usbdrv/peripheral/pdd/pil/src/misc.cpp
author Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
Tue, 31 Aug 2010 17:01:47 +0300
branchRCL_3
changeset 15 f92a4f87e424
permissions -rw-r--r--
Revision: 201033 Kit: 201035

// Copyright (c) 2000-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32/drivers/usbcc/misc.cpp
// Platform independent layer (PIL) of the USB Device controller driver:
// Implementations of misc. classes defined in usbc.h.
// 
//

/**
 @file misc.cpp
 @internalTechnology
*/
// #include <drivers/usbc.h>
#include <usb/usbc.h>


/** Helper function for logical endpoints and endpoint descriptors:
    Split single Ep size into separate FS/HS sizes.
    This function modifies its arguments.
 */
TInt TUsbcEndpointInfo::AdjustEpSizes(TInt& aEpSize_Fs, TInt& aEpSize_Hs) const
    {
    if (iType == UsbShai::KUsbEpTypeBulk)
        {
        // FS: [8|16|32|64] HS: 512
        if (iSize < 64)
            {
            aEpSize_Fs = iSize;
            }
        else
            {
            aEpSize_Fs = 64;
            }
        aEpSize_Hs = 512;
        }
    else if (iType == UsbShai::KUsbEpTypeInterrupt)
        {
        // FS: [0..64] HS: [0..1024]
        if (iSize < 64)
            {
            aEpSize_Fs = iSize;
            }
        else
            {
            aEpSize_Fs = 64;
            }
        aEpSize_Hs = iSize;
        }
    else if (iType == UsbShai::KUsbEpTypeIsochronous)
        {
        // FS: [0..1023] HS: [0..1024]
        if (iSize < 1023)
            {
            aEpSize_Fs = iSize;
            }
        else
            {
            aEpSize_Fs = 1023;
            }
        aEpSize_Hs = iSize;
        }
    else if (iType == UsbShai::KUsbEpTypeControl)
        {
        // FS: [8|16|32|64] HS: 64
        if (iSize < 64)
            {
            aEpSize_Fs = iSize;
            }
        else
            {
            aEpSize_Fs = 64;
            }
        aEpSize_Hs = 64;
        }
    else
        {
        aEpSize_Fs = aEpSize_Hs = 0;
        return KErrGeneral;
        }

    // For the reason of the following checks see Table 9-14. "Allowed wMaxPacketSize
    // Values for Different Numbers of Transactions per Microframe".
    if ((iType == UsbShai::KUsbEpTypeInterrupt) || (iType == UsbShai::KUsbEpTypeIsochronous))
        {
        if (iTransactions == 1)
            {
            if (aEpSize_Hs < 513)
                {
                __KTRACE_OPT(KPANIC, Kern::Printf("  Warning: Ep size too small: %d < 513. Correcting...",
                                                  aEpSize_Hs));
                aEpSize_Hs = 513;
                }
            }
        else if (iTransactions == 2)
            {
            if (aEpSize_Hs < 683)
                {
                __KTRACE_OPT(KPANIC, Kern::Printf("  Warning: Ep size too small: %d < 683. Correcting...",
                                                  aEpSize_Hs));
                aEpSize_Hs = 683;
                }
            }
        }
    return KErrNone;
    }


/** Helper function for logical endpoints and endpoint descriptors:
    If not set, assign a valid and meaningful value to iInterval_Hs, deriving from iInterval.
    This function modifies the objects's data member(s).
 */
TInt TUsbcEndpointInfo::AdjustPollInterval()
    {
    if (iInterval_Hs != -1)
        {
        // Already done.
        return KErrNone;
        }
    if ((iType == UsbShai::KUsbEpTypeBulk) || (iType == UsbShai::KUsbEpTypeControl))
        {
        // Valid range: 0..255 (maximum NAK rate).
        // (The host controller will probably ignore this value though -
        //  see the last sentence of section 9.6.6 for details.)
        iInterval_Hs = 255;
        }
    else if (iType == UsbShai::KUsbEpTypeInterrupt)
        {
        // HS interval = 2^(iInterval_Hs-1) with a valid iInterval_Hs range of 1..16.
        // The following table shows the mapping of HS values to actual intervals (and
        // thus FS values) for the range of possible FS values (1..255).
        // There is not always a 1:1 mapping possible, but we want at least to make sure
        // that the HS polling interval is never longer than the FS one (except for 255).
        //
        // 1 = 1
        // 2 = 2
        // 3 = 4
        // 4 = 8
        // 5 = 16
        // 6 = 32
        // 7 = 64
        // 8 = 128
        // 9 = 256
        if (iInterval == 255)
            iInterval_Hs = 9;
        else if (iInterval >= 128)
            iInterval_Hs = 8;
        else if (iInterval >= 64)
            iInterval_Hs = 7;
        else if (iInterval >= 32)
            iInterval_Hs = 6;
        else if (iInterval >= 16)
            iInterval_Hs = 5;
        else if (iInterval >= 8)
            iInterval_Hs = 4;
        else if (iInterval >= 4)
            iInterval_Hs = 3;
        else if (iInterval >= 2)
            iInterval_Hs = 2;
        else if (iInterval == 1)
            iInterval_Hs = 1;
        else
            {
            // iInterval wasn't set properly by the user
            iInterval_Hs = 1;
            return KErrGeneral;
            }
        }
    else if (iType == UsbShai::KUsbEpTypeIsochronous)
        {
        // Interpretation is the same for FS and HS.
        iInterval_Hs = iInterval;
        }
    else
        {
        // '1' is a valid value for all endpoint types...
        iInterval_Hs = 1;
        return KErrGeneral;
        }
    return KErrNone;
    }


TUsbcPhysicalEndpoint::TUsbcPhysicalEndpoint()
    : iEndpointAddr(0), iIfcNumber(NULL), iLEndpoint(NULL), iSettingReserve(EFalse), iHalt(EFalse)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcPhysicalEndpoint::TUsbcPhysicalEndpoint"));
    }


TInt TUsbcPhysicalEndpoint::TypeAvailable(TUint aType) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcPhysicalEndpoint::TypeAvailable"));
    switch (aType)
        {
    case UsbShai::KUsbEpTypeControl:
        return (iCaps.iTypesAndDir & UsbShai::KUsbEpTypeControl);
    case UsbShai::KUsbEpTypeIsochronous:
        return (iCaps.iTypesAndDir & UsbShai::KUsbEpTypeIsochronous);
    case UsbShai::KUsbEpTypeBulk:
        return (iCaps.iTypesAndDir & UsbShai::KUsbEpTypeBulk);
    case UsbShai::KUsbEpTypeInterrupt:
        return (iCaps.iTypesAndDir & UsbShai::KUsbEpTypeInterrupt);
    default:
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: invalid EP type: %d", aType));
        return 0;
        }
    }


TInt TUsbcPhysicalEndpoint::DirAvailable(TUint aDir) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcPhysicalEndpoint::DirAvailable"));
    switch (aDir)
        {
    case UsbShai::KUsbEpDirIn:
        return (iCaps.iTypesAndDir & UsbShai::KUsbEpDirIn);
    case UsbShai::KUsbEpDirOut:
        return (iCaps.iTypesAndDir & UsbShai::KUsbEpDirOut);
    default:
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: invalid EP direction: %d", aDir));
        return 0;
        }
    }


TInt TUsbcPhysicalEndpoint::EndpointSuitable(const TUsbcEndpointInfo* aEpInfo, TInt aIfcNumber) const
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcPhysicalEndpoint::EndpointSuitable"));
    __KTRACE_OPT(KUSB, Kern::Printf("  looking for EP: type=0x%x dir=0x%x size=%d (ifc_num=%d)",
                                    aEpInfo->iType, aEpInfo->iDir, aEpInfo->iSize, aIfcNumber));
    if (iSettingReserve)
        {
        __KTRACE_OPT(KUSB, Kern::Printf("  -> setting conflict"));
        return 0;
        }
    // (aIfcNumber == -1) means the ep is for a new default interface setting
    else if (iIfcNumber && (*iIfcNumber != aIfcNumber))
        {
        // If this endpoint has already been claimed (iIfcNumber != NULL),
        // but by a different interface(-set) than the currently looking one
        // (*iIfcNumber != aIfcNumber), then it's not available.
        // This works because we can assign the same physical endpoint
        // to different alternate settings of the *same* interface, and
        // because we check for available endpoints for every alternate setting
        // as a whole.
        __KTRACE_OPT(KUSB, Kern::Printf("  -> ifc conflict"));
        return 0;
        }
    else if (!TypeAvailable(aEpInfo->iType))
        {
        __KTRACE_OPT(KUSB, Kern::Printf("  -> type conflict"));
        return 0;
        }
    else if (!DirAvailable(aEpInfo->iDir))
        {
        __KTRACE_OPT(KUSB, Kern::Printf("  -> direction conflict"));
        return 0;
        }
    else if (!(iCaps.iSizes & PacketSize2Mask(aEpInfo->iSize)) && !(iCaps.iSizes & UsbShai::KUsbEpSizeCont))
        {
        __KTRACE_OPT(KUSB, Kern::Printf("  -> size conflict"));
        return 0;
        }
    else
        return 1;
    }


TUsbcPhysicalEndpoint::~TUsbcPhysicalEndpoint()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcPhysicalEndpoint::~TUsbcPhysicalEndpoint()"));
    iLEndpoint = NULL;
    }


TUsbcLogicalEndpoint::TUsbcLogicalEndpoint(DUsbClientController* aController, TUint aEndpointNum,
                                           const TUsbcEndpointInfo& aEpInfo, TUsbcInterface* aInterface,
                                           TUsbcPhysicalEndpoint* aPEndpoint)
    : iController(aController), iLEndpointNum(aEndpointNum), iInfo(aEpInfo), iInterface(aInterface),
      iPEndpoint(aPEndpoint)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcLogicalEndpoint::TUsbcLogicalEndpoint()"));
    //  Adjust FS/HS endpoint sizes
    if (iInfo.AdjustEpSizes(iEpSize_Fs, iEpSize_Hs) != KErrNone)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Unknown endpoint type: %d", iInfo.iType));
        }
    __KTRACE_OPT(KUSB, Kern::Printf("  Now set: iEpSize_Fs=%d iEpSize_Hs=%d (iInfo.iSize=%d)",
                                    iEpSize_Fs, iEpSize_Hs, iInfo.iSize));
    //  Adjust HS polling interval
    if (iInfo.AdjustPollInterval() != KErrNone)
        {
        __KTRACE_OPT(KPANIC, Kern::Printf("  Error: Unknown ep type (%d) or invalid interval value (%d)",
                                          iInfo.iType, iInfo.iInterval));
        }
    __KTRACE_OPT(KUSB, Kern::Printf("  Now set: iInfo.iInterval=%d iInfo.iInterval_Hs=%d",
                                    iInfo.iInterval, iInfo.iInterval_Hs));
    // Additional transactions requested on a non High Bandwidth ep?
    if ((iInfo.iTransactions > 0) && !aPEndpoint->iCaps.iHighBandwidth)
        {
        __KTRACE_OPT(KPANIC,
                     Kern::Printf("  Warning: Additional transactions requested but not a High Bandwidth ep"));
        }
    }


TUsbcLogicalEndpoint::~TUsbcLogicalEndpoint()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcLogicalEndpoint::~TUsbcLogicalEndpoint: #%d", iLEndpointNum));
    // If the real endpoint this endpoint points to is also used by
    // any other logical endpoint in any other setting of this interface
    // then we leave the real endpoint marked as used. Otherwise we mark
    // it as available (set its ifc number pointer to NULL).
    const TInt n = iInterface->iInterfaceSet->iInterfaces.Count();
    for (TInt i = 0; i < n; ++i)
        {
        const TUsbcInterface* const ifc = iInterface->iInterfaceSet->iInterfaces[i];
        const TInt m = ifc->iEndpoints.Count();
        for (TInt j = 0; j < m; ++j)
            {
            const TUsbcLogicalEndpoint* const ep = ifc->iEndpoints[j];
            if ((ep->iPEndpoint == iPEndpoint) && (ep != this))
                {
                __KTRACE_OPT(KUSB, Kern::Printf("  Physical endpoint still in use -> we leave it as is"));
                return;
                }
            }
        }
    __KTRACE_OPT(KUSB, Kern::Printf("  Closing DMA channel"));
    const TInt idx = iController->EpAddr2Idx(iPEndpoint->iEndpointAddr);
    // If the endpoint doesn't support DMA (now or ever) the next operation will be a no-op.
    // iController->CloseDmaChannel(idx);
    __KTRACE_OPT(KUSB, Kern::Printf("  Setting physical ep 0x%02x ifc number to NULL (was %d)",
                                    iPEndpoint->iEndpointAddr, *iPEndpoint->iIfcNumber));
    iPEndpoint->iIfcNumber = NULL;
    }


TUsbcInterface::TUsbcInterface(TUsbcInterfaceSet* aIfcSet, TUint8 aSetting, TBool aNoEp0Requests)
    : iEndpoints(2), iInterfaceSet(aIfcSet), iSettingCode(aSetting), iNoEp0Requests(aNoEp0Requests)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcInterface::TUsbcInterface()"));
    }


TUsbcInterface::~TUsbcInterface()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcInterface::~TUsbcInterface()"));
    iEndpoints.ResetAndDestroy();
    }


TUsbcInterfaceSet::TUsbcInterfaceSet(const DBase* aClientId, TUint8 aIfcNum)
    : iInterfaces(2), iClientId(aClientId), iInterfaceNumber(aIfcNum), iCurrentInterface(0)
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcInterfaceSet::TUsbcInterfaceSet()"));
    }


TUsbcInterfaceSet::~TUsbcInterfaceSet()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcInterfaceSet::~TUsbcInterfaceSet()"));
    iInterfaces.ResetAndDestroy();
    }


TUsbcConfiguration::TUsbcConfiguration(TUint8 aConfigVal)
    : iInterfaceSets(1), iConfigValue(aConfigVal)            // iInterfaceSets(1): granularity
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcConfiguration::TUsbcConfiguration()"));
    }


TUsbcConfiguration::~TUsbcConfiguration()
    {
    __KTRACE_OPT(KUSB, Kern::Printf("TUsbcConfiguration::~TUsbcConfiguration()"));
    iInterfaceSets.ResetAndDestroy();
    }


_LIT(KDriverName, "Usbcc");

DUsbcPowerHandler::DUsbcPowerHandler(DUsbClientController* aController)
    : DPowerHandler(KDriverName), iController(aController)
    {}


void DUsbcPowerHandler::PowerUp()
    {
    if (iController)
        iController->iPowerUpDfc.Enque();
    }


void DUsbcPowerHandler::PowerDown(TPowerState)
    {
    if (iController)
        iController->iPowerDownDfc.Enque();
    }


// -eof-