = RInteger::NewEmptyL(aMod.Size()); + CleanupClosePushL(result); + RInteger workspace = RInteger::NewEmptyL(aMod.Size() * 4); + TUint k = AlmostInverse(result.Ptr(), workspace.Ptr(), Ptr(), Size(), + aMod.Ptr(), aMod.Size()); + DivideByPower2Mod(result.Ptr(), result.Ptr(), k, aMod.Ptr(), aMod.Size()); + workspace.Close(); + CleanupStack::Pop(&result); + + return result; + } + +EXPORT_C TInteger& TInteger::operator+=(const TInteger& aOperand) + { + this->Set(PlusL(aOperand)); + return *this; + } + +EXPORT_C TInteger& TInteger::operator-=(const TInteger& aOperand) + { + this->Set(MinusL(aOperand)); + return *this; + } + +EXPORT_C TInteger& TInteger::operator*=(const TInteger& aOperand) + { + this->Set(TimesL(aOperand)); + return *this; + } + +EXPORT_C TInteger& TInteger::operator/=(const TInteger& aOperand) + { + this->Set(DividedByL(aOperand)); + return *this; + } + +EXPORT_C TInteger& TInteger::operator%=(const TInteger& aOperand) + { + this->Set(ModuloL(aOperand)); + return *this; + } + +EXPORT_C TInteger& TInteger::operator+=(TInt aOperand) + { + TStackInteger64 operand(aOperand); + *this += operand; + return *this; + } + +EXPORT_C TInteger& TInteger::operator-=(TInt aOperand) + { + TStackInteger64 operand(aOperand); + *this -= operand; + return *this; + } + +EXPORT_C TInteger& TInteger::operator*=(TInt aOperand) + { + TStackInteger64 operand(aOperand); + *this *= operand; + return *this; + } + +EXPORT_C TInteger& TInteger::operator/=(TInt aOperand) + { + TStackInteger64 operand(aOperand); + *this /= operand; + return *this; + } + +EXPORT_C TInteger& TInteger::operator%=(TInt aOperand) + { + TStackInteger64 operand(aOperand); + assert(operand.NotNegative()); + *this %= operand; + return *this; + } + +EXPORT_C TInteger& TInteger::operator--() + { + if (IsNegative()) + { + if (Increment(Ptr(), Size())) + { + CleanGrowL(2*Size()); + (Ptr())[Size()/2]=1; + } + } + else + { + if (Decrement(Ptr(), Size())) + { + this->CopyL(-1); + } + } + return *this; + } + +EXPORT_C TInteger& TInteger::operator++() + { + if(NotNegative()) + { + if(Increment(Ptr(), Size())) + { + CleanGrowL(2*Size()); + (Ptr())[Size()/2]=1; + } + } + else + { + DecrementNoCarry(Ptr(), Size()); + if(WordCount()==0) + { + this->CopyL(Zero()); + } + } + return *this; + } + +EXPORT_C TInteger& TInteger::operator <<=(TUint aBits) + { + const TUint wordCount = WordCount(); + const TUint shiftWords = aBits / WORD_BITS; + const TUint shiftBits = aBits % WORD_BITS; + + CleanGrowL(wordCount+BitsToWords(aBits)); + ShiftWordsLeftByWords(Ptr(), wordCount + shiftWords, shiftWords); + ShiftWordsLeftByBits(Ptr()+shiftWords, wordCount + BitsToWords(shiftBits), + shiftBits); + return *this; + } + +EXPORT_C TInteger& TInteger::operator >>=(TUint aBits) + { + const TUint wordCount = WordCount(); + const TUint shiftWords = aBits / WORD_BITS; + const TUint shiftBits = aBits % WORD_BITS; + + ShiftWordsRightByWords(Ptr(), wordCount, shiftWords); + if(wordCount > shiftWords) + { + ShiftWordsRightByBits(Ptr(), wordCount - shiftWords, shiftBits); + } + if(IsNegative() && WordCount()==0) // avoid negative 0 + { + SetSign(EPositive); + } + return *this; + } + +EXPORT_C TInt TInteger::UnsignedCompare(const TInteger& aThat) const + { + TUint size = WordCount(); + TUint thatSize = aThat.WordCount(); + + if( size == thatSize ) + return Compare(Ptr(), aThat.Ptr(), size); + else + return size > thatSize ? 1 : -1; + } + +EXPORT_C TInt TInteger::SignedCompare(const TInteger& aThat) const + { + if (NotNegative()) + { + if (aThat.NotNegative()) + return UnsignedCompare(aThat); + else + return 1; + } + else + { + if (aThat.NotNegative()) + return -1; + else + return -UnsignedCompare(aThat); + } + } + +EXPORT_C TBool TInteger::operator!() const + { + //Ptr()[0] is just a quick way of weeding out non-zero numbers without + //doing a full WordCount() == 0. Very good odds that a non-zero number + //will have a bit set in the least significant word + return IsNegative() ? EFalse : (Ptr()[0]==0 && WordCount()==0); + } + +EXPORT_C TInt TInteger::SignedCompare(TInt aInteger) const + { + TStackInteger64 temp(aInteger); + return SignedCompare(temp); + } + +/* TBool IsPrimeL(void) const + * and all primality related functions are implemented in primes.cpp */ + +EXPORT_C TBool TInteger::Bit(TUint aBitPos) const + { + if( aBitPos/WORD_BITS >= Size() ) + { + return 0; + } + else + { + return (((Ptr())[aBitPos/WORD_BITS] >> (aBitPos % WORD_BITS)) & 1); + } + } + +EXPORT_C void TInteger::SetBit(TUint aBitPos) + { + if( aBitPos/WORD_BITS < Size() ) + { + ArraySetBit(Ptr(), aBitPos); + } + } + +EXPORT_C void TInteger::Negate() + { + if(!!(*this)) //don't flip sign if *this==0 + { + SetSign(TSign((~Sign())&KSignMask)); + } + } + +EXPORT_C TInt TInteger::ConvertToLongL(void) const + { + if(!IsConvertableToLong()) + { + User::Leave(KErrTotalLossOfPrecision); + } + return ConvertToLong(); + } + +EXPORT_C void TInteger::CopyL(const TInteger& aInteger, TBool aAllowShrink) + { + if(aAllowShrink) + { + CleanResizeL(aInteger.Size()); + } + else + { + CleanGrowL(aInteger.Size()); + } + Construct(aInteger); + } + +EXPORT_C void TInteger::CopyL(TInt aInteger, TBool aAllowShrink) + { + if(aAllowShrink) + { + CleanResizeL(2); + } + else + { + CleanGrowL(2); + } + Construct(aInteger); + } + +EXPORT_C void TInteger::Set(const RInteger& aInteger) + { + assert(IsHeapBased()); + Mem::FillZ(Ptr(), WordsToBytes(Size())); + User::Free(Ptr()); + iPtr = aInteger.iPtr; + iSize = aInteger.iSize; + } + +RInteger TInteger::PositiveAddL(const TInteger &aA, const TInteger& aB) const + { + RInteger sum = RInteger::NewEmptyL(CryptoMax(aA.Size(), aB.Size())); + const word aSize = aA.Size(); + const word bSize = aB.Size(); + const word* const aReg = aA.Ptr(); + const word* const bReg = aB.Ptr(); + word* const sumReg = sum.Ptr(); + + word carry; + if (aSize == bSize) + carry = Add(sumReg, aReg, bReg, aSize); + else if (aSize > bSize) + { + carry = Add(sumReg, aReg, bReg, bSize); + CopyWords(sumReg+bSize, aReg+bSize, aSize-bSize); + carry = Increment(sumReg+bSize, aSize-bSize, carry); + } + else + { + carry = Add(sumReg, aReg, bReg, aSize); + CopyWords(sumReg+aSize, bReg+aSize, bSize-aSize); + carry = Increment(sumReg+aSize, bSize-aSize, carry); + } + + if (carry) + { + CleanupStack::PushL(sum); + sum.CleanGrowL(2*sum.Size()); + CleanupStack::Pop(&sum); + sum.Ptr()[sum.Size()/2] = 1; + } + sum.SetSign(TInteger::EPositive); + return sum; + } + +RInteger TInteger::PositiveSubtractL(const TInteger &aA, const TInteger& aB) const + { + RInteger diff = RInteger::NewEmptyL(CryptoMax(aA.Size(), aB.Size())); + unsigned aSize = aA.WordCount(); + aSize += aSize%2; + unsigned bSize = aB.WordCount(); + bSize += bSize%2; + const word* const aReg = aA.Ptr(); + const word* const bReg = aB.Ptr(); + word* const diffReg = diff.Ptr(); + + if (aSize == bSize) + { + if (Compare(aReg, bReg, aSize) >= 0) + { + Subtract(diffReg, aReg, bReg, aSize); + diff.SetSign(TInteger::EPositive); + } + else + { + Subtract(diffReg, bReg, aReg, aSize); + diff.SetSign(TInteger::ENegative); + } + } + else if (aSize > bSize) + { + word borrow = Subtract(diffReg, aReg, bReg, bSize); + CopyWords(diffReg+bSize, aReg+bSize, aSize-bSize); + borrow = Decrement(diffReg+bSize, aSize-bSize, borrow); + assert(!borrow); + diff.SetSign(TInteger::EPositive); + } + else + { + word borrow = Subtract(diffReg, bReg, aReg, aSize); + CopyWords(diffReg+aSize, bReg+aSize, bSize-aSize); + borrow = Decrement(diffReg+aSize, bSize-aSize, borrow); + assert(!borrow); + diff.SetSign(TInteger::ENegative); + } + return diff; + } + +RInteger TInteger::PositiveMultiplyL(const TInteger &aA, const TInteger &aB) const + { + unsigned aSize = RoundupSize(aA.WordCount()); + unsigned bSize = RoundupSize(aB.WordCount()); + + RInteger product = RInteger::NewEmptyL(aSize+bSize); + CleanupClosePushL(product); + + RInteger workspace = RInteger::NewEmptyL(aSize + bSize); + AsymmetricMultiply(product.Ptr(), workspace.Ptr(), aA.Ptr(), aSize, aB.Ptr(), + bSize); + workspace.Close(); + CleanupStack::Pop(&product); + return product; + } + +TUint TInteger::Modulo(const TInteger& aDividend, TUint aDivisor) const + { + assert(aDivisor); + TUint i = aDividend.WordCount(); + TUint remainder = 0; + while(i--) + { + remainder = TUint(MAKE_DWORD(aDividend.Ptr()[i], remainder) % aDivisor); + } + return remainder; + } + +void TInteger::PositiveDivide(TUint& aRemainder, TInteger& aQuotient, + const TInteger& aDividend, TUint aDivisor) const + { + assert(aDivisor); + + TUint i = aDividend.WordCount(); + assert(aQuotient.Size() >= RoundupSize(i)); + assert(aQuotient.Sign() == TInteger::EPositive); + aRemainder = 0; + while(i--) + { + aQuotient.Ptr()[i] = + TUint(MAKE_DWORD(aDividend.Ptr()[i], aRemainder) / aDivisor); + aRemainder = + TUint(MAKE_DWORD(aDividend.Ptr()[i], aRemainder) % aDivisor); + } + } + +void TInteger::DivideL(TUint& aRemainder, RInteger& aQuotient, + const TInteger& aDividend, TUint aDivisor) const + { + if(!aDivisor) + { + User::Leave(KErrDivideByZero); + } + + TUint i = aDividend.WordCount(); + aQuotient.CleanNewL(RoundupSize(i)); + PositiveDivide(aRemainder, aQuotient, aDividend, aDivisor); + + if(aDividend.NotNegative()) + { + aQuotient.SetSign(TInteger::EPositive); + } + else + { + aQuotient.SetSign(TInteger::ENegative); + if(aRemainder) + { + --aQuotient; + aRemainder = aDivisor = aRemainder; + } + } + } + +void TInteger::PositiveDivideL(RInteger &aRemainder, RInteger &aQuotient, + const TInteger &aDividend, const TInteger &aDivisor) const + { + unsigned dividendSize = aDividend.WordCount(); + unsigned divisorSize = aDivisor.WordCount(); + + if (!divisorSize) + { + User::Leave(KErrDivideByZero); + } + + if (aDividend.UnsignedCompare(aDivisor) == -1) + { + aRemainder.CreateNewL(aDividend.Size()); + CleanupStack::PushL(aRemainder); + aRemainder.CopyL(aDividend); //set remainder to a + aRemainder.SetSign(TInteger::EPositive); + aQuotient.CleanNewL(2); //Set quotient to zero + CleanupStack::Pop(&aRemainder); + return; + } + + dividendSize += dividendSize%2; // round up to next even number + divisorSize += divisorSize%2; + + aRemainder.CleanNewL(divisorSize); + CleanupStack::PushL(aRemainder); + aQuotient.CleanNewL(dividendSize-divisorSize+2); + CleanupStack::PushL(aQuotient); + + RInteger T = RInteger::NewEmptyL(dividendSize+2*divisorSize+4); + Divide(aRemainder.Ptr(), aQuotient.Ptr(), T.Ptr(), aDividend.Ptr(), + dividendSize, aDivisor.Ptr(), divisorSize); + T.Close(); + CleanupStack::Pop(2, &aRemainder); //aQuotient, aRemainder + } + +void TInteger::DivideL(RInteger& aRemainder, RInteger& aQuotient, + const TInteger& aDividend, const TInteger& aDivisor) const + { + PositiveDivideL(aRemainder, aQuotient, aDividend, aDivisor); + + if (aDividend.IsNegative()) + { + aQuotient.Negate(); + if (aRemainder.NotZero()) + { + --aQuotient; + assert(aRemainder.Size() <= aDivisor.Size()); + Subtract(aRemainder.Ptr(), aDivisor.Ptr(), aRemainder.Ptr(), + aRemainder.Size()); + } + } + + if (aDivisor.IsNegative()) + aQuotient.Negate(); + } + +TInt TInteger::ConvertToLong(void) const + { + TUint value = ConvertToUnsignedLong(); + return Sign() == EPositive ? value : -(static_cast(value)); + } + +TBool TInteger::IsConvertableToLong(void) const + { + if(WordCount() > 1) + { + return EFalse; + } + TUint value = (Ptr())[0]; + if(Sign() == EPositive) + { + return static_cast(value) >= 0; + } + else + { + return -(static_cast(value)) < 0; + } + } + +void TInteger::RandomizeL(TUint aBits, TRandomAttribute aAttr) + { + if(!aBits) + { + return; + } + const TUint bytes = BitsToBytes(aBits); + const TUint words = BitsToWords(aBits); + CleanGrowL(words); + TPtr8 buf((TUint8*)(Ptr()), bytes, WordsToBytes(Size())); + TUint bitpos = aBits % BYTE_BITS; + GenerateRandomBytesL(buf); + //mask with 0 all bits above the num requested in the most significant byte + if(bitpos) + { + buf[bytes-1] = TUint8( buf[bytes-1] & ((1L << bitpos) - 1) ); + } + //set most significant (top) bit + if(aAttr == ETopBitSet || aAttr == ETop2BitsSet) + { + SetBit(aBits-1); //Set bit counts from 0 + assert(BitCount() == aBits); + assert(Bit(aBits-1)); + } + //set 2nd bit from top + if(aAttr == ETop2BitsSet) + { + SetBit(aBits-2); //Set bit counts from 0 + assert(BitCount() == aBits); + assert(Bit(aBits-1)); + assert(Bit(aBits-2)); + } + } + +void TInteger::RandomizeL(const TInteger& aMin, const TInteger& aMax) + { + assert(aMax > aMin); + assert(aMin.NotNegative()); + RInteger range = RInteger::NewL(aMax); + CleanupStack::PushL(range); + range -= aMin; + const TUint bits = range.BitCount(); + + //if we find a number < range then aMin+range < aMax + do + { + RandomizeL(bits, EAllBitsRandom); + } + while(*this > range); + + *this += aMin; + CleanupStack::PopAndDestroy(&range); + } + +/* void PrimeRandomizeL(TUint aBits, TRandomAttribute aAttr) + * and all primality related functions are implemented in primes.cpp */ + +void TInteger::CreateNewL(TUint aNewSize) + { + //should only be called on construction + assert(!iPtr); + + TUint newSize = RoundupSize(aNewSize); + SetPtr((TUint*)User::AllocL(WordsToBytes(newSize))); + SetSize(newSize); + SetHeapBased(); + } + +void TInteger::CleanNewL(TUint aNewSize) + { + CreateNewL(aNewSize); + Mem::FillZ(Ptr(), WordsToBytes(Size())); //clear integer storage + } + +void TInteger::CleanGrowL(TUint aNewSize) + { + assert(IsHeapBased()); + TUint newSize = RoundupSize(aNewSize); + TUint oldSize = Size(); + if(newSize > oldSize) + { + TUint* oldPtr = Ptr(); + //1) allocate new memory and set ptr and size + SetPtr((TUint*)User::AllocL(WordsToBytes(newSize))); + SetSize(newSize); + //2) copy old mem to new mem + Mem::Copy(Ptr(), oldPtr, WordsToBytes(oldSize)); + //3) zero all old memory + Mem::FillZ(oldPtr, WordsToBytes(oldSize)); + //4) give back old memory + User::Free(oldPtr); + //5) zero new memory from end of copy to end of growth + Mem::FillZ(Ptr() + oldSize, WordsToBytes(newSize-oldSize)); + } + } + +void TInteger::CleanResizeL(TUint aNewSize) + { + assert(IsHeapBased()); + TUint newSize = RoundupSize(aNewSize); + TUint oldSize = Size(); + if(newSize > oldSize) + { + CleanGrowL(aNewSize); + } + else if(newSize < oldSize) + { + TUint* oldPtr = Ptr(); + //1) zero memory above newsize + Mem::FillZ(oldPtr+WordsToBytes(aNewSize),WordsToBytes(oldSize-newSize)); + //2) ReAlloc cell. Since our newsize is less than oldsize, it is + //guarenteed not to move. Thus this is just freeing part of our old + //cell to the heap for other uses. + SetPtr((TUint*)User::ReAllocL(Ptr(), WordsToBytes(newSize))); + SetSize(newSize); + } + } + +TInteger::TInteger() : iSize(0), iPtr(0) + { + } + +void TInteger::Construct(const TDesC8& aValue) + { + assert(Size() >= BytesToWords(aValue.Size())); + if(aValue.Size() > 0) + { + //People write numbers with the most significant digits first (big + //endian) but we store our numbers in little endian. Hence we need to + //reverse the string by bytes. + + TUint bytes = aValue.Size(); + TUint8* i = (TUint8*)Ptr(); + TUint8* j = (TUint8*)aValue.Ptr() + bytes; + + //Swap the endianess of the number itself + // (msb) 01 02 03 04 05 06 (lsb) becomes -> + // (lsb) 06 05 04 03 02 01 (msb) + while( j != (TUint8*)aValue.Ptr() ) + { + *i++ = *--j; + } + Mem::FillZ((TUint8*)Ptr() + bytes, WordsToBytes(Size()) - bytes); + } + else + { + //if size is zero, we zero the whole register + Mem::FillZ((TUint8*)Ptr(), WordsToBytes(Size())); + } + SetSign(EPositive); + } + +void TInteger::Construct(const TInteger& aInteger) + { + assert(Size() >= aInteger.Size()); + CopyWords(Ptr(), aInteger.Ptr(), aInteger.Size()); + if(Size() > aInteger.Size()) + { + Mem::FillZ(Ptr()+aInteger.Size(), WordsToBytes(Size()-aInteger.Size())); + } + SetSign(aInteger.Sign()); + } + +void TInteger::Construct(TInt aInteger) + { + Construct((TUint)aInteger); + if(aInteger < 0) + { + SetSign(ENegative); + Ptr()[0] = -aInteger; + } + } + +void TInteger::Construct(TUint aInteger) + { + assert(Size() >= 2); + SetSign(EPositive); + Ptr()[0] = aInteger; + Mem::FillZ(Ptr()+1, WordsToBytes(Size()-1)); + } + +void TInteger::ConstructStack(TUint aWords, TUint aInteger) + { + SetPtr((TUint*)(this)+2); + //SetStackBased(); //Not strictly needed as stackbased is a 0 at bit 1 + SetSize(aWords); + assert(Size() >= 2); + Ptr()[0] = aInteger; + Mem::FillZ(&(Ptr()[1]), WordsToBytes(Size()-1)); + } + +void TInteger::ConstructStack(TUint aWords, const TInteger& aInteger) + { + SetPtr((TUint*)(this)+2); + //SetStackBased(); //Not strictly needed as stackbased is a 0 at bit 1 + SetSize(aWords); + assert( Size() >= RoundupSize(aInteger.WordCount()) ); + CopyWords(Ptr(), aInteger.Ptr(), aInteger.Size()); + Mem::FillZ(Ptr()+aInteger.Size(), WordsToBytes(Size()-aInteger.Size())); + }