[image: image2.png]
[image: image3.png]
Symbian Core Dump File Format

Rev 1.3

Symbian Core Dump File Format
	Status:
	Issued

	Document Reference:
	SGL.TS0028.027

	Version:
	1.6

	
	

	Team/Department :
	Tools Team, Development Environments/SWE


Contents

31
Introduction

1.1
Purpose and Scope
3
1.2
Platforms and Compatibility
3
1.3
Recommended Background Reading
3
1.4
Assumptions
3
2
File Format
4
2.1
Executable Identifier
4
2.2
ELF Header
5
2.3
Program Headers
6
2.3.1
Data
6
2.3.2
Code
7
2.3.3
Notes Segments
7
Licensee Extension
14
3
Further Information
15
3.1
People
15
3.2
References
15
3.3
Glossary
15
3.4
Document History
15
3.5
Compatibility
16
3.6
Future Improvements
16
Appendix A - Definitions
17
Appendix B - ARM Register Definitions
18
Appendix C - Sub Register ID and Coprocessors
19
Appendix D - ELF File Layout
20


1 Introduction

1.1 Purpose and Scope

This document is aimed at debugger vendors intending to provide host debug support for Symbian Core Dump files.

1.2 Platforms and Compatibility

Core dump support is provided by Symbian OSv9.4 and later. 

1.3 Recommended Background Reading

The reader should be familiar with the Executable and Linking Format as defined by [ELF] and the System V Core Dump File Format defined by [SYSV].
1.4 Assumptions
· The ROM binary image and source will be available to the engineer analysing the core dump file

2 File Format
The Symbian Core Dump file format is based on the System V Core Dump format [SysV], which is a variant of an ELF file. An ELF file contains an ELF header, followed by zero or more segments and zero or more sections. Each segment contains information necessary for runtime execution of the file, while each section contains build time information.
For the purposes of providing post mortem process crash analysis an ELF file contains various sections and segments describing the state of the target system and specifically the process address space, such as:

· executable instructions

· global and local data

· relocation information

· thread and process lists

· stack information

· register context

The Core Dump file contains three mandatory elements, the ELF header the Symbian Info segment and the String Info segment, in addition to several optional elements. These elements are described by the following sections.
The core dump file layout is shown in Appendix D -.

2.1 Executable Identifier

To uniquely identify executables associated with the crashed process an executable identifier is required, this identifier is defined as:

typedef struct {


Elf64_Word
exec_id;


Elf32_Word
exec_crc;


Elf32_Word
exec_spare;

} Sym32_execid;

Where:

	Note Descriptor Member
	Description

	exec_id
	ID of executable code segment, to enable users to match symbolic debug information to executable binary.

Note: Currently it is the time of the crash, from TTime::UniversalTime(). 

	exec_crc
	CRC Checksum that enables corroboration of the executable. 

CCITT CRC-32 checksum up to the first 1Kbytes of code segment. 

	exec_spare
	Reserved.


The size of the structure is 16 bytes.

2.2 ELF Header

The ELF header is defined as:

typedef struct {


unsigned char
e_ident[EI_NIDENT];


Elf32_Half
e_type;


Elf32_Half
e_machine;


Elf32_Word
e_version;


Elf32_Addr
e_entry;


Elf32_Off
e_phoff;


Elf32_Off
e_shoff;


Elf32_Word
e_flags;


Elf32_Half
e_ehsize;


Elf32_Half
e_phentsize;


Elf32_Word
e_phnum;


Elf32_Word
e_shentsize;


Elf32_Word
e_shnum;


Elf32_Word
e_shstrndx;

 } Elf32_Ehdr;

Where:
	Elf Header Member
	Value
	Description

	e_ident
	As defined by the ELF spec
	Defines the file as ELF format and information to enable decode

	e_type         
	ET_CORE

	Core File

	e_machine      
	EM_ARM
	Defines the target architecture

	e_version      
	EV_CURRENT
	Current version is 1 (starting point) to be incremented as required

	e_entry        
	0
	N/A

	e_phoff
	<offset>
	Offset in bytes from the start of the file to the program header table (all entries are the same size) or 0 if the table is empty

	e_shoff
	<offset>
	Offset in bytes from the start of the file to the section header table (all entries are the same size) or 0 if the table is empty

	e_flags
	0
	Not used for Core Dump output

	e_ehsize
	<size>
	ELF header size in bytes

	e_phentsize
	<size>
	Size of one entry in the program header table

	e_phnum
	<num>
	Number of entries in the program header table

	e_shentsize
	<size>
	Size of one entry in the section header table

	e_shnum
	<num>
	Number of entries in the section header table

	e_shstrndx
	<index>
	Index in the section table to the string table (if defined) otherwise SHN_UNDEF


The field e_phoff denotes an offset to the program header table which holds the references to the core dump segments describing the crash. The size of each program header entry is defined by e_phentsize and should be used to index the elements of the program header table.
2.3 Program Headers

A program header defines a segment describing part of the execution view of the process image and is accessed through the program header table. Each program header is the same size therefore by the ELF header defining the location, size and number of entries contained within the program header table it can be indexed easily.

A program header entry is: 

typedef struct {

Elf32_Word
p_type;
Elf32_Off

p_offset;
Elf32_Addr
p_vaddr;
Elf32_Addr
p_paddr;
Elf32_Word
p_filesz;
Elf32_Word
p_memz;
Elf32_Word
p_flags;
Elf32_Word
p_align;
} Elf32_Phdr;
The p_flags member is defined ESYM_PH_FLAGS described within by Appendix A -.
The loadable segments are sorted on p_vaddr member and appear in ascending order. 

2.3.1 Data

The contents of general process data areas (data chunks) including data such as thread user stack, DLL data etc will be defined by a program header segment. 
Data segments for the crashed process that are not for thread stacks shall have an associated executable note segment describing the segment.
A data (data, bss, rodata) program header is defined as: 
	Program Header Member
	Value
	Description

	p_type
	PT_LOAD              
	Information used and defined by the program

	p_offset
	<offset>
	Position in bytes from the beginning of the file for data for the specific data segment

	p_vaddr
	<address>
	Virtual address at which the first byte of the segment resides

	p_paddr
	0
	Not used

	p_filesz
	<value>
	Size of mapping from the file

	p_memsz
	<value>
	Size of mapping in memory (same as p_filesz)

	p_flags
	ESYM_PH_FLAGS
	Information associated with the memory region defined by the header information

	p_align
	4
	Alignment to word boundary


All process data sections are optional and may not exist in all core dump files.

2.3.2 Code

As defined by the assumptions, it is assumed that the ROM binary image and associated source will be available to the developer in conjunction with the core dump file to analyse the crash. The core dump will therefore only include target code for self modifying code along with the associated executable info descriptors.

All code segments contained within the processes address space shall have an associated executable note segment describing the executables image segments. The executable note segment is optional.
A code program header is defined as: 

	Program Header Member
	Value
	Description

	p_type
	PT_LOAD              
	Information used and defined by the program

	p_offset
	<offset>
	Position in bytes from the beginning of the file for data for the specific code segment

	p_vaddr
	<address>
	Virtual address at which the first byte of the segment resides

	p_paddr
	0
	Not used

	p_filesz
	<value>
	Size of mapping from the file

	p_memsz
	<value>
	Size of mapping in memory (same as p_filesz)

	p_flags
	ESYM_PH_FLAGS
	Information associated with the memory region defined by the header information

	p_align
	4
	Alignment to word boundary


All process code sections are optional and may not exist in all core dump files.
2.3.3 Notes Segments
All non code and data related segments are defined by NOTE segments. The type of information defined by these segments is thread info and lists, executable information, register lists etc.

The CORE.SYMBIAN segment defined by Symbian Info and CORE.SYMBIAN.STR segments are MANDATORY all other segments are OPTIONAL. A CORE.EXTENSION segment is reserved for use by licensees to include vendor specific crash information.
The NOTE segment header is defined as:

	Program Header Member
	Value
	Description

	p_type
	PT_NOTE              
	Segment containing crash related information

	p_offset
	<offset>
	Offset in bytes from the beginning of the file to the specific note descriptor (pointer to a Sym32_dhdr structure)

	p_vaddr
	0
	Data not defined within process address space

	p_paddr
	0
	Not used

	p_filesz
	<value>
	Size of mapping from the file

	p_memsz
	0
	Data not defined within process address space

	p_flags
	ESYM_PH_FLAGS
	Information associated with this segment defined by the header information

	p_align
	4
	Alignment to word boundary


Each NOTE segment references a standard descriptor header defined as:

typedef struct {

Elf32_Word
d_name;
Elf32_Word
d_descrsz;

Elf32_Word
d_type;

Elf32_Word
d_version;

Elf32_Word
d_elemnum;

} Sym32_dhdr;
Where:

	Note Descriptor Header Member
	Description

	d_name
	Index into the CORE.SYMBIAN.STR note segment defining the name of the descriptor or ESYM_STR_UNDEF

	d_descrsz
	Size of a single descriptor element

	d_type
	Type of the descriptor defined by Appendix A -

	d_version
	Index into the CORE.SYMBIAN.STR note segment defining the version of the following segment descriptor

	d_elemnum
	Number of descriptor elements


The size of the structure is 20 bytes.

The following sections define the supported NOTE segment descriptors.
2.3.3.1 Symbian Info

The Symbian Info segment contains generic crash information. It is defined as a program segment with type PT_NOTE which references the segment descriptor defined below.
The d_name field of the standard descriptor header is “CORE.SYMBIAN”.
The d_type field of the standard descriptor header is ESYM_NOTE_SYM (see Appendix A -).

The Symbian Info descriptor is defined as:

typedef struct {


Elf64_Word
sd_date_time;


Sym32_execid
sd_execid;


Elf64_Word
sd_thread_id


Elf64_Word
sd_proc_id;


Elf32_Word
sd_exit_type;


Elf32_Word
sd_exit_reason;


Elf32_Word
sd_exit_cat; 

Elf32_Word
sd_spare;

} Sym32_syminfod;
Where:
	Note Descriptor Member
	Description

	sd_date_time
	Date and time of the crash from TTime::UniversalTime().

	sd_execid
	The ID of the crashed process as defined by Sym32_execid

	sd_thread_id
	The id of the thread causing the crash

	sd_proc_id
	The crashing threads owning process

	sd_exit_type
	Identifies whether the crash was caused by a Hardware Exception (set to 0) or a Thread Kill event (set to 1). 

	sd_exit_reason
	If sd_exit_type is Hardware Exception then set to e32const.h::TExcType. If sd_exit_type is Thread Kill then set to e32const.h::TExitType

	sd_exit_cat
	Only set if sd_exit_type is Thread Kill event. Index into the CORE.SYMBIAN.STR note segment identifying the reason for the crash, or ESYM_STR_UNDEF. 

	sd_spare
	Reserved


The size of the structure is 56 bytes.

The Symbian Info segment is mandatory.
2.3.3.2 Thread Info

The Thread Info segment contains thread related information for one or more threads of the owning process. It is defined as a program segment with type PT_NOTE referencing the segment descriptor defined below.

The d_name field of the standard descriptor header is “CORE.SYMBIAN.THREAD”.
The d_type field of the standard descriptor header is ESYM_NOTE_THRD (see Appendix A -).

The Thread Info descriptor is defined as:

typedef struct {


Elf64_Word
td_id;


Elf64_Word
td_owning_process;


Elf32_Word
td_name;


Elf32_Word
td_priority;


Elf32_Word
td_svc_sp;


Elf32_Word
td_svc_stack;


Elf32_Word
td_svc_stacksz;


Elf32_Word
td_usr_stack; 


Elf32_Word
td_usr_stacksz;

Elf32_Word
td_last_cpu_id;

Elf32_Word
td_heap;

Elf32_Word
td_heapsz;
} Sym32_thrdinfod;

Where: 
	Note Descriptor Member
	Description

	td_id
	Id of the thread

	td_owning_proc
	Id of the owning process

	td_name
	Index into the CORE.SYMBIAN.STR note segment defining the name of the thread or ESYM_STR_UNDEF

	td_priority
	Priority of thread

	td_svc_sp
	Current value of supervisor stack pointer

	td_svc_stack
	Address of the supervisor stack

	td_svc_stacksz
	Size of the supervisor stack

	td_usr_stack
	Address of the user stack

	td_usr_stacksz
	Size of the user stack

	td_last_cpu_id
	Identifier of last processor

	td_heap
	Address of this thread’s heap

	td_heapsz
	Size of this thread’s heap


The size of the structure is 52 bytes.

The core dump file may contain one or more thread descriptors for the owning process. Only threads of the process owning the crashed thread shall be listed. Where more than one thread segment is listed the thread which caused the panic shall be identified by the CORE.SYMBIAN segment defined above.

The Thread Info segment is optional
2.3.3.3 Process Info

The Process Info segment contains process related information for the crashed threads owning process. It is defined as a program segment with type PT_NOTE referencing the segment descriptor defined below.

The d_name field of the standard descriptor header is “CORE.SYMBIAN.PROCESS”.
The d_type field of the standard descriptor header is ESYM_NOTE_PROC (see Appendix A -).

The Process Info descriptor is defined as:

typedef struct {

Elf64_Word
pd_id;


Elf32_Word
pd_name;


Elf32_Word
pd_priority;

} Sym32_procinfod;

Where:

	Note Descriptor Member
	Description

	pd_id
	ID of the process

	pd_name
	Index into the CORE.SYMBIAN.STR note segment defining the name of the Process or ESYM_STR_UNDEF

	pd_priority
	TProcessPriority priority of the process 


The size of the structure is 16 bytes.

The Process Info segment is optional.
2.3.3.4 Executable Info

The Executable Info segment contains information defining the location of the given executables image segments in the processes address space; this includes statically and dynamically linked executables also. It is defined as a program segment with type PT_NOTE referencing the segment descriptor defined below.
The d_name field of the standard descriptor header is “CORE.SYMBIAN.EXECUTABLE”.
The d_type field of the standard descriptor header is ESYM_NOTE_EXEC (see Appendix A -).
The Executable Info descriptor is defined as:
typedef struct {

Sym32_execid
ed_execid;


Elf32_Word
ed_name;


Elf32_Word
ed_XIP;


Elf32_Word
ed_codesize;


Elf32_Word
ed_coderunaddr;


Elf32_Word
ed_codeloadaddr;


Elf32_Word
ed_rodatasize;


Elf32_Word
ed_rodatarunaddr;


Elf32_Word
ed_rodataloadaddr;


Elf32_Word
ed_datasize;


Elf32_Word
ed_datarunaddr;


Elf32_Word
ed_dataloadaddr;


Elf32_Word
ed_spare;

} Sym32_execinfod;

Where:

	Note Descriptor Member
	Description

	ed_execid
	The ID of the executable as defined by Sym32_execid

	ed_name
	Index into the CORE.SYMBIAN.STR note segment defining the name of the executable or ESYM_STR_UNDEF

	ed_XIP
	Execute in place TRUE (1) for XIP ROM code FALSE (0) otherwise

	ed_codesize
	Size of the executables code segment

	ed_coderunaddr
	Execution address of the code segment

	ed_codeloadaddr
	Build address of the code section (Non XIP only)

	ed_rodatasize
	Size of the executable rodata segment

	ed_rodatarunaddr
	Execution address of the rodata segment

	ed_rodataloadaddr
	Build address of the rodata section (Non XIP only)

	ed_datasize
	Size of the executable data segment

	ed_datarunaddr
	Execution address of the data segment

	ed_dataloadaddr
	Build address of the data section (Non XIP only)

	ed_spare
	Reserved.


The size of the structure is 64 bytes.

The Executable Info segment is optional.
2.3.3.5 Register Info

The Register Info segment contains a register context for a given thread. The core dump file may include zero or more register contexts for one or more threads within the owning process. It is defined as a program segment with type PT_NOTE referencing the segment descriptor defined below.
The d_name field of the standard descriptor header is “CORE.SYMBIAN.REGISTER.<THREADID>”.
The d_type field of the standard descriptor header is ESYM_NOTE_REG (see Appendix A -).

The Register Info descriptor is defined as:

typedef struct {

Elf64_Word
rid_thread_id;


Elf32_Word
rid_version;


Elf32_Half
rid_num_registers;


Elf32_Byte
rid_class;


Elf32_Byte
rid_repre;

} Sym32_reginfod;

Where:

	Note Descriptor Member
	Description

	rid_thread_id
	Thread which context relates to

	rid_version
	Index into the CORE.SYMBIAN.STR note segment defining the version of the Register Data Info descriptor

	rid_num_registers
	Number of registers this descriptor defines

	rid_class
	Register class defined by ESYM_REGCLASS see Appendix A -

	rid_repre
	Register representation defined by ESYM_REGREP see Appendix A -


The size of the structure is 16 bytes.

Immediately following the Register Info descriptor header is the information describing the individual registers of this particular class and representation:
typedef struct {



Elf32_Half
rd_id;


Elf32_Half
rd_sub_id;


Elf32_Word
rd_data; 

} Sym32_regdatad;

Where:
	Note Descriptor Member
	Description

	rd_id
	Register ID (defined by Appendix B -)

	rd_sub_id
	Sub register ID (defined by Appendix C -)

	rd_data
	Offset in bytes from the beginning of the file to the register data


The size of the structure is 8 bytes.

As an example, if a thread can supply 3 registers of class ESYM_REG_8 and 2 of class ESYM_REG_64, there will be a Sym32_reginfod structure with rid_num_registers=3, rid_repre=ESYM_REG_8, followed by 3 Sym32_regdatad structures, then a Sym32_reginfod structure with rid_num_registers=2, rid_repre=ESYM_REG_64, followed by two Sym32_regdatad structures.
The Register Info segment is optional. 
2.3.3.6 String Info

The String Info segment contains null terminated strings referenced by the notes sections defined above, with the exception of the segment descriptor name. It is defined as a program segment with type PT_NOTE which references the segment descriptor.

The d_name field of the standard descriptor header is “CORE.SYMBIAN.STR”.
The d_type field of the standard descriptor header is ESYM_NOTE_STR (see Appendix A -).

Each reference to the string segment is via an index defining the starting byte number within the string table. Index 0 is defined as a null character to allow descriptor name indexes to be zero (ESYM_STR_UNDEF).
The String Info segment is mandatory since it will include the NOTE segment name for the Symbian Info segment as a minimum.
2.3.3.7 Trace Info

The Trace Info segment contains trace buffer data. It is defined as a program segment with type PT_NOTE referencing the segment descriptor defined below.

The d_name field of the standard descriptor header is “CORE.SYMBIAN.TRACE”.
The d_type field of the standard descriptor header is ESYM_NOTE_TRACE (see Appendix A -).

The Trace Info descriptor is defined as:
typedef struct {


Elf32_Word tr_version;


Elf32_Word tr_data;


Elf32_Word tr_size;


} Sym32_tracedata;

Where:

	Note Descriptor Member
	Description

	tr_version
	Index into the CORE.SYMBIAN.STR note segment defining the version of the trace descriptor

	tr_data
	Offset in bytes from the beginning of the file to the trace buffer data

	tr_size
	Size of the trace buffer data.


The size of the structure is 12 bytes.

The Trace Info segment is optional.
2.3.3.8 System Crash Lock information

The locks section describes the system lock status at the point at which a system crash has occurred: The following lock status is available:
The System Crash Lock section is optional.
The System Crash Lock structure is defined as:

typedef struct {
Elf32_Word
lk_mutex_held_count;
Elf32_Word
lk_mutex_thread_wait_count;
Elf32_Word
lk_lock_count;
} Sym32_lockdata;
	Note Descriptor Member
	Description

	lk_mutex_held_count
	Number of holds on the mutex from current thread see Kern::CodeSegLock()

	lk_mutex_thread_wait_count
	Number of threads waiting on the mutex see Kern::CodeSegLock()

	lk_lock_count
	Number of kernel locks held see NKern::KernelLocked()


The size of the structure is 12 bytes.
2.3.3.9 ROM Build Information
The ROM Build section provides a means of identifying the specific system ROM image which generated the crash. It includes the date and time of creation. The ROM version corresponds to the TRomHeader.iVersion and the build time corresponds to TRomHeader.iTime.
The ROM Build section is optional.
typedef struct {


Elf32_Byte rom_major_version;


Elf32_Byte rm_minor_version;


Elf32_Half rm_build;


Elf64_Word rm_time
} Sym32_rombuild;

	Note Descriptor Member
	Description

	rm_major_version
	Major version of the ROM 

	rm_minor_version
	Minor version of the ROM

	rm_build
	Build number

	rm_time
	Build time in microseconds


The size of the structure is 12 bytes.
2.3.3.10 CPU Exception Stacks

2.3.3.11 This note will provide the CPU exception stacks at the point of crash. There maybe 0 or more of these.

2.3.3.12 The structure is defined as follows:

typedef struct {
Elf32_Word
es_type;
Elf32_Word
es_data;
Elf32_Word
es_size;

2.3.3.13 } Sym32_cpu_exception_stk;
	Note Descriptor Member
	Description

	es_type
	Exception Mode the stack belongs to – see Appendix A 

	es_data
	Offset in bytes from the beginning of the file to the stack data

	es_size
	Size of the stack data


2.3.3.14 This structure is 12 bytes in size.
2.3.3.15 Variant Specific Data

This note will provide any Variant Specific Data at the point of crash. There maybe 0 or 1 of these.
The d_name field of the standard descriptor header is “CORE.SYMBIAN.VARDATA”.
The d_type field of the standard descriptor header is ESYM_NOTE_VARIANT_DATA (see Appendix A -).
The structure will point to some binary data understood by the user and is defined as follows:
typedef struct {
Elf32_Word
es_data;
Elf32_Word
es_size;

} Sym32_variant_spec_data;
	Note Descriptor Member
	Description

	es_data
	Offset in bytes from the beginning of the file to the variant data

	es_size
	Size of the data


2.3.3.16 This structure is 8 bytes in size.
2.3.3.17 

2.3.3.18 Version Info
The version information for a given ELF element (with the exception of the ELF header) is defined by a version string referenced by the descriptor definition. All version string(s) used within the Symbian Core Dump File will use the following format:
[Major Version.Minor Version.Patch Level] 
In code terms defined as:
"\d+\.\d{2}\.\d{4}”
With the elements being defined as:

· Major Version. This indicates a substantial release that may break compatibility with previous versions. This number will be ‘1’ upon first release.
· Minor Version. This indicates a release with new features. This new release will be compatible with previous versions according to the Compatibility Policy described later. Two digits will be used to represent the minor version. This number will be ‘00’ upon first release.

· Patch Level. This indicates a release following a defect fix, a minor feature improvement or documentation update. This number will be ‘1000’ upon first release to remove any ambiguity regarding leading zeroes.

Compatibility Policy
If a release breaks compatibility with previous versions the major version number will be incremented. New feature additions which do not break compatibility will increment the minor version number and will not affect the major version number. Defect fixes will increment the patch level number but will not affect the minor or major version numbers.
Note: Where a version string is common to several components it may be shared to reduce the size of the core dump file.

Licensee Extension

The “CORE.EXTENSION” segment is an optional note segment reserved for use by licensees to record additional vendor specific information when a crash occurs. The section is intended to be consumed by licensee specific tools and shall be defined by the tools vendor.
3 Further Information

3.1 People

	Role
	Person / People

	Reviewers
	Andy Sizer, Lars Kurth, Dennis May.

	Contributors
	Mark Welsh


3.2 References

	No.
	Document Reference
	Version
	Description\Location

	[ELF]
	ELF Spec
	N/A
	http://www.sco.com/developers/gabi/2003-12-17/contents.html

	[SYSV]
	System V Core Dump File Format
	N/A
	http://docs.sun.com/app/docs/doc/816-5174/6mbb98ue1?a=view


3.3 Glossary 

The following technical terms and abbreviations are used within this document.

	Term
	Definition 

	ELF
	Executable and Linking Format


3.4 Document History

	Date
	Version
	Status
	Author
	Description

	20-10-2008
	1.5
	Issued
	Stephen Roberts
	Updates for: ROM build info, heaps, CPU Exception stacks, System Locks, Variant Specific Info.

	09-11-2007
	1.4
	Issued
	Michal Lalewicz
	Trace buffer updates

	20-07-2007
	1.3
	Issued
	Fernando Porta
	Corrected register ids to match Run Mode Debug interface definition.

	13-07-2007
	1.2
	Issued
	Fernando Porta
	Rearrange some fields to remove padding inserted by compilerts and insert explicit padding where required. Also stated the size of the structures to aid binary compatibility.

	04-07-2007
	1.1
	Issued
	Michal Lalewicz
	Add ELF file layout description

	26-06-2007
	1.0
	Issued
	Fernando Porta
	Add process priority

	19-06-2007
	1.0a
	Draft
	Fernando Porta
	Remove thread context type. Remove process attribute. Add executable note to data segments. Update CRC status.

	13-06-2007
	1.0
	Draft
	Fernando Porta
	Change process and thread id to 64 bit. . Clarify Sym32_execid contents. Update Sym32_syminfod. Add FSR and FAR notes.

	05-01-2007
	0.5
	Draft
	Fernando Porta
	Updates to p_flags to reflect ELF standard.

	08-12-2006
	0.4
	Draft
	Mark Welsh
	Updates to registers

	08-11-2006
	0.3
	Draft
	Mark Welsh
	Further review comments

	03-10-2006
	0.2
	Draft
	Mark Welsh
	Updates following internal review

	07-05-2006
	0.1
	Draft
	Mark Welsh
	First draft


3.5 Compatibility
This section tracks the history of changes/additions to the Core Dump file format.

	OS Release
	Functionality added…

	
	


3.6 Future Improvements

This section tracks possible future improvements of this document and the Core Dump file format.

	Improvement
	Description

	CRC and Build time
	Currently there is no manner of obtaining a build time value to use in Sym32_execid.iTime. This may change. 


Appendix A - Definitions
The program header member p_flags is defined by the bit field ESYM_PH_FLAGS as follows:

	FLAG
	Value
	Description

	PF_X
	1
	The segment may be executed

	PF_W
	2
	The segment may be written to

	PF_R
	4
	The segment may be read


Note that for a data segment the p_flags value will be PF_W | PF_R = 6. For a code segment the value will be PF_X | PF_R = 5. For a self modifying code segment PF_X | PF_R | PF_W = 7.
The register descriptor member rid_class is defined by the enumeration ESYM_REGCLASS:

	ESYM_REGCLASS
	Value
	Description

	ESYM_REG_CORE
	0
	Core processor register(s)

	ESYM_REG_COPRO
	1
	Coprocessor register(s)


The register descriptor member rid_repre is defined by the enumeration ESYM_REGREP:

	ESYM_REGREP
	Value
	Description

	ESYM_REG_8
	0
	8 Bit register contents

	ESYM_REG_16
	1
	16 Bit register contents

	ESYM_REG_32
	2
	32 Bit register contents

	ESYM_REG_64
	3
	64 Bit register contents


The descriptor header member d_type is defined by:
	ESYM_NOTE_TYPE
	Value

	ESYM_NOTE_SYM
	0x00000000

	ESYM_NOTE_THRD
	0x00000010

	ESYM_NOTE_PROC
	0x00000020

	ESYM_NOTE_EXEC
	0x00000040

	ESYM_NOTE_REG
	0x00000080

	ESYM_NOTE_STR
	0x00000100

	ESYM_NOTE_TRACE
	0x00000200

	ESYM_NOTE_LOCKS
	0x00000300

	ESYM_NOTE_ROMBUILD
	0x00000400

	ESYM_NOTE_CPUEXCEPTION_STACKS
	0x00000800

	ESYM_NOTE_VARIANT_DATA
	0x00001000


The CPU Exception stacks type, es_type is defined by:

	Identifier
	Value
	Exception Mode

	ESYM_EXCEPTION_FIQ
	0x00000010
	FIQ

	ESYM_EXCEPTION_IRQ
	0x00000020
	IRQ

	ESYM_EXCEPTION_ABT
	0x00000040
	ABT

	ESYM_EXCEPTION_SVC
	0x00000080
	SVC

	ESYM_EXCEPTION_UND
	0x00000100
	UND


Appendix B - ARM Register Definitions
The register descriptor member rd_id is defined by the following table for standard ARM registers table:

	ARM Register
	Value

	R0
	0x0

	R1
	0x100

	R2
	0x200

	R3
	0x300

	R4
	0x400

	R5
	0x500

	R6
	0x600

	R7
	0x700

	R8
	0x800

	R9
	0x900

	R10
	0xa00

	R11
	0xb00

	R12
	0xc00

	R13
	0xd00

	R14
	0xe00

	R15
	0xf00

	CPSR
	0x1000

	R13_SVC
	0x1100

	R14_SVC
	0x1200

	SPSR_SVC
	0x1300

	R13_ABT
	0x1400

	R14_ABT
	0x1500

	SPSR_ABT
	0x1600

	R13_UND
	0x1700

	R14_UND
	0x1800

	SPSR_UND
	0x1900

	R13_IRQ
	0x1a00

	R14_IRQ
	0x1b00

	SPSR_IRQ
	0x1c00

	R8_FIQ
	0x1d00

	R9_FIQ
	0x1e00

	R10_FIQ
	0x1f00

	R11_FIQ
	0x2000

	R12_FIQ
	0x2100

	R13_FIQ
	0x2200

	R14_FIQ
	0x2300

	SPSR_FIQ
	0x2400


For the registers defined above rd_sub_id is not used and is undefined. 
For coprocessor registers, as defined by rid_class, rd_id represents the cp_num field of the ARM MRC/MCR instruction.
Appendix C - Sub Register ID and Coprocessors
The sub register ID is defined as follows for the ESYM_REG_COPRO class:
	13    11
	10     8
	7      4
	3      0

	OpCode2
	OpCode1
	CRn
	CRm


Where:

CRm

Specifies an additional coprocessor source register
CRn

Specifies the coprocessor register that contains the first operand for the instruction
Opcode1
Coprocessor specific information (usually 0)
Opcode2
Specifies additional information about the version of the register and/or the type of access

Example:

The domain access control register is defined by register 3 of coprocessor 15 on a supporting ARM processor. The core dump register segment would therefore contain:
	Register Descriptor Header
	Description

	class
	ESYM_REG_COPRO

	repre
	ESYM_REG_32


	Register Descriptor
	Description

	rd_id
	15

	rd_sub_id
	0x0030

	rd_data
	<single word of register data>


Note:  When available, the Fault Address Register (FAR) and Fault Status Register (FSR) are supplied as coprocessor registers for the crashed thread.

The MRC instruction for the FAR is p15, 0, c6, c0, (OpCode1=0, OpCode2=0, CRn=6, CRm=0), leading rd_sub_id being 0x00000060.
Similarly, the MRC instruction for the FSR is p15, 0, c5, c0, (OpCode1=0, OpCode2=0, CRn=5, CRm=0), leading rd_sub_id being 0x00000050.
Appendix D - ELF File Layout
The layout of the Core Dump file is shown below:

[image: image1.emf]Program Header 

Table

ELF Header

e_phoff

Exec Info -Segment

ed_name

ed_romid

Desc header

ed_XIP

ed_name

ed_id

ed_XIP

...

Data

Data

Code

Symbian Inf

Thread Inf

Process Inf

Executable Inf

Register Inf

String Inf

String Inf -Segment

...

C

\0NAI

BMYS.

ERO\0

Reg Info -Segment

rid_thread_id

rid_num_registers

Desc header

...

rd_id

rd_sub_id

rd_data

...

rd_id

rd_sub_id

rd_data

Register Data

Register Data

...

...

e_ident

...

e_phentsize

...

Desc header

Register Inf

Trace Data

System Locks

ROM Build Information

CPU Exception Stacks

Variant Specific Data

Data -Segment

Data -Segment

Symbian Inf -

Segment

Desc header

sd_date

sd_time

sd_romid

...

Code -Segment

Thread Info -

Segment

td_name

td_id

td_name

td_id

Desc header

...

...

Process Info -

Segment

pd_name

pd_id

pd_attrib

Desc header

pd_name

pd_id

pd_attrib

...

KEY:Optional Segment

Note Segment Header

Mandatory Segment

Reg Info -Segment

rid_thread_id

rid_num_registers

Desc header

...

rd_id

rd_sub_id

rd_data

...

rd_id

rd_sub_id

rd_data

Register Data

Register Data

Trace Data -Segment

Desc header

tr_version

tr_data

tr_size

System Locks -Segment

Desc header

mutex_held_count

mutex_thread_wait_count

lock_count

ROM Build -Segment

Desc header

rom_major_version

rom_minor_vrsion

rom_build

rom_time

...

CPU Exception Stks -

Segment

Desc header

mutex_held_count

mutex_thread_wait_count

lock_count

Variant Specific Data -

Segment

Desc header

tr_versio

mutex_thread_wait_count

lock_count


The diagram highlights the mandatory fields:
· ELF Header
· Program Header Table
· Symbian Info segment 
· String Info segment
The optional fields:
· Data segment

· Code segment

· Thread Info segment

· Process Info segment

· Register Info segment

· Executable Info segment

· Trace Info segment
· System Crash Lock Info
· ROM Build Info
The diagram also defines the linkage between the ELF header and all segments contained within the core dump file.
Here are the algorithms that should be followed in order to get the data for each field.
· ELF Header

Elf32_Ehdr structure data starts right at the beginning of the file at offset 0.

· Program Header Table

Program Header Table is stored in the dump file as a continuous array of elements.
Table can be found at e_phoff offset in the dump file. It contains e_phnum Elf32_Phdr structures. Both e_phoff and e_phnum values can be read from ELF Header structure.

· Symbian Info segment 

Check all Elf32_Phdr structures in the Program Header Table:
if  p_type value of this program header structure equals PT_NOTE
  then p_offset offset value points to the Sym32_dhdr descriptor structure

if the d_type value of this descriptor structure equals ESYM_NOTE_SYM
  then Sym32_syminfod structure directly follows this Sym32_dhdr structure.
There should be only one Symbian Info segment per core dump file.

· String Info segment

String Info segment is stored in the dump file as a character array.
Check all Elf32_Phdr structures in the Program Header Table:

if  p_type value of this program header structure equals PT_NOTE

  then p_offset offset value points to the Sym32_dhdr descriptor structure

if the d_type value of this descriptor structure equals ESYM_NOTE_STR

  then array directly follows this Sym32_dhdr structure.
There should be only one String Info segment per core dump file.

· Data/Code segments

Check all Elf32_Phdr structures in the Program Header Table:

if  p_type value of this program header structure equals PT_LOAD

  then p_offset offset value points to raw binary data.

The order of Data segments representing threads’ stacks is the same as the order of Thread Info segments stored in the dump file.

The order of Code segments representing .code sections and Data segments representing .rodata/.bss/.data sections is the same as the order of Executable Info segments stored in the dump file.

The size of the binary data in code and data segments in the core dump file is given by p_filesz. This value and p_offset may be set to zero if no binary data is present in the core dump file. This may be the case for code segment data. The value of p_memsz still indicates the size of the segment at the time of the crash. The value of p_vaddr is the virtual address of the segment at the time of the crash.
· Thread Info segment

Check all Elf32_Phdr structures in the Program Header Table:

if  p_type value of this program header structure equals PT_NOTE

  then p_offset offset value points to the Sym32_dhdr descriptor structure

if the d_type value of this descriptor structure equals ESYM_NOTE_THRD

  then Sym32_thrdinfod structures directly follow this Sym32_dhdr structure.
There can be several pairs of (Elf32_Phdr, Sym32_dhdr) structures with Thread Info segments per core dump file, each holding d_elemnum Sym32_thrdinfod structures. 
· Process Info segment

Check all Elf32_Phdr structures in the Program Header Table:

if  p_type value of this program header structure equals PT_NOTE

    then p_offset offset value points to the Sym32_dhdr descriptor structure

if the d_type value of this descriptor structure equals ESYM_NOTE_PROC
  then Sym32_reginfod structures directly follow this Sym32_dhdr structure.
There can be several pairs of (Elf32_Phdr, Sym32_dhdr) structures with Process Info segments per core dump file, each holding d_elemnum Sym32_procinfod structures. 

· Executable Info segment

Check all Elf32_Phdr structures in the Program Header Table:

if  p_type value of this program header structure equals PT_NOTE

  then p_offset offset value points to the Sym32_dhdr descriptor structure

if the d_type value of this descriptor structure equals ESYM_NOTE_EXEC

  then Sym32_execinfod structures directly follow this Sym32_dhdr structure.
There can be several pairs of (Elf32_Phdr, Sym32_dhdr) structures with Executable Info segments per core dump file, each holding d_elemnum Sym32_execinfod structures.
· Trace Info segment

Check all Elf32_Phdr structures in the Program Header Table:

if  p_type value of this program header structure equals PT_NOTE

  then p_offset offset value points to the Sym32_dhdr descriptor structure

if the d_type value of this descriptor structure equals ESYM_NOTE_TRACE

  then Sym32_traceinfod structures directly follow this Sym32_dhdr structure.


tr_data offset value points to the tr_size bytes of trace buffer data, these values could be zero, if no trace buffer data is present in the core dump file.
There should be only one Trace Info segment per core dump file.
· Register Info segment

Check all Elf32_Phdr structures in the Program Header Table:

if  p_type value of this program header structure equals PT_NOTE

  then p_offset offset value points to the Sym32_dhdr descriptor structure

if the d_type value of this descriptor structure equals ESYM_NOTE_REG
  then Sym32_reginfod structure directly follows this Sym32_dhdr structure.
This Sym32_reginfod structure describes details and number of Sym32_regdata structures that follow it and hold actual register data. 
There can be several pairs of (Elf32_Phdr, Sym32_dhdr) structures with Register Info segments per core dump file, each holding exactly one Sym32_reginfod structure directly followed by rid_num_registers Sym32_regdata structures.

© Copyright Symbian Ltd. 2009. This document may not be reproduced in any form, in whole or in part, by any means whatsoever, without the written permission of the copyright holder. 

© Copyright Symbian Ltd. 2009

PAGE 14 of 27




[image: image4.png]_1286263056.vsd
Program Header Table


ELF Header


pd_name


e_phoff


Data - Segment


Data - Segment


Code - Segment


Reg Info - Segment


rid_thread_id


rid_num_registers


Symbian Inf - Segment


td_name


td_id


Thread Info - Segment


Desc header


...


Process Info - Segment


td_name


td_id


pd_name


pd_id


pd_attrib


Desc header


Desc header


...


...


Exec Info - Segment


pd_id


ed_name


ed_romid


ed_name


ed_id


Desc header


ed_XIP


pd_attrib


ed_XIP


...


Desc header


sd_date


sd_time


sd_romid


...


rd_id


rd_sub_id


rd_data


...


rd_id


rd_sub_id


rd_data


Register Inf


Trace Data


Data


Data


Code


Symbian Inf


Thread Inf


Process Inf


Executable Inf


Register Inf


String Inf


String Inf - Segment


\0


N


...


A


I


B


M


Y


S


C


.


E


R


O


Reg Info - Segment


\0


rid_thread_id


rid_num_registers


Desc header


rd_id


...


rd_id


rd_sub_id


rd_data


...


rd_sub_id


rd_data


Register Data


Register Data


...


...


e_ident


...


e_phentsize


...


Register Data


Register Data


...


Optional Segment


Note Segment Header


Mandatory Segment


KEY:


Desc header


System Locks


ROM Build Information


CPU Exception Stacks


Variant Specific Data


Trace Data - Segment


tr_size


tr_version


Desc header


tr_data


System Locks - Segment


Desc header


mutex_held_count


mutex_thread_wait_count


lock_count


ROM Build - Segment


Desc header


rom_major_version


rom_minor_vrsion


rom_build


rom_time


...


CPU Exception Stks - Segment


Desc header


mutex_held_count


mutex_thread_wait_count


lock_count


Variant Specific Data - Segment


Desc header


tr_versio


mutex_thread_wait_count


lock_count



_1068468344

