diff -r 000000000000 -r 1fb32624e06b fontservices/textshaperplugin/IcuSource/common/unicode/utext.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/fontservices/textshaperplugin/IcuSource/common/unicode/utext.h Tue Feb 02 02:02:46 2010 +0200 @@ -0,0 +1,1293 @@ +/* +******************************************************************************* +* +* Copyright (C) 2004-2005, International Business Machines +* Corporation and others. All Rights Reserved. +* +******************************************************************************* +* file name: utext.h +* encoding: US-ASCII +* tab size: 8 (not used) +* indentation:4 +* +* created on: 2004oct06 +* created by: Markus W. Scherer +*/ + +#ifndef __UTEXT_H__ +#define __UTEXT_H__ + +/** + * \file + * \brief C API: Abstract Unicode Text API + * + * The Text Access API provides a means to allow text that is stored in alternative + * formats to work with ICU services. ICU normally operates on text that is + * stored UTF-16 format, in (UChar *) arrays for the C APIs or as type + * UnicodeString for C++ APIs. + * + * ICU Text Access allows other formats, such as UTF-8 or non-contiguous + * UTF-16 strings, to be placed in a UText wrapper and then passed to ICU services. + * + * There are three general classes of usage for UText: + * + * Application Level Use. This is the simplest usage - applications would + * use one of the utext_open() functions on their input text, and pass + * the resulting UText to the desired ICU service. + * + * Second is usage in ICU Services, such as break iteration, that will need to + * operate on input presented to them as a UText. These implementations + * will need to use the iteration and related UText functions to gain + * access to the actual text. + * + * The third class of UText users are "text providers." These are the + * UText implementations for the various text storage formats. An application + * or system with a unique text storage format can implement a set of + * UText provider functions for that format, which will then allow + * ICU services to operate on that format. + * + * + * Iterating over text + * + * Here is sample code for a forward iteration over the contents of a UText + * + * \code + * UChar32 c; + * UText *ut = whatever(); + * + * for (c=utext_next32From(ut, 0); c>=0; c=utext_next32(ut)) { + * // do whatever with the codepoint c here. + * } + * \endcode + * + * And here is similar code to iterate in the reverse direction, from the end + * of the text towards the beginning. + * + * \code + * UChar32 c; + * UText *ut = whatever(); + * int textLength = utext_nativeLength(ut); + * for (c=utext_previous32From(ut, textLength); c>=0; c=utext_previous32(ut)) { + * // do whatever with the codepoint c here. + * } + * \endcode + * + * Characters and Indexing + * + * Indexing into text by UText functions is nearly always in terms of the native + * indexing of the underlying text storage. The storage format could be UTF-8 + * or UTF-32, for example. When coding to the UText access API, no assumptions + * can be made regarding the size of characters, or how far an index + * may move when iterating between characters. + * + * All indices supplied to UText functions are pinned to the length of the + * text. An out-of-bounds index is not considered to be an error, but is + * adjusted to be in the range 0 <= index <= length of input text. + * + * + * When an index position is returned from a UText function, it will be + * a native index to the underlying text. In the case of multi-unit characters, + * it will always refer to the first position of the character, + * never to the interior. This is essentially the same thing as saying that + * a returned index will always point to a boundary between characters. + * + * When a native index is supplied to a UText function, all indices that + * refer to any part of a multi-unit character representation are considered + * to be equivalent. In the case of multi-unit characters, an incoming index + * will be logically normalized to refer to the start of the character. + * + * It is possible to test whether a native index is on a code point boundary + * by doing a utext_setNativeIndex() followed by a utext_getNativeIndex(). + * If the index is returned unchanged, it was on a code point boundary. If + * an adjusted index is returned, the original index referred to the + * interior of a character. + * + */ + + + +#include "unicode/utypes.h" +#ifdef XP_CPLUSPLUS +#include "unicode/rep.h" +#include "unicode/unistr.h" +#endif + +#ifndef U_HIDE_DRAFT_API + +U_CDECL_BEGIN + +struct UText; +typedef struct UText UText; /**< C typedef for struct UText. @draft ICU 3.4 */ + +struct UTextChunk; +typedef struct UTextChunk UTextChunk; /**< C typedef for struct UTextChunk. @draft ICU 3.4 */ + + + +/*************************************************************************************** + * + * C Functions for creating UText wrappers around various kinds of text strings. + * + ****************************************************************************************/ + + +/** + * utext_close Close function for UText instances. + * Cleans up, releases any resources being held by an + * open UText. + *
+ * If the UText was originally allocated by one of the utext_open functions, + * the storage associated with the utext will also be freed. + * If the UText storage originated with the application, as it would with + * a local or static instance, the storage will not be deleted. + * + * An open UText can be reset to refer to new string by using one of the utext_open() + * functions without first closing the UText. + * + * @param ut The UText to be closed. + * @return NULL if the UText struct was deleted by the close. If the UText struct + * was originally provided by the caller to the open function, it is + * returned by this function, and may be safely used again in + * a subsequent utext_open. + * + * @draft ICU 3.4 + */ +U_DRAFT UText * U_EXPORT2 +utext_close(UText *ut); + + +/** + * Open a read-only UText implementation for UTF-8 strings. + * + * \htmlonly + * Any invalid UTF-8 in the input will be handled in this way: + * a sequence of bytes that has the form of a truncated, but otherwise valid, + * UTF-8 sequence will be replaced by a single unicode replacement character, \uFFFD. + * Any other illegal bytes will each be replaced by a \uFFFD. + * \endhtmlonly + * + * @param ut Pointer to a UText struct. If NULL, a new UText will be created. + * If non-NULL, must refer to an initialized UText struct, which will then + * be reset to reference the specified UTF-8 string. + * @param s A UTF-8 string + * @param length The length of the UTF-8 string in bytes, or -1 if the string is + * zero terminated. + * @param status Errors are returned here. + * @return A pointer to the UText. If a pre-allocated UText was provided, it + * will always be used and returned. + * @draft ICU 3.4 + */ +U_DRAFT UText * U_EXPORT2 +utext_openUTF8(UText *ut, const char *s, int32_t length, UErrorCode *status); + + +/** + * Open a read-only UText for UChar * string. + * + * @param ut Pointer to a UText struct. If NULL, a new UText will be created. + * If non-NULL, must refer to an initialized UText struct, which will then + * be reset to reference the specified UChar string. + * @param s A UChar (UTF-16) string + * @param length The number of UChars in the input string, or -1 if the string is + * zero terminated. + * @param status Errors are returned here. + * @return A pointer to the UText. If a pre-allocated UText was provided, it + * will always be used and returned. + * @draft ICU 3.4 + */ +U_DRAFT UText * U_EXPORT2 +utext_openUChars(UText *ut, const UChar *s, int32_t length, UErrorCode *status); + + +#ifdef XP_CPLUSPLUS +/** + * Open a writable UText for a non-const UnicodeString. + * + * @param ut Pointer to a UText struct. If NULL, a new UText will be created. + * If non-NULL, must refer to an initialized UText struct, which will then + * be reset to reference the specified input string. + * @param s A UnicodeString. + * @param status Errors are returned here. + * @return Pointer to the UText. If a UText was supplied as input, this + * will always be used and returned. + * @draft ICU 3.4 + */ +U_DRAFT UText * U_EXPORT2 +utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status); + + +/** + * Open a UText for a const UnicodeString. The resulting UText will not be writable. + * + * @param ut Pointer to a UText struct. If NULL, a new UText will be created. + * If non-NULL, must refer to an initialized UText struct, which will then + * be reset to reference the specified input string. + * @param s A const UnicodeString to be wrapped. + * @param status Errors are returned here. + * @return Pointer to the UText. If a UText was supplied as input, this + * will always be used and returned. + * @draft ICU 3.4 + */ +U_DRAFT UText * U_EXPORT2 +utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status); + + +/** + * Open a writable UText implementation for an ICU Replaceable object. + * @param ut Pointer to a UText struct. If NULL, a new UText will be created. + * If non-NULL, must refer to an already existing UText, which will then + * be reset to reference the specified replaceable text. + * @param rep A Replaceable text object. + * @param status Errors are returned here. + * @return Pointer to the UText. If a UText was supplied as input, this + * will always be used and returned. + * @see Replaceable + * @draft ICU 3.4 + */ +U_DRAFT UText * U_EXPORT2 +utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status); + +#endif + + +/** + * clone a UText. Much like opening a UText where the source text is itself + * another UText. + * + * A deep clone will copy both the UText data structures and the underlying text. + * The original and cloned UText will operate completely independently; modifications + * made to the text in one will not effect the other. Text providers are not + * required to support deep clones. The user of clone() must check the status return + * and be prepared to handle failures. + * + * A shallow clone replicates only the UText data structures; it does not make + * a copy of the underlying text. Shallow clones can be used as an efficient way to + * have multiple iterators active in a single text string that is not being + * modified. + * + * A shallow clone operation will not fail, barring truly exceptional conditions such + * as memory allocation failures. + * + * A UText and its clone may be safely concurrently accessed by separate threads. + * This is true for both shallow and deep clones. + * It is the responsibility of the Text Provider to ensure that this thread safety + * constraint is met. + * + * @param dest A UText struct to be filled in with the result of the clone operation, + * or NULL if the clone function should heap-allocate a new UText struct. + * @param src The UText to be cloned. + * @param deep TRUE to request a deep clone, FALSE for a shallow clone. + * @param status Errors are returned here. For deep clones, U_UNSUPPORTED_ERROR + * will be returned if the text provider is unable to clone the + * original text. + * @return The newly created clone, or NULL if the clone operation failed. + * @draft ICU 3.4 + */ +U_DRAFT UText * U_EXPORT2 +utext_clone(UText *dest, const UText *src, UBool deep, UErrorCode *status); + + +/***************************************************************************** + * + * C Functions to work with the text represeted by a UText wrapper + * + *****************************************************************************/ + +/** + * Get the length of the text. Depending on the characteristics + * of the underlying text representation, this may be expensive. + * @see utext_isLengthExpensive() + * + * + * @param ut the text to be accessed. + * @return the length of the text, expressed in native units. + * + * @draft ICU 3.4 + */ +U_DRAFT int32_t U_EXPORT2 +utext_nativeLength(UText *ut); + +/** + * Return TRUE if calculating the length of the text could be expensive. + * Finding the length of NUL terminated strings is considered to be expensive. + * + * Note that the value of this function may change + * as the result of other operations on a UText. + * Once the length of a string has been discovered, it will no longer + * be expensive to report it. + * + * @param ut the text to be accessed. + * @return TRUE if determining the length of the text could be time consuming. + * @draft ICU 3.4 + */ +U_DRAFT UBool U_EXPORT2 +utext_isLengthExpensive(const UText *ut); + +/** + * Returns the code point at the requested index, + * or U_SENTINEL (-1) if it is out of bounds. + * + * If the specified index points to the interior of a multi-unit + * character - one of the trail bytes of a UTF-8 sequence, for example - + * the complete code point will be returned. + * + * The iteration position will be set to the start of the returned code point. + * + * This function is roughly equivalent to the the sequence + * utext_setNativeIndex(index); + * utext_current32(); + * (There is a difference if the index is out of bounds by being less than zero) + * + * @param ut the text to be accessed + * @param nativeIndex the native index of the character to be accessed. If the index points + * to other than the first unit of a multi-unit character, it will be adjusted + * to the start of the character. + * @return the code point at the specified index. + * @draft ICU 3.4 + */ +U_DRAFT UChar32 U_EXPORT2 +utext_char32At(UText *ut, int32_t nativeIndex); + + +/** + * + * Get the code point at the current iteration position, + * or U_SENTINEL (-1) if the iteration has reached the end of + * the input text. + * + * @param ut the text to be accessed. + * @return the Unicode code point at the current iterator position. + * @draft ICU 3.4 + */ +U_DRAFT UChar32 U_EXPORT2 +utext_current32(UText *ut); + + +/** + * Get the code point at the current iteration position of the UText, and + * advance the position to the first index following the character. + * Returns U_SENTINEL (-1) if the position is at the end of the + * text. + * This is a post-increment operation + * + * An inline macro version of this function, UTEXT_NEXT32(), + * is available for performance critical use. + * + * @param ut the text to be accessed. + * @return the Unicode code point at the iteration position. + * @see UTEXT_NEXT32 + * @draft ICU 3.4 + */ +U_DRAFT UChar32 U_EXPORT2 +utext_next32(UText *ut); + + +/** + * Move the iterator position to the character (code point) whose + * index precedes the current position, and return that character. + * This is a pre-decrement operation. + * Returns U_SENTINEL (-1) if the position is at the start of the text. + * This is a pre-decrement operation. + * + * An inline macro version of this function, UTEXT_PREVIOUS32(), + * is available for performance critical use. + * + * @param ut the text to be accessed. + * @return the previous UChar32 code point, or U_SENTINEL (-1) + * if the iteration has reached the start of the text. + * @see UTEXT_PREVIOUS32 + * @draft ICU 3.4 + */ +U_DRAFT UChar32 U_EXPORT2 +utext_previous32(UText *ut); + + +/** + * Set the iteration index, access the text for forward iteration, + * and return the code point starting at or before that index. + * Leave the iteration index at the start of the following code point. + * + * This function is the most efficient and convenient way to + * begin a forward iteration. + * + * @param ut the text to be accessed. + * @param nativeIndex Iteration index, in the native units of the text provider. + * @return Code point which starts at or before index, + * or U_SENTINEL (-1) if it is out of bounds. + * @draft ICU 3.4 + */ +U_DRAFT UChar32 U_EXPORT2 +utext_next32From(UText *ut, int32_t nativeIndex); + + + +/** + * Set the iteration index, and return the code point preceding the + * one specified by the initial index. Leave the iteration position + * at the start of the returned code point. + * + * This function is the most efficient and convenient way to + * begin a backwards iteration. + * + * @param ut the text to be accessed. + * @param nativeIndex Iteration index in the native units of the text provider. + * @return Code point preceding the one at the initial index, + * or U_SENTINEL (-1) if it is out of bounds. + * + * @draft ICU 3.4 + */ +U_DRAFT UChar32 U_EXPORT2 +utext_previous32From(UText *ut, int32_t nativeIndex); + +/** + * Get the current iterator position, which can range from 0 to + * the length of the text. + * The position is a native index into the input text, in whatever format it + * may have, and may not always correspond to a UChar (UTF-16) index + * into the text. The returned position will always be aligned to a + * code point boundary + * + * @param ut the text to be accessed. + * @return the current index position, in the native units of the text provider. + * @draft ICU 3.4 + */ +U_DRAFT int32_t U_EXPORT2 +utext_getNativeIndex(UText *ut); + +/** + * Set the current iteration position to the nearest code point + * boundary at or preceding the specified index. + * The index is in the native units of the original input text. + * If the index is out of range, it will be trimmed to be within + * the range of the input text. + * + * It will usually be more efficient to begin an iteration + * using the functions utext_next32From() or utext_previous32From() + * rather than setIndex(). + * + * Moving the index position to an adjacent character is best done + * with utext_next32(), utext_previous32() or utext_moveIndex32(). + * Attempting to do direct arithmetic on the index position is + * complicated by the fact that the size (in native units) of a + * character depends on the underlying representation of the character + * (UTF-8, UTF-16, UTF-32, arbitrary codepage), and is not + * easily knowable. + * + * @param ut the text to be accessed. + * @param nativeIndex the native unit index of the new iteration position. + * @draft ICU 3.4 + */ +U_DRAFT void U_EXPORT2 +utext_setNativeIndex(UText *ut, int32_t nativeIndex); + +/** + * Move the iterator postion by delta code points. The number of code points + * is a signed number; a negative delta will move the iterator backwards, + * towards the start of the text. + * + * The index is moved bydelta
code points
+ * forward or backward, but no further backward than to 0 and
+ * no further forward than to utext_nativeLength().
+ * The resulting index value will be in between 0 and length, inclusive.
+ *
+ * Because the index is kept in the native units of the text provider, the
+ * actual numeric amount by which the index moves depends on the
+ * underlying text storage representation of the text provider.
+ *
+ * @param ut the text to be accessed.
+ * @param delta the signed number of code points to move the iteration position.
+ * @return TRUE if the position could be moved the requested number of positions while
+ * staying within the range [0 - text length].
+ * @draft ICU 3.4
+ */
+U_DRAFT UBool U_EXPORT2
+utext_moveIndex32(UText *ut, int32_t delta);
+
+
+/**
+ *
+ * Extract text from a UText into a UChar buffer. The range of text to be extracted
+ * is specified in the native indices of the UText provider. These may not necessarily
+ * be UTF-16 indices.
+ *
+ * The size (number of 16 bit UChars) in the data to be extracted is returned. The
+ * full number of UChars is returned, even when the extracted text is truncated
+ * because the specified buffer size is too small.
+ *
+ * The extracted string will (if you are a user) / must (if you are a text provider)
+ * be NUL-terminated if there is sufficient space in the destination buffer. This
+ * terminating NUL is not included in the returned length.
+ *
+ * @param ut the UText from which to extract data.
+ * @param nativeStart the native index of the first character to extract.
+ * @param nativeLimit the native string index of the position following the last
+ * character to extract. If the specified limit is greater than the length
+ * of the text, the limit will be trimmed back to the text length.
+ * @param dest the UChar (UTF-16) buffer into which the extracted text is placed
+ * @param destCapacity The size, in UChars, of the destination buffer. May be zero
+ * for precomputing the required size.
+ * @param status receives any error status.
+ * U_BUFFER_OVERFLOW_ERROR: the extracted text was truncated because the
+ * buffer was too small. Returns number of UChars for preflighting.
+ * @return Number of UChars in the data to be extracted. Does not include a trailing NUL.
+ *
+ * @draft ICU 3.4
+ */
+U_DRAFT int32_t U_EXPORT2
+utext_extract(UText *ut,
+ int32_t nativeStart, int32_t nativeLimit,
+ UChar *dest, int32_t destCapacity,
+ UErrorCode *status);
+
+
+
+/************************************************************************************
+ *
+ * #define inline versions of selected performance-critical text access functions
+ * Caution: do not use auto increment++ or decrement-- expressions
+ * as parameters to these macros.
+ *
+ * For most use, where there is no extreme performance constraint, the
+ * normal, non-inline functions are a better choice. The resulting code
+ * will be smaller, and, if the need ever arises, easier to debug.
+ *
+ * These are implemented as #defines rather than real functions
+ * because there is no fully portable way to do inline functions in plain C.
+ *
+ ************************************************************************************/
+
+/**
+ * inline version of utext_next32(), for performance-critical situations.
+ *
+ * Get the code point at the current iteration position of the UText, and
+ * advance the position to the first index following the character.
+ * This is a post-increment operation.
+ * Returns U_SENTINEL (-1) if the position is at the end of the
+ * text.
+ *
+ * @draft ICU 3.4
+ */
+#define UTEXT_NEXT32(ut) \
+ ((ut)->chunk.offset < (ut)->chunk.length && ((ut)->chunk.contents)[(ut)->chunk.offset]<0xd800 ? \
+ ((ut)->chunk.contents)[((ut)->chunk.offset)++] : utext_next32(ut))
+
+/**
+ * inline version of utext_previous32(), for performance-critical situations.
+ *
+ * Move the iterator position to the character (code point) whose
+ * index precedes the current position, and return that character.
+ * This is a pre-decrement operation.
+ * Returns U_SENTINEL (-1) if the position is at the start of the text.
+ *
+ * @draft ICU 3.4
+ */
+#define UTEXT_PREVIOUS32(ut) \
+ ((ut)->chunk.offset > 0 && \
+ (ut)->chunk.contents[(ut)->chunk.offset-1] < 0xd800 ? \
+ (ut)->chunk.contents[--((ut)->chunk.offset)] : utext_previous32(ut))
+
+
+
+
+/************************************************************************************
+ *
+ * Functions related to writing or modifying the text.
+ * These will work only with modifiable UTexts. Attempting to
+ * modify a read-only UText will return an error status.
+ *
+ ************************************************************************************/
+
+
+/**
+ * Return TRUE if the text can be written with utext_replace() or
+ * utext_copy(). For the text to be writable, the text provider must
+ * be of a type that supports writing.
+ *
+ * @param ut the UText to be tested.
+ * @return TRUE if the text is modifiable.
+ * @draft ICU 3.4
+ *
+ */
+U_DRAFT UBool U_EXPORT2
+utext_isWritable(const UText *ut);
+
+
+/**
+ * Test whether there is meta data associated with the text.
+ * @see Replaceable::hasMetaData()
+ *
+ * @param ut The UText to be tested
+ * @return TRUE if the underlying text includes meta data.
+ * @draft ICU 3.4
+ */
+U_DRAFT UBool U_EXPORT2
+utext_hasMetaData(const UText *ut);
+
+
+/**
+ * Replace a range of the original text with a replacement text.
+ *
+ * Leaves the current iteration position at the position following the
+ * newly inserted replacement text.
+ *
+ * This function is only available on UText types that support writing,
+ * that is, ones where utext_isWritable() returns TRUE.
+ *
+ * When using this function, there should be only a single UText opened onto the
+ * underlying native text string. Behavior after a replace operation
+ * on a UText is undefined for any other additional UTexts that refer to the
+ * modified string.
+ *
+ * @param ut the UText representing the text to be operated on.
+ * @param nativeStart the native index of the start of the region to be replaced
+ * @param nativeLimit the native index of the character following the region to be replaced.
+ * @param replacementText pointer to the replacement text
+ * @param replacementLength length of the replacement text, or -1 if the text is NUL terminated.
+ * @param status receives any error status. Possible errors include
+ * U_NO_WRITE_PERMISSION
+ *
+ * @return The signed number of (native) storage units by which
+ * the length of the text expanded or contracted.
+ *
+ * @draft ICU 3.4
+ */
+U_DRAFT int32_t U_EXPORT2
+utext_replace(UText *ut,
+ int32_t nativeStart, int32_t nativeLimit,
+ const UChar *replacementText, int32_t replacementLength,
+ UErrorCode *status);
+
+
+
+/**
+ *
+ * Copy or move a substring from one position to another within the text,
+ * while retaining any metadata associated with the text.
+ * This function is used to duplicate or reorder substrings.
+ * The destination index must not overlap the source range.
+ *
+ * The text to be copied or moved is inserted at destIndex;
+ * it does not replace or overwrite any existing text.
+ *
+ * This function is only available on UText types that support writing,
+ * that is, ones where utext_isWritable() returns TRUE.
+ *
+ * When using this function, there should be only a single UText opened onto the
+ * underlying native text string. Behavior after a copy operation
+ * on a UText is undefined in any other additional UTexts that refer to the
+ * modified string.
+ *
+ * @param ut The UText representing the text to be operated on.
+ * @param nativeStart The native index of the start of the region to be copied or moved
+ * @param nativeLimit The native index of the character position following the region to be copied.
+ * @param destIndex The native destination index to which the source substring is copied or moved.
+ * @param move If TRUE, then the substring is moved, not copied/duplicated.
+ * @param status receives any error status. Possible errors include U_NO_WRITE_PERMISSION
+ *
+ * @draft ICU 3.4
+ */
+U_DRAFT void U_EXPORT2
+utext_copy(UText *ut,
+ int32_t nativeStart, int32_t nativeLimit,
+ int32_t destIndex,
+ UBool move,
+ UErrorCode *status);
+
+
+
+
+
+/****************************************************************************************
+ *
+ * The following items are required by text providers implementations -
+ * by packages that are writing UText wrappers for additional types of text strings.
+ * These declarations are not needed by applications that use already existing
+ * UText functions for wrapping strings or accessing text data that has been
+ * wrapped in a UText.
+ *
+ *****************************************************************************************/
+
+
+/**
+ * Descriptor of a chunk, or segment of text in UChar format.
+ *
+ * UText provider implementations surface their text in the form of UTextChunks.
+ *
+ * If the native form of the text if UTF-16, a chunk will typically refer back to the
+ * original native text storage. If the native format is something else, chunks
+ * will typically refer to a buffer maintained by the provider that contains
+ * some amount input that has been converted to UTF-16 (UChar) form.
+ *
+ * @draft ICU 3.4
+ */
+struct UTextChunk {
+ /** Pointer to contents of text chunk. UChar format. */
+ const UChar *contents;
+
+ /** Index within the contents of the current iteration position. */
+ int32_t offset;
+
+ /** Number of UChars in the chunk. */
+ int32_t length;
+
+ /** (Native) text index corresponding to the start of the chunk. */
+ int32_t nativeStart;
+
+ /** (Native) text index corresponding to the end of the chunk (contents+length). */
+ int32_t nativeLimit;
+
+ /** If TRUE, then non-UTF-16 indexes are used in this chunk. */
+ UBool nonUTF16Indexes;
+
+ /** Unused. */
+ UBool padding1, padding2, padding3;
+
+ /** Unused. */
+ int32_t padInt1, padInt2;
+
+ /** Contains sizeof(UTextChunk) and allows the future addition of fields. */
+ int32_t sizeOfStruct;
+};
+
+
+/**
+ * UText provider properties (bit field indexes).
+ *
+ * @see UText
+ * @draft ICU 3.4
+ */
+enum {
+ /**
+ * The provider works with non-UTF-16 ("native") text indexes.
+ * For example, byte indexes into UTF-8 text or UTF-32 indexes into UTF-32 text.
+ * @draft ICU 3.4
+ */
+ UTEXT_PROVIDER_NON_UTF16_INDEXES = 0,
+ /**
+ * It is potentially time consuming for the provider to determine the length of the text.
+ * @draft ICU 3.4
+ */
+ UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE = 1,
+ /**
+ * Text chunks remain valid and usable until the text object is modified or
+ * deleted, not just until the next time the access() function is called
+ * (which is the default).
+ * @draft ICU 3.4
+ */
+ UTEXT_PROVIDER_STABLE_CHUNKS = 2,
+ /**
+ * The provider supports modifying the text via the replace() and copy()
+ * functions.
+ * @see Replaceable
+ * @draft ICU 3.4
+ */
+ UTEXT_PROVIDER_WRITABLE = 3,
+ /**
+ * There is meta data associated with the text.
+ * @see Replaceable::hasMetaData()
+ * @draft ICU 3.4
+ */
+ UTEXT_PROVIDER_HAS_META_DATA = 4
+};
+
+/**
+ * Function type declaration for UText.clone().
+ *
+ * clone a UText. Much like opening a UText where the source text is itself
+ * another UText.
+ *
+ * A deep clone will copy both the UText data structures and the underlying text.
+ * The original and cloned UText will operate completely independently; modifications
+ * made to the text in one will not effect the other. Text providers are not
+ * required to support deep clones. The user of clone() must check the status return
+ * and be prepared to handle failures.
+ *
+ * A shallow clone replicates only the UText data structures; it does not make
+ * a copy of the underlying text. Shallow clones can be used as an efficient way to
+ * have multiple iterators active in a single text string that is not being
+ * modified.
+ *
+ * A shallow clone operation must not fail except for truly exceptional conditions such
+ * as memory allocation failures.
+ *
+ * A UText and its clone may be safely concurrently accessed by separate threads.
+ * This is true for both shallow and deep clones.
+ * It is the responsibility of the Text Provider to ensure that this thread safety
+ * constraint is met.
+
+ *
+ * @param dest A UText struct to be filled in with the result of the clone operation,
+ * or NULL if the clone function should heap-allocate a new UText struct.
+ * @param src The UText to be cloned.
+ * @param deep TRUE to request a deep clone, FALSE for a shallow clone.
+ * @param status Errors are returned here. For deep clones, U_UNSUPPORTED_ERROR
+ * should be returned if the text provider is unable to clone the
+ * original text.
+ * @return The newly created clone, or NULL if the clone operation failed.
+ *
+ * @draft ICU 3.4
+ */
+typedef UText * U_CALLCONV
+UTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status);
+
+
+/**
+ * Function type declaration for UText.nativeLength().
+ *
+ * @param ut the UText to get the length of.
+ * @return the length, in the native units of the original text string.
+ * @see UText
+ * @draft ICU 3.4
+ */
+typedef int32_t U_CALLCONV
+UTextNativeLength(UText *ut);
+
+/**
+ * Function type declaration for UText.access(). Get the description of the text chunk
+ * containing the text at a requested native index. The UText's iteration
+ * position will be left at the requested index. If the index is out
+ * of bounds, the iteration position will be left at the start or end
+ * of the string, as appropriate.
+ *
+ * Chunks must begin and end on code point boundaries. A single code point
+ * comprised of multiple storage units must never span a chunk boundary.
+ *
+ *
+ * @param ut the UText being accessed.
+ * @param nativeIndex Requested index of the text to be accessed.
+ * @param forward If TRUE, then the returned chunk must contain text
+ * starting from the index, so that start<=index