diff -r 641f389e9157 -r a71299154b21 crypto/weakcrypto/source/asymmetric/dsakeys.cpp --- a/crypto/weakcrypto/source/asymmetric/dsakeys.cpp Tue Aug 31 17:00:08 2010 +0300 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,468 +0,0 @@ -/* -* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies). -* All rights reserved. -* This component and the accompanying materials are made available -* under the terms of the License "Eclipse Public License v1.0" -* which accompanies this distribution, and is available -* at the URL "http://www.eclipse.org/legal/epl-v10.html". -* -* Initial Contributors: -* Nokia Corporation - initial contribution. -* -* Contributors: -* -* Description: -* -*/ - - -#include -#include -#include -#include -#include "../common/inlines.h" -#include "../bigint/mont.h" - -const TUint SHASIZE = 20; -const TUint KMinPrimeLength = 512; -const TUint KMaxPrimeLength = 1024; -const TUint KPrimeLengthMultiple = 64; - -/* CDSAParameters */ - -EXPORT_C const TInteger& CDSAParameters::P(void) const - { - return iP; - } - -EXPORT_C const TInteger& CDSAParameters::Q(void) const - { - return iQ; - } - -EXPORT_C const TInteger& CDSAParameters::G(void) const - { - return iG; - } - -EXPORT_C CDSAParameters::~CDSAParameters(void) - { - iP.Close(); - iQ.Close(); - iG.Close(); - } - -EXPORT_C CDSAParameters* CDSAParameters::NewL(RInteger& aP, RInteger& aQ, - RInteger& aG) - { - CDSAParameters* me = new (ELeave) CDSAParameters(aP, aQ, aG); - return (me); - } - -EXPORT_C TBool CDSAParameters::ValidatePrimesL(const CDSAPrimeCertificate& aCert) - const - { - TBool result = EFalse; - RInteger p; - RInteger q; - //Regenerate primes using aCert's seed and counter - TUint counter = aCert.Counter(); - if(!CDSAParameters::GeneratePrimesL(aCert.Seed(), counter, p, - P().BitCount(), q, ETrue)) - { - return result; - } - //this doesn't leave, no need to push p and q - if(p == P() && q == Q() && counter == aCert.Counter()) - { - result = ETrue; - } - p.Close(); - q.Close(); - return result; - } - -EXPORT_C TBool CDSAParameters::ValidPrimeLength(TUint aPrimeBits) - { - return (aPrimeBits >= KMinPrimeLength && - aPrimeBits <= KMaxPrimeLength && - aPrimeBits % KPrimeLengthMultiple == 0); - } - -EXPORT_C CDSAParameters::CDSAParameters(RInteger& aP, RInteger& aQ, - RInteger& aG) : iP(aP), iQ(aQ), iG(aG) - { - } - -EXPORT_C CDSAParameters::CDSAParameters(void) - { - } - -TBool CDSAParameters::GeneratePrimesL(const TDesC8& aSeed, TUint& aCounter, - RInteger& aP, TUint aL, RInteger& aQ, TBool aUseInputCounter) - { - //This follows the steps in FIPS 186-2 - //See DSS Appendix 2.2 - //Note. Step 1 is performed prior to calling GeneratePrimesL, so that this - //routine can be used for both generation and validation. - //Step 1. Choose an arbitrary sequence of at least 160 bits and call it - //SEED. Let g be the length of SEED in bits. - - if(!CDSAParameters::ValidPrimeLength(aL)) - { - User::Leave(KErrNotSupported); - } - - CSHA1* sha1 = CSHA1::NewL(); - CleanupStack::PushL(sha1); - - HBufC8* seedBuf = aSeed.AllocLC(); - TPtr8 seed = seedBuf->Des(); - TUint gBytes = aSeed.Size(); - //Note that the DSS's g = BytesToBits(gBytes) ie. the number of random bits - //in the seed. - //This function has made the assumption (for ease of computation) that g%8 - //is 0. Ie the seed is a whole number of random bytes. - TBuf8 U; - TBuf8 temp; - const TUint n = (aL-1)/160; - const TUint b = (aL-1)%160; - HBufC8* Wbuf = HBufC8::NewMaxLC((n+1) * SHASIZE); - TUint8* W = const_cast(Wbuf->Ptr()); - - U.Copy(sha1->Final(seed)); - - //Step 2. U = SHA-1[SEED] XOR SHA-1[(SEED+1) mod 2^g] - for(TInt i=gBytes - 1, carry=ETrue; i>=0 && carry; i--) - { - //!++(TUint) adds one to the current word which if it overflows to zero - //sets carry to 1 thus letting the loop continue. It's a poor man's - //multi-word addition. Swift eh? - carry = !++(seed[i]); - } - - temp.Copy(sha1->Final(seed)); - XorBuf(const_cast(U.Ptr()), temp.Ptr(), SHASIZE); - - //Step 3. Form q from U by setting the most significant bit (2^159) - //and the least significant bit to 1. - U[0] |= 0x80; - U[SHASIZE-1] |= 1; - - aQ = RInteger::NewL(U); - CleanupStack::PushL(aQ); - - //Step 4. Use a robust primality testing algo to test if q is prime - //The robust part is the calling codes problem. This will use whatever - //random number generator you set for the thread. To attempt FIPS 186-2 - //compliance, set a FIPS 186-2 compliant RNG. - if( !aQ.IsPrimeL() ) - { - //Step 5. If not exit and get a new seed - CleanupStack::PopAndDestroy(&aQ); - CleanupStack::PopAndDestroy(Wbuf); - CleanupStack::PopAndDestroy(seedBuf); - CleanupStack::PopAndDestroy(sha1); - return EFalse; - } - - TUint counterEnd = aUseInputCounter ? aCounter+1 : 4096; - - //Step 6. Let counter = 0 and offset = 2 - //Note 1. that the DSS speaks of SEED + offset + k because they always - //refer to a constant SEED. We update our seed as we go so the offset - //variable has already been added to seed in the previous iterations. - //Note 2. We've already added 1 to our seed, so the first time through this - //the offset in DSS speak will be 2. - for(TUint counter=0; counter < counterEnd; counter++) - { - //Step 7. For k=0, ..., n let - // Vk = SHA-1[(SEED + offset + k) mod 2^g] - //I'm storing the Vk's inside of a big W buffer. - for(TUint k=0; k<=n; k++) - { - for(TInt i=gBytes-1, carry=ETrue; i>=0 && carry; i--) - { - carry = !++(seed[i]); - } - if(!aUseInputCounter || counter == aCounter) - { - TPtr8 Wptr(W+(n-k)*SHASIZE, gBytes); - Wptr.Copy(sha1->Final(seed)); - } - } - if(!aUseInputCounter || counter == aCounter) - { - //Step 8. Let W be the integer... and let X = W + 2^(L-1) - const_cast((*Wbuf)[SHASIZE - 1 - b/8]) |= 0x80; - TPtr8 Wptr(W + SHASIZE - 1 - b/8, aL/8, aL/8); - RInteger X = RInteger::NewL(Wptr); - CleanupStack::PushL(X); - //Step 9. Let c = X mod 2q and set p = X - (c-1) - RInteger twoQ = aQ.TimesL(TInteger::Two()); - CleanupStack::PushL(twoQ); - RInteger c = X.ModuloL(twoQ); - CleanupStack::PushL(c); - --c; - aP = X.MinusL(c); - CleanupStack::PopAndDestroy(3, &X); //twoQ, c, X - CleanupStack::PushL(aP); - - //Step 10 and 11: if p >= 2^(L-1) and p is prime - if( aP.Bit(aL-1) && aP.IsPrimeL() ) - { - aCounter = counter; - CleanupStack::Pop(&aP); - CleanupStack::Pop(&aQ); - CleanupStack::PopAndDestroy(Wbuf); - CleanupStack::PopAndDestroy(seedBuf); - CleanupStack::PopAndDestroy(sha1); - return ETrue; - } - CleanupStack::PopAndDestroy(&aP); - } - } - CleanupStack::PopAndDestroy(&aQ); - CleanupStack::PopAndDestroy(Wbuf); - CleanupStack::PopAndDestroy(seedBuf); - CleanupStack::PopAndDestroy(sha1); - return EFalse; - } - -/* CDSAPublicKey */ - -EXPORT_C CDSAPublicKey* CDSAPublicKey::NewL(RInteger& aP, RInteger& aQ, - RInteger& aG, RInteger& aY) - { - CDSAPublicKey* self = new(ELeave) CDSAPublicKey(aP, aQ, aG, aY); - return self; - } - -EXPORT_C CDSAPublicKey* CDSAPublicKey::NewLC(RInteger& aP, RInteger& aQ, - RInteger& aG, RInteger& aY) - { - CDSAPublicKey* self = NewL(aP, aQ, aG, aY); - CleanupStack::PushL(self); - return self; - } - -EXPORT_C const TInteger& CDSAPublicKey::Y(void) const - { - return iY; - } - -EXPORT_C CDSAPublicKey::CDSAPublicKey(void) - { - } - -EXPORT_C CDSAPublicKey::CDSAPublicKey(RInteger& aP, RInteger& aQ, RInteger& aG, - RInteger& aY) : CDSAParameters(aP, aQ, aG), iY(aY) - { - } - -EXPORT_C CDSAPublicKey::~CDSAPublicKey(void) - { - iY.Close(); - } - -/* CDSAPrivateKey */ - -EXPORT_C CDSAPrivateKey* CDSAPrivateKey::NewL(RInteger& aP, RInteger& aQ, - RInteger& aG, RInteger& aX) - { - CDSAPrivateKey* self = new(ELeave) CDSAPrivateKey(aP, aQ, aG, aX); - return self; - } - -EXPORT_C CDSAPrivateKey* CDSAPrivateKey::NewLC(RInteger& aP, RInteger& aQ, - RInteger& aG, RInteger& aX) - { - CDSAPrivateKey* self = NewL(aP, aQ, aG, aX); - CleanupStack::PushL(self); - return self; - } - -EXPORT_C const TInteger& CDSAPrivateKey::X(void) const - { - return iX; - } - -CDSAPrivateKey::CDSAPrivateKey(RInteger& aP, RInteger& aQ, RInteger& aG, - RInteger& aX) : CDSAParameters(aP, aQ, aG), iX(aX) - { - } - -EXPORT_C CDSAPrivateKey::CDSAPrivateKey(void) - { - } - -EXPORT_C CDSAPrivateKey::~CDSAPrivateKey(void) - { - iX.Close(); - } - -/* CDSAKeyPair */ - -EXPORT_C CDSAKeyPair* CDSAKeyPair::NewL(TUint aKeyBits) - { - CDSAKeyPair* self = NewLC(aKeyBits); - CleanupStack::Pop(); - return self; - } - -EXPORT_C CDSAKeyPair* CDSAKeyPair::NewLC(TUint aKeyBits) - { - CDSAKeyPair* self = new(ELeave) CDSAKeyPair(); - CleanupStack::PushL(self); - self->ConstructL(aKeyBits); - return self; - } - -EXPORT_C const CDSAPublicKey& CDSAKeyPair::PublicKey(void) const - { - return *iPublic; - } - -EXPORT_C const CDSAPrivateKey& CDSAKeyPair::PrivateKey(void) const - { - return *iPrivate; - } - -EXPORT_C CDSAKeyPair::~CDSAKeyPair(void) - { - delete iPublic; - delete iPrivate; - delete iPrimeCertificate; - } - -EXPORT_C CDSAKeyPair::CDSAKeyPair(void) - { - } - -EXPORT_C const CDSAPrimeCertificate& CDSAKeyPair::PrimeCertificate(void) const - { - return *iPrimeCertificate; - } - -void CDSAKeyPair::ConstructL(TUint aPBits) - { - //This is the first step of DSA prime generation. The remaining steps are - //performed in CDSAParameters::GeneratePrimesL - //Step 1. Choose an arbitrary sequence of at least 160 bits and call it - //SEED. Let g be the length of SEED in bits. - TBuf8 seed(SHASIZE); - TUint c; - RInteger p; - RInteger q; - do - { - GenerateRandomBytesL(seed); - } - while(!CDSAParameters::GeneratePrimesL(seed, c, p, aPBits, q)); - //Double PushL will not fail as GeneratePrimesL uses the CleanupStack - //(at least one push and pop ;) - CleanupStack::PushL(p); - CleanupStack::PushL(q); - iPrimeCertificate = CDSAPrimeCertificate::NewL(seed, c); - - CMontgomeryStructure* montP = CMontgomeryStructure::NewLC(p); - - --p; - - // e = (p-1)/q - RInteger e = p.DividedByL(q); - CleanupStack::PushL(e); - - --p; //now it's p-2 :) - - RInteger h; - const TInteger* g = 0; - do - { - // find a random h | 1 < h < p-1 - h = RInteger::NewRandomL(TInteger::Two(), p); - CleanupStack::PushL(h); - // g = h^e mod p - g = &(montP->ExponentiateL(h, e)); - CleanupStack::PopAndDestroy(&h); - } - while( *g <= TInteger::One() ); - CleanupStack::PopAndDestroy(&e); - - ++p; //reincrement p to original value - ++p; - - RInteger g1 = RInteger::NewL(*g); //take a copy of montP's g - CleanupStack::PushL(g1); - RInteger p1 = RInteger::NewL(p); - CleanupStack::PushL(p1); - RInteger q1 = RInteger::NewL(q); - CleanupStack::PushL(q1); - - --q; - // select random x | 0 < x < q - RInteger x = RInteger::NewRandomL(TInteger::One(), q); - CleanupStack::PushL(x); - ++q; - - iPrivate = CDSAPrivateKey::NewL(p1, q1, g1, x); - CleanupStack::Pop(4, &g1); //x,q1,p1,g1 -- all owned by iPrivate - - RInteger y = RInteger::NewL(montP->ExponentiateL(*g, iPrivate->X())); - CleanupStack::PushL(y); - RInteger g2 = RInteger::NewL(iPrivate->G()); - CleanupStack::PushL(g2); - iPublic = CDSAPublicKey::NewL(p, q, g2, y); - CleanupStack::Pop(2, &y); //g2, y - CleanupStack::PopAndDestroy(montP); - CleanupStack::Pop(2, &p); //q, p - } - - -/* CDSAPrimeCertificate */ - -EXPORT_C CDSAPrimeCertificate* CDSAPrimeCertificate::NewL(const TDesC8& aSeed, - TUint aCounter) - { - CDSAPrimeCertificate* self = NewLC(aSeed, aCounter); - CleanupStack::Pop(); - return self; - } - -EXPORT_C CDSAPrimeCertificate* CDSAPrimeCertificate::NewLC(const TDesC8& aSeed, - TUint aCounter) - { - CDSAPrimeCertificate* self = new(ELeave) CDSAPrimeCertificate(aCounter); - CleanupStack::PushL(self); - self->ConstructL(aSeed); - return self; - } - -EXPORT_C const TDesC8& CDSAPrimeCertificate::Seed(void) const - { - return *iSeed; - } - -EXPORT_C TUint CDSAPrimeCertificate::Counter(void) const - { - return iCounter; - } - -EXPORT_C CDSAPrimeCertificate::~CDSAPrimeCertificate(void) - { - delete const_cast(iSeed); - } - -void CDSAPrimeCertificate::ConstructL(const TDesC8& aSeed) - { - iSeed = aSeed.AllocL(); - } - -EXPORT_C CDSAPrimeCertificate::CDSAPrimeCertificate(TUint aCounter) - : iCounter(aCounter) - { - } - -EXPORT_C CDSAPrimeCertificate::CDSAPrimeCertificate(void) - { - }