diff -r 641f389e9157 -r a71299154b21 crypto/weakcrypto/source/bigint/algorithms.cpp --- a/crypto/weakcrypto/source/bigint/algorithms.cpp Tue Aug 31 17:00:08 2010 +0300 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1160 +0,0 @@ -/* -* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies). -* All rights reserved. -* This component and the accompanying materials are made available -* under the terms of the License "Eclipse Public License v1.0" -* which accompanies this distribution, and is available -* at the URL "http://www.eclipse.org/legal/epl-v10.html". -* -* Initial Contributors: -* Nokia Corporation - initial contribution. -* -* Contributors: -* -* Description: -* -*/ - - -#include "words.h" -#include "algorithms.h" - -word Add(word *C, const word *A, const word *B, unsigned int N) -{ - assert (N%2 == 0); - word carry = 0; - for (unsigned int i = 0; i < N; i+=2) - { - dword u = (dword) carry + A[i] + B[i]; - C[i] = LOW_WORD(u); - u = (dword) HIGH_WORD(u) + A[i+1] + B[i+1]; - C[i+1] = LOW_WORD(u); - carry = HIGH_WORD(u); - } - return carry; -} - -word Subtract(word *C, const word *A, const word *B, unsigned int N) -{ - assert (N%2 == 0); - word borrow=0; - for (unsigned i = 0; i < N; i+=2) - { - dword u = (dword) A[i] - B[i] - borrow; - C[i] = LOW_WORD(u); - u = (dword) A[i+1] - B[i+1] - (word)(0-HIGH_WORD(u)); - C[i+1] = LOW_WORD(u); - borrow = 0-HIGH_WORD(u); - } - return borrow; -} - -int Compare(const word *A, const word *B, unsigned int N) -{ - while (N--) - if (A[N] > B[N]) - return 1; - else if (A[N] < B[N]) - return -1; - - return 0; -} - -// It is the job of the calling code to ensure that this won't carry. -// If you aren't sure, use the next version that will tell you if you need to -// grow your integer. -// Having two of these creates ever so slightly more code but avoids having -// ifdefs all over the rest of the code checking the following type stuff which -// causes warnings in certain compilers about unused parameters in release -// builds. We can't have that can we! -/* -Allows avoid this all over bigint.cpp and primes.cpp -ifdef _DEBUG - TUint carry = Increment(Ptr(), Size()); - assert(!carry); -else - Increment(Ptr(), Size()) -endif -*/ -void IncrementNoCarry(word *A, unsigned int N, word B) -{ - assert(N); - word t = A[0]; - A[0] = t+B; - if (A[0] >= t) - return; - for (unsigned i=1; i= t) - return 0; - for (unsigned i=1; i= A0) - if (B0 >= B1) - { - s = 0; - d = (dword)(A1-A0)*(B0-B1); - } - else - { - s = (A1-A0); - d = (dword)s*(word)(B0-B1); - } - else - if (B0 > B1) - { - s = (B0-B1); - d = (word)(A1-A0)*(dword)s; - } - else - { - s = 0; - d = (dword)(A0-A1)*(B1-B0); - } -*/ - // this segment is the branchless equivalent of above - word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]}; - unsigned int ai = A[1] < A[0]; - unsigned int bi = B[0] < B[1]; - unsigned int di = ai & bi; - dword d = (dword)D[di]*D[di+2]; - D[1] = D[3] = 0; - unsigned int si = ai + !bi; - word s = D[si]; - - dword A0B0 = (dword)A[0]*B[0]; - C[0] = LOW_WORD(A0B0); - - dword A1B1 = (dword)A[1]*B[1]; - dword t = (dword) HIGH_WORD(A0B0) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1); - C[1] = LOW_WORD(t); - - t = A1B1 + HIGH_WORD(t) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s; - C[2] = LOW_WORD(t); - C[3] = HIGH_WORD(t); -} - -static word AtomicMultiplyAdd(word *C, const word *A, const word *B) -{ - word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]}; - unsigned int ai = A[1] < A[0]; - unsigned int bi = B[0] < B[1]; - unsigned int di = ai & bi; - dword d = (dword)D[di]*D[di+2]; - D[1] = D[3] = 0; - unsigned int si = ai + !bi; - word s = D[si]; - - dword A0B0 = (dword)A[0]*B[0]; - dword t = A0B0 + C[0]; - C[0] = LOW_WORD(t); - - dword A1B1 = (dword)A[1]*B[1]; - t = (dword) HIGH_WORD(t) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1) + C[1]; - C[1] = LOW_WORD(t); - - t = (dword) HIGH_WORD(t) + LOW_WORD(A1B1) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s + C[2]; - C[2] = LOW_WORD(t); - - t = (dword) HIGH_WORD(t) + HIGH_WORD(A1B1) + C[3]; - C[3] = LOW_WORD(t); - return HIGH_WORD(t); -} - -static inline void AtomicMultiplyBottom(word *C, const word *A, const word *B) -{ - dword t = (dword)A[0]*B[0]; - C[0] = LOW_WORD(t); - C[1] = HIGH_WORD(t) + A[0]*B[1] + A[1]*B[0]; -} - -#define MulAcc(x, y) \ - p = (dword)A[x] * B[y] + c; \ - c = LOW_WORD(p); \ - p = (dword)d + HIGH_WORD(p); \ - d = LOW_WORD(p); \ - e += HIGH_WORD(p); - -#define SaveMulAcc(s, x, y) \ - R[s] = c; \ - p = (dword)A[x] * B[y] + d; \ - c = LOW_WORD(p); \ - p = (dword)e + HIGH_WORD(p); \ - d = LOW_WORD(p); \ - e = HIGH_WORD(p); - -#define MulAcc1(x, y) \ - p = (dword)A[x] * A[y] + c; \ - c = LOW_WORD(p); \ - p = (dword)d + HIGH_WORD(p); \ - d = LOW_WORD(p); \ - e += HIGH_WORD(p); - -#define SaveMulAcc1(s, x, y) \ - R[s] = c; \ - p = (dword)A[x] * A[y] + d; \ - c = LOW_WORD(p); \ - p = (dword)e + HIGH_WORD(p); \ - d = LOW_WORD(p); \ - e = HIGH_WORD(p); - -#define SquAcc(x, y) \ - p = (dword)A[x] * A[y]; \ - p = p + p + c; \ - c = LOW_WORD(p); \ - p = (dword)d + HIGH_WORD(p); \ - d = LOW_WORD(p); \ - e += HIGH_WORD(p); - -#define SaveSquAcc(s, x, y) \ - R[s] = c; \ - p = (dword)A[x] * A[y]; \ - p = p + p + d; \ - c = LOW_WORD(p); \ - p = (dword)e + HIGH_WORD(p); \ - d = LOW_WORD(p); \ - e = HIGH_WORD(p); - -// VC60 workaround: MSVC 6.0 has an optimization problem that makes -// (dword)A*B where either A or B has been cast to a dword before -// very expensive. Revisit a CombaSquare4() function when this -// problem is fixed. - -// WARNING: KeithR. 05/08/03 This routine doesn't work with gcc on hardware -// either. I've completely removed it. It may be worth looking into sometime -// in the future. -/*#ifndef __WINS__ -static void CombaSquare4(word *R, const word *A) -{ - dword p; - word c, d, e; - - p = (dword)A[0] * A[0]; - R[0] = LOW_WORD(p); - c = HIGH_WORD(p); - d = e = 0; - - SquAcc(0, 1); - - SaveSquAcc(1, 2, 0); - MulAcc1(1, 1); - - SaveSquAcc(2, 0, 3); - SquAcc(1, 2); - - SaveSquAcc(3, 3, 1); - MulAcc1(2, 2); - - SaveSquAcc(4, 2, 3); - - R[5] = c; - p = (dword)A[3] * A[3] + d; - R[6] = LOW_WORD(p); - R[7] = e + HIGH_WORD(p); -} -#endif */ - -static void CombaMultiply4(word *R, const word *A, const word *B) -{ - dword p; - word c, d, e; - - p = (dword)A[0] * B[0]; - R[0] = LOW_WORD(p); - c = HIGH_WORD(p); - d = e = 0; - - MulAcc(0, 1); - MulAcc(1, 0); - - SaveMulAcc(1, 2, 0); - MulAcc(1, 1); - MulAcc(0, 2); - - SaveMulAcc(2, 0, 3); - MulAcc(1, 2); - MulAcc(2, 1); - MulAcc(3, 0); - - SaveMulAcc(3, 3, 1); - MulAcc(2, 2); - MulAcc(1, 3); - - SaveMulAcc(4, 2, 3); - MulAcc(3, 2); - - R[5] = c; - p = (dword)A[3] * B[3] + d; - R[6] = LOW_WORD(p); - R[7] = e + HIGH_WORD(p); -} - -static void CombaMultiply8(word *R, const word *A, const word *B) -{ - dword p; - word c, d, e; - - p = (dword)A[0] * B[0]; - R[0] = LOW_WORD(p); - c = HIGH_WORD(p); - d = e = 0; - - MulAcc(0, 1); - MulAcc(1, 0); - - SaveMulAcc(1, 2, 0); - MulAcc(1, 1); - MulAcc(0, 2); - - SaveMulAcc(2, 0, 3); - MulAcc(1, 2); - MulAcc(2, 1); - MulAcc(3, 0); - - SaveMulAcc(3, 0, 4); - MulAcc(1, 3); - MulAcc(2, 2); - MulAcc(3, 1); - MulAcc(4, 0); - - SaveMulAcc(4, 0, 5); - MulAcc(1, 4); - MulAcc(2, 3); - MulAcc(3, 2); - MulAcc(4, 1); - MulAcc(5, 0); - - SaveMulAcc(5, 0, 6); - MulAcc(1, 5); - MulAcc(2, 4); - MulAcc(3, 3); - MulAcc(4, 2); - MulAcc(5, 1); - MulAcc(6, 0); - - SaveMulAcc(6, 0, 7); - MulAcc(1, 6); - MulAcc(2, 5); - MulAcc(3, 4); - MulAcc(4, 3); - MulAcc(5, 2); - MulAcc(6, 1); - MulAcc(7, 0); - - SaveMulAcc(7, 1, 7); - MulAcc(2, 6); - MulAcc(3, 5); - MulAcc(4, 4); - MulAcc(5, 3); - MulAcc(6, 2); - MulAcc(7, 1); - - SaveMulAcc(8, 2, 7); - MulAcc(3, 6); - MulAcc(4, 5); - MulAcc(5, 4); - MulAcc(6, 3); - MulAcc(7, 2); - - SaveMulAcc(9, 3, 7); - MulAcc(4, 6); - MulAcc(5, 5); - MulAcc(6, 4); - MulAcc(7, 3); - - SaveMulAcc(10, 4, 7); - MulAcc(5, 6); - MulAcc(6, 5); - MulAcc(7, 4); - - SaveMulAcc(11, 5, 7); - MulAcc(6, 6); - MulAcc(7, 5); - - SaveMulAcc(12, 6, 7); - MulAcc(7, 6); - - R[13] = c; - p = (dword)A[7] * B[7] + d; - R[14] = LOW_WORD(p); - R[15] = e + HIGH_WORD(p); -} - -static void CombaMultiplyBottom4(word *R, const word *A, const word *B) -{ - dword p; - word c, d, e; - - p = (dword)A[0] * B[0]; - R[0] = LOW_WORD(p); - c = HIGH_WORD(p); - d = e = 0; - - MulAcc(0, 1); - MulAcc(1, 0); - - SaveMulAcc(1, 2, 0); - MulAcc(1, 1); - MulAcc(0, 2); - - R[2] = c; - R[3] = d + A[0] * B[3] + A[1] * B[2] + A[2] * B[1] + A[3] * B[0]; -} - -static void CombaMultiplyBottom8(word *R, const word *A, const word *B) -{ - dword p; - word c, d, e; - - p = (dword)A[0] * B[0]; - R[0] = LOW_WORD(p); - c = HIGH_WORD(p); - d = e = 0; - - MulAcc(0, 1); - MulAcc(1, 0); - - SaveMulAcc(1, 2, 0); - MulAcc(1, 1); - MulAcc(0, 2); - - SaveMulAcc(2, 0, 3); - MulAcc(1, 2); - MulAcc(2, 1); - MulAcc(3, 0); - - SaveMulAcc(3, 0, 4); - MulAcc(1, 3); - MulAcc(2, 2); - MulAcc(3, 1); - MulAcc(4, 0); - - SaveMulAcc(4, 0, 5); - MulAcc(1, 4); - MulAcc(2, 3); - MulAcc(3, 2); - MulAcc(4, 1); - MulAcc(5, 0); - - SaveMulAcc(5, 0, 6); - MulAcc(1, 5); - MulAcc(2, 4); - MulAcc(3, 3); - MulAcc(4, 2); - MulAcc(5, 1); - MulAcc(6, 0); - - R[6] = c; - R[7] = d + A[0] * B[7] + A[1] * B[6] + A[2] * B[5] + A[3] * B[4] + - A[4] * B[3] + A[5] * B[2] + A[6] * B[1] + A[7] * B[0]; -} - -#undef MulAcc -#undef SaveMulAcc -static void AtomicInverseModPower2(word *C, word A0, word A1) -{ - assert(A0%2==1); - - dword A=MAKE_DWORD(A0, A1), R=A0%8; - - for (unsigned i=3; i<2*WORD_BITS; i*=2) - R = R*(2-R*A); - - assert(R*A==1); - - C[0] = LOW_WORD(R); - C[1] = HIGH_WORD(R); -} -// ******************************************************** - -#define A0 A -#define A1 (A+N2) -#define B0 B -#define B1 (B+N2) - -#define T0 T -#define T1 (T+N2) -#define T2 (T+N) -#define T3 (T+N+N2) - -#define R0 R -#define R1 (R+N2) -#define R2 (R+N) -#define R3 (R+N+N2) - -// R[2*N] - result = A*B -// T[2*N] - temporary work space -// A[N] --- multiplier -// B[N] --- multiplicant - -void RecursiveMultiply(word *R, word *T, const word *A, const word *B, unsigned int N) -{ - assert(N>=2 && N%2==0); - - if (N==2) - AtomicMultiply(R, A, B); - else if (N==4) - CombaMultiply4(R, A, B); - else if (N==8) - CombaMultiply8(R, A, B); - else - { - const unsigned int N2 = N/2; - int carry; - - int aComp = Compare(A0, A1, N2); - int bComp = Compare(B0, B1, N2); - - switch (2*aComp + aComp + bComp) - { - case -4: - Subtract(R0, A1, A0, N2); - Subtract(R1, B0, B1, N2); - RecursiveMultiply(T0, T2, R0, R1, N2); - Subtract(T1, T1, R0, N2); - carry = -1; - break; - case -2: - Subtract(R0, A1, A0, N2); - Subtract(R1, B0, B1, N2); - RecursiveMultiply(T0, T2, R0, R1, N2); - carry = 0; - break; - case 2: - Subtract(R0, A0, A1, N2); - Subtract(R1, B1, B0, N2); - RecursiveMultiply(T0, T2, R0, R1, N2); - carry = 0; - break; - case 4: - Subtract(R0, A1, A0, N2); - Subtract(R1, B0, B1, N2); - RecursiveMultiply(T0, T2, R0, R1, N2); - Subtract(T1, T1, R1, N2); - carry = -1; - break; - default: - SetWords(T0, 0, N); - carry = 0; - } - - RecursiveMultiply(R0, T2, A0, B0, N2); - RecursiveMultiply(R2, T2, A1, B1, N2); - - // now T[01] holds (A1-A0)*(B0-B1), R[01] holds A0*B0, R[23] holds A1*B1 - - carry += Add(T0, T0, R0, N); - carry += Add(T0, T0, R2, N); - carry += Add(R1, R1, T0, N); - - assert (carry >= 0 && carry <= 2); - Increment(R3, N2, carry); - } -} - -// R[2*N] - result = A*A -// T[2*N] - temporary work space -// A[N] --- number to be squared - -void RecursiveSquare(word *R, word *T, const word *A, unsigned int N) -{ - assert(N && N%2==0); - - if (N==2) - AtomicMultiply(R, A, A); - else if (N==4) - { - // VC60 workaround: MSVC 6.0 has an optimization problem that makes - // (dword)A*B where either A or B has been cast to a dword before - // very expensive. Revisit a CombaSquare4() function when this - // problem is fixed. - -// WARNING: KeithR. 05/08/03 This routine doesn't work with gcc on hardware -// either. I've completely removed it. It may be worth looking into sometime -// in the future. Therefore, we use the CombaMultiply4 on all targets. -//#ifdef __WINS__ - CombaMultiply4(R, A, A); -/*#else - CombaSquare4(R, A); -#endif*/ - } - else - { - const unsigned int N2 = N/2; - - RecursiveSquare(R0, T2, A0, N2); - RecursiveSquare(R2, T2, A1, N2); - RecursiveMultiply(T0, T2, A0, A1, N2); - - word carry = Add(R1, R1, T0, N); - carry += Add(R1, R1, T0, N); - Increment(R3, N2, carry); - } -} -// R[N] - bottom half of A*B -// T[N] - temporary work space -// A[N] - multiplier -// B[N] - multiplicant - -void RecursiveMultiplyBottom(word *R, word *T, const word *A, const word *B, unsigned int N) -{ - assert(N>=2 && N%2==0); - - if (N==2) - AtomicMultiplyBottom(R, A, B); - else if (N==4) - CombaMultiplyBottom4(R, A, B); - else if (N==8) - CombaMultiplyBottom8(R, A, B); - else - { - const unsigned int N2 = N/2; - - RecursiveMultiply(R, T, A0, B0, N2); - RecursiveMultiplyBottom(T0, T1, A1, B0, N2); - Add(R1, R1, T0, N2); - RecursiveMultiplyBottom(T0, T1, A0, B1, N2); - Add(R1, R1, T0, N2); - } -} - -// R[N] --- upper half of A*B -// T[2*N] - temporary work space -// L[N] --- lower half of A*B -// A[N] --- multiplier -// B[N] --- multiplicant - -void RecursiveMultiplyTop(word *R, word *T, const word *L, const word *A, const word *B, unsigned int N) -{ - assert(N>=2 && N%2==0); - - if (N==2) - { - AtomicMultiply(T, A, B); - ((dword *)R)[0] = ((dword *)T)[1]; - } - else if (N==4) - { - CombaMultiply4(T, A, B); - ((dword *)R)[0] = ((dword *)T)[2]; - ((dword *)R)[1] = ((dword *)T)[3]; - } - else - { - const unsigned int N2 = N/2; - int carry; - - int aComp = Compare(A0, A1, N2); - int bComp = Compare(B0, B1, N2); - - switch (2*aComp + aComp + bComp) - { - case -4: - Subtract(R0, A1, A0, N2); - Subtract(R1, B0, B1, N2); - RecursiveMultiply(T0, T2, R0, R1, N2); - Subtract(T1, T1, R0, N2); - carry = -1; - break; - case -2: - Subtract(R0, A1, A0, N2); - Subtract(R1, B0, B1, N2); - RecursiveMultiply(T0, T2, R0, R1, N2); - carry = 0; - break; - case 2: - Subtract(R0, A0, A1, N2); - Subtract(R1, B1, B0, N2); - RecursiveMultiply(T0, T2, R0, R1, N2); - carry = 0; - break; - case 4: - Subtract(R0, A1, A0, N2); - Subtract(R1, B0, B1, N2); - RecursiveMultiply(T0, T2, R0, R1, N2); - Subtract(T1, T1, R1, N2); - carry = -1; - break; - default: - SetWords(T0, 0, N); - carry = 0; - } - - RecursiveMultiply(T2, R0, A1, B1, N2); - - // now T[01] holds (A1-A0)*(B0-B1), T[23] holds A1*B1 - - CopyWords(R0, L+N2, N2); - word c2 = Subtract(R0, R0, L, N2); - c2 += Subtract(R0, R0, T0, N2); - word t = (Compare(R0, T2, N2) == -1); - - carry += t; - carry += Increment(R0, N2, c2+t); - carry += Add(R0, R0, T1, N2); - carry += Add(R0, R0, T3, N2); - - CopyWords(R1, T3, N2); - assert (carry >= 0 && carry <= 2); - Increment(R1, N2, carry); - } -} - -// R[NA+NB] - result = A*B -// T[NA+NB] - temporary work space -// A[NA] ---- multiplier -// B[NB] ---- multiplicant - -void AsymmetricMultiply(word *R, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB) -{ - if (NA == NB) - { - if (A == B) - RecursiveSquare(R, T, A, NA); - else - RecursiveMultiply(R, T, A, B, NA); - - return; - } - - if (NA > NB) - { - TClassSwap(A, B); - TClassSwap(NA, NB); - //std::swap(A, B); - //std::swap(NA, NB); - } - - assert(NB % NA == 0); - assert((NB/NA)%2 == 0); // NB is an even multiple of NA - - if (NA==2 && !A[1]) - { - switch (A[0]) - { - case 0: - SetWords(R, 0, NB+2); - return; - case 1: - CopyWords(R, B, NB); - R[NB] = R[NB+1] = 0; - return; - default: - R[NB] = LinearMultiply(R, B, A[0], NB); - R[NB+1] = 0; - return; - } - } - - RecursiveMultiply(R, T, A, B, NA); - CopyWords(T+2*NA, R+NA, NA); - - unsigned i; - - for (i=2*NA; i B1 || (A[1]==B1 && A[0]>=B0)) - { - u = (dword) A[0] - B0; - A[0] = LOW_WORD(u); - u = (dword) A[1] - B1 - (word)(0-HIGH_WORD(u)); - A[1] = LOW_WORD(u); - A[2] += HIGH_WORD(u); - Q++; - assert(Q); // shouldn't overflow - } - - return Q; -} - -// do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1 -static inline void AtomicDivide(word *Q, const word *A, const word *B) -{ - if (!B[0] && !B[1]) // if divisor is 0, we assume divisor==2**(2*WORD_BITS) - { - Q[0] = A[2]; - Q[1] = A[3]; - } - else - { - word T[4]; - T[0] = A[0]; T[1] = A[1]; T[2] = A[2]; T[3] = A[3]; - Q[1] = SubatomicDivide(T+1, B[0], B[1]); - Q[0] = SubatomicDivide(T, B[0], B[1]); - -#ifdef _DEBUG - // multiply quotient and divisor and add remainder, make sure it equals dividend - assert(!T[2] && !T[3] && (T[1] < B[1] || (T[1]==B[1] && T[0]= 0) - { - R[N] -= Subtract(R, R, B, N); - Q[1] += (++Q[0]==0); - assert(Q[0] || Q[1]); // no overflow - } -} - -// R[NB] -------- remainder = A%B -// Q[NA-NB+2] --- quotient = A/B -// T[NA+2*NB+4] - temp work space -// A[NA] -------- dividend -// B[NB] -------- divisor - -void Divide(word *R, word *Q, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB) -{ - assert(NA && NB && NA%2==0 && NB%2==0); - assert(B[NB-1] || B[NB-2]); - assert(NB <= NA); - - // set up temporary work space - word *const TA=T; - word *const TB=T+NA+2; - word *const TP=T+NA+2+NB; - - // copy B into TB and normalize it so that TB has highest bit set to 1 - unsigned shiftWords = (B[NB-1]==0); - TB[0] = TB[NB-1] = 0; - CopyWords(TB+shiftWords, B, NB-shiftWords); - unsigned shiftBits = WORD_BITS - BitPrecision(TB[NB-1]); - assert(shiftBits < WORD_BITS); - ShiftWordsLeftByBits(TB, NB, shiftBits); - - // copy A into TA and normalize it - TA[0] = TA[NA] = TA[NA+1] = 0; - CopyWords(TA+shiftWords, A, NA); - ShiftWordsLeftByBits(TA, NA+2, shiftBits); - - if (TA[NA+1]==0 && TA[NA] <= 1) - { - Q[NA-NB+1] = Q[NA-NB] = 0; - while (TA[NA] || Compare(TA+NA-NB, TB, NB) >= 0) - { - TA[NA] -= Subtract(TA+NA-NB, TA+NA-NB, TB, NB); - ++Q[NA-NB]; - } - } - else - { - NA+=2; - assert(Compare(TA+NA-NB, TB, NB) < 0); - } - - word BT[2]; - BT[0] = TB[NB-2] + 1; - BT[1] = TB[NB-1] + (BT[0]==0); - - // start reducing TA mod TB, 2 words at a time - for (unsigned i=NA-2; i>=NB; i-=2) - { - AtomicDivide(Q+i-NB, TA+i-2, BT); - CorrectQuotientEstimate(TA+i-NB, TP, Q+i-NB, TB, NB); - } - - // copy TA into R, and denormalize it - CopyWords(R, TA+shiftWords, NB); - ShiftWordsRightByBits(R, NB, shiftBits); -} - -static inline unsigned int EvenWordCount(const word *X, unsigned int N) -{ - while (N && X[N-2]==0 && X[N-1]==0) - N-=2; - return N; -} - -// return k -// R[N] --- result = A^(-1) * 2^k mod M -// T[4*N] - temporary work space -// A[NA] -- number to take inverse of -// M[N] --- modulus - -unsigned int AlmostInverse(word *R, word *T, const word *A, unsigned int NA, const word *M, unsigned int N) -{ - assert(NA<=N && N && N%2==0); - - word *b = T; - word *c = T+N; - word *f = T+2*N; - word *g = T+3*N; - unsigned int bcLen=2, fgLen=EvenWordCount(M, N); - unsigned int k=0, s=0; - - SetWords(T, 0, 3*N); - b[0]=1; - CopyWords(f, A, NA); - CopyWords(g, M, N); - - FOREVER - { - word t=f[0]; - while (!t) - { - if (EvenWordCount(f, fgLen)==0) - { - SetWords(R, 0, N); - return 0; - } - - ShiftWordsRightByWords(f, fgLen, 1); - if (c[bcLen-1]) bcLen+=2; - assert(bcLen <= N); - ShiftWordsLeftByWords(c, bcLen, 1); - k+=WORD_BITS; - t=f[0]; - } - - unsigned int i=0; - while (t%2 == 0) - { - t>>=1; - i++; - } - k+=i; - - if (t==1 && f[1]==0 && EvenWordCount(f, fgLen)==2) - { - if (s%2==0) - CopyWords(R, b, N); - else - Subtract(R, M, b, N); - return k; - } - - ShiftWordsRightByBits(f, fgLen, i); - t=ShiftWordsLeftByBits(c, bcLen, i); - if (t) - { - c[bcLen] = t; - bcLen+=2; - assert(bcLen <= N); - } - - if (f[fgLen-2]==0 && g[fgLen-2]==0 && f[fgLen-1]==0 && g[fgLen-1]==0) - fgLen-=2; - - if (Compare(f, g, fgLen)==-1) - { - TClassSwap(f,g); - TClassSwap(b,c); - s++; - } - - Subtract(f, f, g, fgLen); - - if (Add(b, b, c, bcLen)) - { - b[bcLen] = 1; - bcLen+=2; - assert(bcLen <= N); - } - } -} - -// R[N] - result = A/(2^k) mod M -// A[N] - input -// M[N] - modulus - -void DivideByPower2Mod(word *R, const word *A, unsigned int k, const word *M, unsigned int N) -{ - CopyWords(R, A, N); - - while (k--) - { - if (R[0]%2==0) - ShiftWordsRightByBits(R, N, 1); - else - { - word carry = Add(R, R, M, N); - ShiftWordsRightByBits(R, N, 1); - R[N-1] += carry<<(WORD_BITS-1); - } - } -} -