	

	CONFIDENTIAL
	1 (19)

	S60 – AppDep User’s Guide
	DN0696599 6.0a
	13.11.2009

	

	Confidential
	19 (19)

	S60 – AppDep User’s Guide
	DN0696599 6.0a
	13.11.2009

S60

AppDep
User’s Guide

	Team name
	Author

	D RD SD SSS DTD Static Analysis Tools
	Nokia Corporation

	
	

Change history:

	Version
	Date
	Status
	Comments

	6.0
	13.11.2009
	Approved
	Changed references to S60 to Symbian.

	5.0
	17.04.2009
	Approved
	Section 3.1.1: Petran.exe and Elftran.exe handling updated.

	4.0
	12.02.2009
	Approved
	The document was made release-free. Changes to directory paths for the AppDep script were made, due to the new delivery model. Minor editorial fixes.

	3.0
	22.10.2007
	Approved
	The following sections have been added as new:

· 3.2.2.8 Cleaning the cache

· 3.2.2.13 Adding SIS files for analysis
The following sections have been updated:
· 3.2.2.2: updated the default cache directory path and added information on target-specific cache directories
· 3.2.2.5: updated examples and added information on multiple target handling
· 3.2.2.7: added an example of refreshing the cache

· 3.2.3.5: added an example showing the full function name
· Appendix A: added new command line parameters
(-sisfiles and -clean)
Removed references to –usesstaticdepstext parameter throughout the document.

	2.0
	04.06.2007
	Approved
	Major modifications to chapters 2 and 3. Added appendix C and renamed previous appendix C as D.

	1.0
	04.12.2006
	Approved
	

Table of contents:
41.
Document control

41.1
References

41.2
Documentation conventions

41.3
Abbreviations

52.
Introduction

63.
Using the AppDep tool

63.1
Before you start

63.1.1
Elftran

63.1.2
Compiler tool sets

63.1.3
C++filt

63.2
Basic walk-through

73.2.1
Specifying the tool set

73.3
Command line parameters

73.3.1
Location of the compiler toolset

73.3.2
Location of the cache

83.3.3
Location of c++filt

83.3.4
Location of the release

83.3.5
Binary types

83.3.6
Specifying the out file

93.3.7
Refreshing the cache

93.3.8
Cleaning the cache

93.3.9
Setting LIB as a default

93.3.10
Displaying ordinal numbers in output

93.3.11
Scanning the udeb folder

93.3.12
Using StaticDependencies.txt

103.3.13
Adding SIS files for analysis

103.4
Commands

103.4.1
Showing binary file properties

103.4.2
Printing static dependencies

113.4.3
Printing depending components

113.4.4
Printing functions used by the component

113.4.5
Printing components using a function

113.5
Examples of complete AppDep commands

13Appendix A: GNU Binutils - c++filt

14Appendix B: Command line parameters

15Appendix C: Static dependencies to dynamic data

16Appendix D: Example output

1. Document control

1.1 References

	[1] The GNU Project
	http://www.gnu.org/

	[2] Definitive Guide on the Technical Intricacies of Compatibility, 2006, Peter Harper, Symbian LTC,
	

	[3] Codesourcery.com
	http://www.codesourcery.com/gnu_toolchains/arm/

1.2 Documentation conventions

Code is written in the Courier new font. Argument choices are shown in <> brackets, for example <choice>. Alternative commands or parameters are separated with the | symbol.
1.3 Abbreviations
	DSO
	Dynamic Shared Object

	EABI
	Embedded Application Binary Interface

	GCC
	GNU Compiler Collection

	GCCE
	GNU Compiler Collection for ARM EABI

	LIB
	Import Library

	RVCT
	RealView Compilation Tools

2. Introduction

AppDep is a command line tool that can be used to resolve static dependency information of a component within a Symbian OS build (either platform or custom).
The tool generates a cache file by reading the data from all binaries and import libraries within a release, by using an external compiler tool set. The use of a cache file is a fast way to make a dependency review, such as what dependencies a binary has, and functions and ordinals used in a binary, and to generate dependency lists to a component or a function. The tool can also be used to view the properties of a binary.
AppDep does not support emulator environment (winscw) because of the different binary formats in Symbian OS and Windows environments. To check dependencies in emulator environment, use any dependency analysis tool for Windows (for example Dependency Walker).

3. Using the AppDep tool

3.1 Before you start
The binaries of the AppDep tool are located in the \appdep folder in the platform release and can be executed as delivered without installing.

3.1.1 Elftran
Elftran is a Symbian tool that AppDep uses to read binary data as header information and the DLL reference table from an E32ImageFile.
Note that there are two versions of this tool:
· Elftran.exe: used by default, supports the GCCE and RVCT toolchains (used in Symbian OS 9.x).

· Petran.exe: supports the GCC toolchain only (used in Symbian OS versions prior to 9.x).

The executable is part of the Symbian builds and can be found under \epoc32\tools directory.

AppDep will automatically locate it with the –release parameter (see Section 3.3.4 for more information) so there is no option for the user to specify a location to it.
3.1.2 Compiler tool sets

AppDep supports the following compiler tool sets:

· Symbian GCC - Used in Symbian OS 6.1-8.x. Supports only LIB files.
· CSL Arm ToolChain (GCCE) - Used in Symbian OS 9.x. Distributed with the Symbian Public SDK 3.x and also downloadable from [3].
· RVCT 2.2 or higher - Used in Symbian OS 9.x.
For more information on specifying the tool set to be used, see Section 3.2.1.
3.1.3 C++filt

Because the RVCT tool chain does not include a tool to demangle function names, the c++filt utility is required when using the chain. c++filt is delivered with AppDep in Symbian build and can be found in the same folder as appdep.exe.
For more information on specifying the location of the tool, see Section 3.3.3.

For more information on the c++filt utility, see reference document [1].

3.2 Basic walk-through
To execute the tool, open a command prompt in the directory where AppDep has been installed and enter the following command:

appdep <toolchain> <parameters> <options> <commands>
For example:

appdep GCC -cache "r:" -tools "r:\epoc32\gcc\bin" -release "r:" -targets "thumb" -staticdeps "phonebook.app"

It is recommended that the command line parameters be given in quotation marks (“”). However, when specifying directories, do not include a trailing backlash as the \” combination means specifying a “-character and will break the command.
Note that it is important that the cache is refreshed every time there have been changes in the platform.

3.2.1 Specifying the tool set
The tool set in use must be specified to execute the tool. To do this, enter the desired tool set abbreviation after the appdep command on the command line:
appdep GCC|GCCE|RVCT <parameters> <options> <commands>
For example:

AppDep RVCT

The location of the tool set is specified with the –tools parameter (see Section 3.3.1 for more information).

3.3 Command line parameters
The parameters described in the following sections are optional and can be added to the AppDep execution command depending on the use case.
For example, if the cache already exists and does not require refreshing, only the –cache parameter needs to be given. Similarly, when using the –usestaticdepstxt parameter, none of the parameters related to cache generation need to be used. The exception to this is the location of the c++filt utility, which is always required when the RVCT tool chain is used.
3.3.1 Location of the compiler toolset

The location of the folder where the compiler tool chain has been installed is specified with the –tool parameter. The path given must be absolute.
For example:
-tools "C:\Program Files\CSL Arm Toolchain\bin"
The tool chain will most likely be found in the following directories:
· GCC: <SDK root> \epoc32\gcc\bin
· GCCE: C:\Program Files\CSL Arm Toolchain\bin
· RVCT: C:\Apps\rvct_2.2.<minor version number>\bin
In Windows environment, if the tools parameter is not given, AppDep will attempt to find the tool chain from the PATH-environment variable.
3.3.2 Location of the cache
The location of the cache generated by AppDep is specified with the -cache parameter. The path given must be absolute.
For example:

-cache "x:\appdep-cache"

To generate cache for one or more targets, the target name can be added to the command by using the -target parameter. Separate directories will be created for each target type.
For example, if you call AppDep with –targets "armv5+armv6", the following cache directories will be created:
armv5\urel\appdep-cache_dependencies.txt
armv5\urel\appdep-cache_symbol_tables.txt
armv6\urel\appdep-cache_dependencies.txt
armv6\urel\appdep-cache_symbol_tables.txt

3.3.3 Location of c++filt
The location of c++filt is specified with the –cfilt parameter. The path given must be absolute.
For example:

-cfilt "C:\appdep\cfilt.exe"
3.3.4 Location of the release

The location of the release is specified with the -release parameter. The path given must be absolute.
For example:

-release "x:"

If no release parameter is given, the path defaults to the root of the current drive.
3.3.5 Binary types
The –targets parameter is used to specify which binary target types from the release are to be used.
For example:

-targets armv5

where AppDep will read the binaries from the \epoc32\release\armv5\ directory.
Multiple target types are listed separated by a plus (+) sign, without spaces.
For example:

-targets "armv5+armv6"

where AppDep will read the binaries from the \epoc32\release\armv5\ and \epoc32\release\armv6\ directories of the specified release.
With multiple targets, analysis will be done by combining files from all caches. This means, for example, that if a binary compiled for armv5 has dependencies to armv6, all of those are listed among the used functions. Redundant dependency information can be removed with the --clean parameter to avoid cluttering the cache. See section 3.3.8 for more information.
3.3.6 Specifying the out file
The –out parameter can be used to specify a text file where the results are printed. The path given must be absolute.
For example:

-out "c:\temp\appdep-result.txt"

If no output file is specified, AppDep will print the results on screen (stdout) by default.

3.3.7 Refreshing the cache
The -–refresh parameter can be used to refresh the content of the existing cache by checking file by file if it has changed. The cache should be refreshed every time there have been changes in the release.
For example:

AppDep GCCE -targets "armv5" --refresh -showfunctions "PhoneBook.exe"

Note that if you want to create a completely new cache file, the old cache needs to be deleted manually or the location of the cache must be changed to another directory. For more information on creating a clean cache, see section 3.3.8.
3.3.8 Cleaning the cache

The --clean parameter can be used to avoid storing unnecessary data in the cache. This parameter can be used if there is redundant dependency information from multiple targets, or if there are references to removed files in the cache.
For example:

AppDep GCCE -targets "armv5" --clean -showfunctions "PhoneBook.exe"

Note that the --clean and --refresh parameters cannot be used in a command at the same time.

3.3.9 Setting LIB as a default

AppDep uses primarily DSO files to read the symbol table, but supports LIB files as well. The exception to this is the Symbian GCC tool chain, where there is no support for DSO files, only for LIB files.

The -–uselibs parameter can be used with the GCCE and RVCT tool chains to set the tool to check LIB files instead of DSO files by default. The parameter can be used, for example, if the build does not contain DSO files, only LIB files. For more information about the differences between DSO and LIB files, see Appendix C.
3.3.10 Displaying ordinal numbers in output

The –-showordinals parameter can be used to set the ordinals to be displayed in the output.
The parameter is used only with -showfunctions or -usesfunction commands.

3.3.11 Scanning the udeb folder

By default, AppDep reads the binaries from the urel directory (for example, \epoc32\release\armv5\urel). The –useudeb parameter can be used to change the directory where AppDep reads the binaries from to the udeb directory (for example, \epoc32\release\armv5\udeb).
3.3.12 Using StaticDependencies.txt

By default, AppDep uses the cache it generates for determining dependencies, but it can also use the StaticDependencies.txt file that is delivered with the platform.
Note that although using the StaticDependency.txt file can provide the dependency information faster than using cache creation, it is not recommended as the dependency data derived from it is incomplete and does not, for example, include Properties information.
3.3.13 Adding SIS files for analysis
To analyse the dependencies of Symbian OS Installation (SIS) files, parameter -sisfiles can be used. The SIS files included in the analysis are listed after the parameter. Multiple SIS files are separated by a semicolon.

For example:

appdep –targets "armv5" –sisfiles "h:\sis\test.sis;c:\temp\mygame.sis"
–staticdeps "mysisapp.exe"
This command submits the test.sis and mygame.sis files for analysis. The files are extracted into a temporary directory and Elftran will be run to get the dependency information. The results of the analysis display a list of binaries that are included in the files.
For example:
Binaries in c:\temp\mygame.sis are:

mygame.exe

mygameapi.dll

When the -sisfiles parameter is used, AppDep will check if it can find the dumpsis.exe executable under the \epoc32\tools directory of the current release. If it is not found, the application will be terminated immediately.

Note that dumpsis.exe supports only SIS file formats used in Symbian OS 9.x.

Dumpsis.exe is included in releases starting from Symbian OS 9.2. It is possible to use this feature in 9.1 by copying the file under \epoc32\tools directory.
3.4 Commands
The following sections describe the main use cases and commands for AppDep.
3.4.1 Showing binary file properties

The command for showing the properties of a binary file is –properties <file> where <file> is the name of the file to be examined.
For example:

-properties "avkon.dll"
The properties to be shown include Directory, Filename, Binary format, Secure ID, Vendor ID, Capabilities, Min and Max Heap Size, Stack Size and DLL ref table count.
See Appendix D for an example of a properties print-out.
3.4.2 Printing static dependencies
The command for printing a list of all static dependencies of a binary file is –staticdeps <file> where <file> is the name of the file to be examined.

For example:

-staticdeps "phonebook.app"
3.4.3 Printing depending components
The command for printing a list of all the components that depend on a certain component is
-dependson <file> where <file> is the name of the file to be examined.
For example:

-dependson "platformenv.dll"
3.4.4 Printing functions used by the component
The command for printing a list of all the functions used by a certain component is
–showfunctions <file> where <file> is the name of the file the file to be examined.
For example:

-showfunctions "PhoneBook.exe"
3.4.5 Printing components using a function
The command for printing a list of all components using a certain function is –usesfunction <name> where <name> is the name of the file to be examined.
The value of <name> can be either a full function name or in the format DLLNAME@ORDINALNUMBER
For example:

-usesfunction "BaflUtils::CopyFile(RFs&, TDesC16 const&, TDesC16 const&,
unsigned int)"

-usesfunction "BAFL.DLL@288"
3.5 Examples of complete AppDep commands
The following example describes the minimum AppDep execution command line parameters for generating a cache file for current release when AppDep is located within the Symbian release and the release is in the root of a substed drive.

AppDep GCCE -targets armv5

The following example describes a full AppDep execution command for showing the properties of avkon.dll, using the RVCT tool set.

AppDep RVCT -cfilt "c:\appdep\bin\cfilt.exe" -cache "c:\temp"
-tools "C:\Program Files\ARM\RVCT\Programs\2.2\503\win_32-pentium"
-release "x:" -targets "armv5+armv6" -properties "avkon.dll"

The following example describes a full AppDep execution command for printing the statistic dependencies of the phonebook.app component.
AppDep GCC -cache "r:" -tools "r:\epoc32\gcc\bin" -release "r:" -targets "thumb" -staticdeps "phonebook.app"

The following example describes a full AppDep execution command for listing all components that depend on the component platformenv.dll and printing the results in a text file.

AppDep GCCE -cache "x:" -tools "C:\Program Files\CSL Arm Toolchain\bin"
-release "x:" -targets "armv5+armv6" -dependson "platformenv.dll"
-out "c:\temp\appdep-result.txt"

The following example describes a full AppDep execution command for listing all functions used by the PhoneBook.exe component, showing the ordinal numbers in the output and refreshing the cache before the analysis.

AppDep GCCE -cache "c:\temp" -tools "C:\Program Files\CSL Arm Toolchain\bin"
-release "x:" -targets "armv5+armv6" --refresh -showfunctions "PhoneBook.exe"
--showordinals

The following two examples describe a full AppDep execution command for listing all components using a function. In the first example, the function is given in the format DLLNAME@ORDINALNUMBER while in the latter the function name is given in full.
AppDep GCCE -cache "c:\temp" -tools "C:\Program Files\CSL Arm Toolchain\bin"
-release "x:" -targets "armv5+armv6" -usesfunction "BAFL.DLL@288"

AppDep GCCE -cache "c:\temp" -tools "C:\Program Files\CSL Arm Toolchain\bin"
-release "x:" -targets "armv5+armv6" -usesfunction "BaflUtils::CopyFile
(RFs&, TDesC16 const&, TDesC16 const&, unsigned int)" --showordinals
Appendix A: GNU Binutils - c++filt

This Nokia Product includes Open Source Software. Certain software included in this Nokia Product is licensed and distributed under GNU General Public License (GPL) and/ or other copyright licenses, disclaimers and notices containing obligation or permission to provide the source code of such software with the binary / executable form delivery of the said software. The source code is delivered to you in accordance with the referred license terms and conditions in the media attached to this document. The exact license terms of GPL and said certain other licenses, as well as the required copyright and other notices, permissions and acknowledgements are reproduced in and delivered to you as part of the referred source code.
Appendix B: Command line parameters

The following syntax is used in the table below:

<dir>
replace with directory (for example, ..\testcases)

<file>
replace with a filename (for example, test.dll)

<name>
replace with a function name
	Parameter name
	Required
	Description

	GCC|GCCE|RVCT
	yes
	Specifies the tool set in use.

	-targets <A+B+C+…>
	yes
	Specifies which binary target types from the release are to be used.

	-tools <dir>
	no
	Specifies where the tool chain has been installed.

	-cache <dir>
	no
	Specifies where intermediate files are stored.

	-release <dir>
	no
	Specified the location of the release.

	-cfilt <path>
	yes/no
	Specifies the location of the c++filt utility.

Only required when the RVCT tool chain is used.

	-out
	no
	Specifies a text file where the results are printed.

	-sisfiles <file;file;...>
	no
	Includes binaries from SIS files under analysis.

	--clean
	no
	Creates a clean cache.

	--refresh
	no
	Forces a cache refresh.

	--uselibs
	no
	Sets AppDep to check LIB files instead of DSO files by default.

Only used with GCCE and RVCT tool chains.

	--showordinals
	no
	Specifies that the ordinal numbers are listed in the output.
Only used with the –showfunctions and –usesfunction commands.

	--useudeb
	no
	Sets AppDep to scan the udeb directory for binaries instead of the urel directory.

	Command name
	Required
	Description

	-properties <file>
	-
	Shows the properties of <file>.

	-staticdeps <file>
	-
	Prints all static dependencies of component <file>.

	-dependson <file>
	-
	Prints all components that depend on component <file>.

	-showfunctions <file>
	-
	Prints all functions used by component <file>.

	-usesfunction <name>
	-
	Prints all components using the function <name>.
<name> can be either the full function name or in format DLLNAME@ORDINALNUMBER.

Appendix C: Static dependencies to dynamic data
In ARM EABI binary model used in Symbian OS 9.x the compiler generates exports for runtime type information (RTTI) and virtual tables. With c++filt _ZTI maps to “typeinfo for” and _ZTV maps to “vtable for”. Those exports are actually data - they will never be "called" in a functional sense. They will be used to fill in values in the corresponding tables for derived classes, if there are any in the calling DLL. [2]
Those objects are automatically exported, even though they are not nameable in C++. The compiler will expect these symbols to exist when compiling code which needs them (for example, constructors for derived classes), and generates them when it compiles a "key function" for the class. These symbols are added automatically when the EABI def files are frozen - they are automatic exports.
The LIB format for import libraries is restricted and does not contain these exports in the symbol table. Therefore it is always recommended to prefer DSO format over LIB which does not have this limitation when analyzing content of import libraries. Ordinals in the symbol table form a continuous sequence from 1 to n and therefore cannot contain any “holes”. If LIB files contain “holes”, content of those are unknown. Exports related to runtime type information and virtual tables can also be in the end of symbol table so with LIB files size of symbol table can be reported incorrectly.
Appendix D: Example output

Properties
Directory: x:\epoc32\release\armv5\urel\
Filename: creator.exe

Binary format: EPOC Exe for ARMV4 CPU

UID1: 0x1000007a

UID2: 0x100039ce

UID3: 0x101fb754

Secure ID: 0x101fb754

Vendor ID: 0x101fb657

Capabilities:

 ReadDeviceData

 WriteDeviceData

 AllFiles

 SwEvent

 NetworkServices

 LocalServices

 ReadUserData

 WriteUserData

 Location

 UserEnvironment

Min Heap Size: 65536

Max Heap Size: 16777216

Stack Size: 20480

Dll ref table count: 33
Static dependencies of the selected component

phonebook.exe - static dependencies:

euser.dll

efsrv.dll

estor.dll

CNTMODEL.DLL

CNTVIEW.DLL

apparc.dll

ws32.dll

cone.dll

egul.dll

fbscli.dll

etext.dll

eikcore.dll

bafl.dll

apgrfx.dll

eikctl.dll

avkon.dll

eikcoctl.dll

AKNSKINS.DLL

CommonEngine.dll

ecom.dll

FeatMgr.dll

SENDUI.DLL

ServiceHandler.dll

SpdCtrl.dll

hlplch.dll

PbkEng.dll

PbkExt.dll

BCardEng.dll

PbkView.dll

PbkUI.dll

MGFetch.Dll

CommonUI.dll

apmime.dll

drtaeabi.dll

scppnwdl.dll

drtrvct2_2.dll
Components that depend on the selected component

platformenv.dll - components that depends on:

AdobeReader.exe

appmngr.exe

calendar.exe

camcorder.exe

Catalogs.exe

Chat.exe

creator.exe

Launcher.exe

MediaPlayer.exe

Menu2.exe

OsmDownloadManager.exe

Phone.exe

psln.exe

ScreenGrabber.exe

Starter.EXE

swidaemon.exe

zipmanager.exe

CalenCommonUi.dll

ces_devicetransport.dll

ces_s60_corecomponents.dll

clkdatetimeView.dll

CodEng.dll

CodUi.dll

CommonDialogs.dll

CommonUI.dll

FileList.dll

Flash2Engine.dll

Flash2UI.dll

GSCamcorderPlugin.dll

ImLauncher.dll

IMPSConnectionUi.dll

MenuModel.dll

MGXDatabase.Dll

MGXDefaultSource.dll

MGXGeneralUtils.Dll

MGXListModel.Dll

MGXMimeTypeManager.dll

MGXUi.Dll

MGXUtils.Dll

MidletUI.dll

MIDP2FileConnection.dll

MPEngine.dll

MPlayerCollectionUi.dll

MPlayerCommonUi.dll

MPlayerPlaybackUi.dll

MPlayerPlaylistEditor.dll

MusicShopLib.dll

PbkMmcUI.dll

ProfileEng.dll

ProfileEngine.dll

pslnengine.dll

rfs.dll

RingBC.dll

ROAPHandler.dll

SConCSC.dll

sconftp.dll

SisxUI.dll

SVGTAppObserverUtil.dll

SWInstCommonUI.dll

SWInstTaskManager.dll

SysUtil.dll

VoiceRecorderUtils.dll

WVServiceSettingsUi.dll

XCFW.dll
Functions used by the selected component

PhoneBook.exe - included functions:

vtable for CBase [virtual table offset by 8] [euser.dll@1359]

TPtrC8::TPtrC8(unsigned char const*, int) [euser.dll@1033]

TPtrC8::TPtrC8(TDesC8 const&) [euser.dll@1034]

TPtrC8::TPtrC8() [euser.dll@1035]

CActive::Cancel() [euser.dll@1088]

CActive::SetActive() [euser.dll@1090]

CActive::CActive(int) [euser.dll@1091]

CActive::~CActive() [euser.dll@1094]

HBufC16::Des() [euser.dll@1116]

HBufC16::NewLC(int) [euser.dll@1119]

HBufC16::NewMaxL(int) [euser.dll@1121]

HBufC16::NewMaxLC(int) [euser.dll@1123]

TPtrC16::TPtrC16(TDesC16 const&) [euser.dll@1171]

TPtrC16::TPtrC16() [euser.dll@1172]

CBufFlat::NewL(int) [euser.dll@1253]

CPeriodic::NewL(int) [euser.dll@1379]

CPeriodic::Start(TTimeIntervalMicroSeconds32, TTimeIntervalMicroSeconds32, TCallBack) [euser.dll@1381]

TBufBase8::TBufBase8(TDesC8 const&, int) [euser.dll@1467]

TBufBase8::TBufBase8(int, int) [euser.dll@1469]

CArrayFixBase::At(int) const [euser.dll@1553]

RPointerArrayBase::At(int) const [euser.dll@1590]

RPointerArrayBase::Find(void const*) const [euser.dll@1591]

RPointerArrayBase::Count() const [euser.dll@1593]

TUid::operator==(TUid const&) const [euser.dll@1601]

TUid::operator!=(TUid const&) const [euser.dll@1602]

TDesC16::AllocL() const [euser.dll@1817]

TDesC16::Locate(TChar) const [euser.dll@1818]

TDesC16::Compare(TDesC16 const&) const [euser.dll@1822]

CleanupStack::PopAndDestroy(int) [euser.dll@202]

CleanupStack::PopAndDestroy() [euser.dll@203]

RBuf16::CleanupClosePushL() [euser.dll@2035]

CleanupStack::Pop(int) [euser.dll@204]

RBuf16::CreateL(int) [euser.dll@2047]
Components that are using the selected function

BaflUtils::CopyFile(RFs&, TDesC16 const&, TDesC16 const&, unsigned int) - is used by:

AdobeReader.exe [BAFL.DLL@288]

CatLauncher.exe [bafl.dll@288]

creator.exe [bafl.dll@288]

javahelperserver.exe [bafl.dll@288]

ScreenGrabber.exe [bafl.dll@288]

ces_corecomponents.dll [BAFL.DLL@288]

ces_devicetransport.dll [BAFL.DLL@288]

ces_licensemanager.dll [BAFL.DLL@288]

javahelper.dll [bafl.dll@288]

openbitdrm.dll [BAFL.DLL@288]

	Copyright © 2006–2009 Nokia Corporation and/or its subsidiary(-ies). All rights reserved.

	This component and the accompanying materials are made available under the terms of "Eclipse Public License v1.0" which accompanies this distribution and is available at the URL "http://www.eclipse.org/legal/epl-v10.html".

Initial Contributors:
Nokia Corporation - initial contribution.

© Nokia Corporation and/or its subsidiaries

_939026938.doc

