mingw-5.1.4/win32/include/c++/3.4.5/complex
changeset 0 76b1f169d9fe
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mingw-5.1.4/win32/include/c++/3.4.5/complex	Fri Apr 03 17:16:45 2009 +0100
@@ -0,0 +1,1226 @@
+// The template and inlines for the -*- C++ -*- complex number classes.
+
+// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
+// Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library.  This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 2, or (at your option)
+// any later version.
+
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License along
+// with this library; see the file COPYING.  If not, write to the Free
+// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
+// USA.
+
+// As a special exception, you may use this file as part of a free software
+// library without restriction.  Specifically, if other files instantiate
+// templates or use macros or inline functions from this file, or you compile
+// this file and link it with other files to produce an executable, this
+// file does not by itself cause the resulting executable to be covered by
+// the GNU General Public License.  This exception does not however
+// invalidate any other reasons why the executable file might be covered by
+// the GNU General Public License.
+
+//
+// ISO C++ 14882: 26.2  Complex Numbers
+// Note: this is not a conforming implementation.
+// Initially implemented by Ulrich Drepper <drepper@cygnus.com>
+// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>
+//
+
+/** @file complex
+ *  This is a Standard C++ Library header.  You should @c #include this header
+ *  in your programs, rather than any of the "st[dl]_*.h" implementation files.
+ */
+
+#ifndef _GLIBCXX_COMPLEX
+#define _GLIBCXX_COMPLEX 1
+
+#pragma GCC system_header
+
+#include <bits/c++config.h>
+#include <bits/cpp_type_traits.h>
+#include <cmath>
+#include <sstream>
+
+namespace std
+{
+  // Forward declarations
+  template<typename _Tp> class complex;
+  template<> class complex<float>;
+  template<> class complex<double>;
+  template<> class complex<long double>;
+
+  ///  Return magnitude of @a z.
+  template<typename _Tp> _Tp abs(const complex<_Tp>&);
+  ///  Return phase angle of @a z.
+  template<typename _Tp> _Tp arg(const complex<_Tp>&);
+  ///  Return @a z magnitude squared.
+  template<typename _Tp> _Tp norm(const complex<_Tp>&);
+
+  ///  Return complex conjugate of @a z.
+  template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);
+  ///  Return complex with magnitude @a rho and angle @a theta.
+  template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);
+
+  // Transcendentals:
+  /// Return complex cosine of @a z.
+  template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);
+  /// Return complex hyperbolic cosine of @a z.
+  template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);
+  /// Return complex base e exponential of @a z.
+  template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);
+  /// Return complex natural logarithm of @a z.
+  template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);
+  /// Return complex base 10 logarithm of @a z.
+  template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);
+  /// Return complex cosine of @a z.
+  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);
+  /// Return @a x to the @a y'th power.
+  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);
+  /// Return @a x to the @a y'th power.
+  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, 
+					   const complex<_Tp>&);
+  /// Return @a x to the @a y'th power.
+  template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);
+  /// Return complex sine of @a z.
+  template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);
+  /// Return complex hyperbolic sine of @a z.
+  template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);
+  /// Return complex square root of @a z.
+  template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);
+  /// Return complex tangent of @a z.
+  template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);
+  /// Return complex hyperbolic tangent of @a z.
+  template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);
+  //@}
+    
+    
+  // 26.2.2  Primary template class complex
+  /**
+   *  Template to represent complex numbers.
+   *
+   *  Specializations for float, double, and long double are part of the
+   *  library.  Results with any other type are not guaranteed.
+   *
+   *  @param  Tp  Type of real and imaginary values.
+  */
+  template<typename _Tp>
+    class complex
+    {
+    public:
+      /// Value typedef.
+      typedef _Tp value_type;
+      
+      ///  Default constructor.  First parameter is x, second parameter is y.
+      ///  Unspecified parameters default to 0.
+      complex(const _Tp& = _Tp(), const _Tp & = _Tp());
+
+      // Lets the compiler synthesize the copy constructor   
+      // complex (const complex<_Tp>&);
+      ///  Copy constructor.
+      template<typename _Up>
+        complex(const complex<_Up>&);
+
+      ///  Return real part of complex number.
+      _Tp& real(); 
+      ///  Return real part of complex number.
+      const _Tp& real() const;
+      ///  Return imaginary part of complex number.
+      _Tp& imag();
+      ///  Return imaginary part of complex number.
+      const _Tp& imag() const;
+
+      /// Assign this complex number to scalar @a t.
+      complex<_Tp>& operator=(const _Tp&);
+      /// Add @a t to this complex number.
+      complex<_Tp>& operator+=(const _Tp&);
+      /// Subtract @a t from this complex number.
+      complex<_Tp>& operator-=(const _Tp&);
+      /// Multiply this complex number by @a t.
+      complex<_Tp>& operator*=(const _Tp&);
+      /// Divide this complex number by @a t.
+      complex<_Tp>& operator/=(const _Tp&);
+
+      // Lets the compiler synthesize the
+      // copy and assignment operator
+      // complex<_Tp>& operator= (const complex<_Tp>&);
+      /// Assign this complex number to complex @a z.
+      template<typename _Up>
+        complex<_Tp>& operator=(const complex<_Up>&);
+      /// Add @a z to this complex number.
+      template<typename _Up>
+        complex<_Tp>& operator+=(const complex<_Up>&);
+      /// Subtract @a z from this complex number.
+      template<typename _Up>
+        complex<_Tp>& operator-=(const complex<_Up>&);
+      /// Multiply this complex number by @a z.
+      template<typename _Up>
+        complex<_Tp>& operator*=(const complex<_Up>&);
+      /// Divide this complex number by @a z.
+      template<typename _Up>
+        complex<_Tp>& operator/=(const complex<_Up>&);
+
+    private:
+      _Tp _M_real;
+      _Tp _M_imag;
+    };
+
+  template<typename _Tp>
+    inline _Tp&
+    complex<_Tp>::real() { return _M_real; }
+
+  template<typename _Tp>
+    inline const _Tp&
+    complex<_Tp>::real() const { return _M_real; }
+
+  template<typename _Tp>
+    inline _Tp&
+    complex<_Tp>::imag() { return _M_imag; }
+
+  template<typename _Tp>
+    inline const _Tp&
+    complex<_Tp>::imag() const { return _M_imag; }
+
+  template<typename _Tp>
+    inline 
+    complex<_Tp>::complex(const _Tp& __r, const _Tp& __i)
+    : _M_real(__r), _M_imag(__i) { }
+
+  template<typename _Tp>
+    template<typename _Up>
+    inline 
+    complex<_Tp>::complex(const complex<_Up>& __z)
+    : _M_real(__z.real()), _M_imag(__z.imag()) { }
+        
+  template<typename _Tp>
+    complex<_Tp>&
+    complex<_Tp>::operator=(const _Tp& __t)
+    {
+     _M_real = __t;
+     _M_imag = _Tp();
+     return *this;
+    } 
+
+  // 26.2.5/1
+  template<typename _Tp>
+    inline complex<_Tp>&
+    complex<_Tp>::operator+=(const _Tp& __t)
+    {
+      _M_real += __t;
+      return *this;
+    }
+
+  // 26.2.5/3
+  template<typename _Tp>
+    inline complex<_Tp>&
+    complex<_Tp>::operator-=(const _Tp& __t)
+    {
+      _M_real -= __t;
+      return *this;
+    }
+
+  // 26.2.5/5
+  template<typename _Tp>
+    complex<_Tp>&
+    complex<_Tp>::operator*=(const _Tp& __t)
+    {
+      _M_real *= __t;
+      _M_imag *= __t;
+      return *this;
+    }
+
+  // 26.2.5/7
+  template<typename _Tp>
+    complex<_Tp>&
+    complex<_Tp>::operator/=(const _Tp& __t)
+    {
+      _M_real /= __t;
+      _M_imag /= __t;
+      return *this;
+    }
+
+  template<typename _Tp>
+    template<typename _Up>
+    complex<_Tp>&
+    complex<_Tp>::operator=(const complex<_Up>& __z)
+    {
+      _M_real = __z.real();
+      _M_imag = __z.imag();
+      return *this;
+    }
+
+  // 26.2.5/9
+  template<typename _Tp>
+    template<typename _Up>
+    complex<_Tp>&
+    complex<_Tp>::operator+=(const complex<_Up>& __z)
+    {
+      _M_real += __z.real();
+      _M_imag += __z.imag();
+      return *this;
+    }
+
+  // 26.2.5/11
+  template<typename _Tp>
+    template<typename _Up>
+    complex<_Tp>&
+    complex<_Tp>::operator-=(const complex<_Up>& __z)
+    {
+      _M_real -= __z.real();
+      _M_imag -= __z.imag();
+      return *this;
+    }
+
+  // 26.2.5/13
+  // XXX: This is a grammar school implementation.
+  template<typename _Tp>
+    template<typename _Up>
+    complex<_Tp>&
+    complex<_Tp>::operator*=(const complex<_Up>& __z)
+    {
+      const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();
+      _M_imag = _M_real * __z.imag() + _M_imag * __z.real();
+      _M_real = __r;
+      return *this;
+    }
+
+  // 26.2.5/15
+  // XXX: This is a grammar school implementation.
+  template<typename _Tp>
+    template<typename _Up>
+    complex<_Tp>&
+    complex<_Tp>::operator/=(const complex<_Up>& __z)
+    {
+      const _Tp __r =  _M_real * __z.real() + _M_imag * __z.imag();
+      const _Tp __n = std::norm(__z);
+      _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;
+      _M_real = __r / __n;
+      return *this;
+    }
+    
+  // Operators:
+  //@{
+  ///  Return new complex value @a x plus @a y.
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)
+    {
+      complex<_Tp> __r = __x;
+      __r += __y;
+      return __r;
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator+(const complex<_Tp>& __x, const _Tp& __y)
+    {
+      complex<_Tp> __r = __x;
+      __r.real() += __y;
+      return __r;
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator+(const _Tp& __x, const complex<_Tp>& __y)
+    {
+      complex<_Tp> __r = __y;
+      __r.real() += __x;
+      return __r;
+    }
+  //@}
+
+  //@{
+  ///  Return new complex value @a x minus @a y.
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)
+    {
+      complex<_Tp> __r = __x;
+      __r -= __y;
+      return __r;
+    }
+    
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator-(const complex<_Tp>& __x, const _Tp& __y)
+    {
+      complex<_Tp> __r = __x;
+      __r.real() -= __y;
+      return __r;
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator-(const _Tp& __x, const complex<_Tp>& __y)
+    {
+      complex<_Tp> __r(__x, -__y.imag());
+      __r.real() -= __y.real();
+      return __r;
+    }
+  //@}
+
+  //@{
+  ///  Return new complex value @a x times @a y.
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)
+    {
+      complex<_Tp> __r = __x;
+      __r *= __y;
+      return __r;
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator*(const complex<_Tp>& __x, const _Tp& __y)
+    {
+      complex<_Tp> __r = __x;
+      __r *= __y;
+      return __r;
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator*(const _Tp& __x, const complex<_Tp>& __y)
+    {
+      complex<_Tp> __r = __y;
+      __r *= __x;
+      return __r;
+    }
+  //@}
+
+  //@{
+  ///  Return new complex value @a x divided by @a y.
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)
+    {
+      complex<_Tp> __r = __x;
+      __r /= __y;
+      return __r;
+    }
+    
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator/(const complex<_Tp>& __x, const _Tp& __y)
+    {
+      complex<_Tp> __r = __x;
+      __r /= __y;
+      return __r;
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator/(const _Tp& __x, const complex<_Tp>& __y)
+    {
+      complex<_Tp> __r = __x;
+      __r /= __y;
+      return __r;
+    }
+  //@}
+
+  ///  Return @a x.
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator+(const complex<_Tp>& __x)
+    { return __x; }
+
+  ///  Return complex negation of @a x.
+  template<typename _Tp>
+    inline complex<_Tp>
+    operator-(const complex<_Tp>& __x)
+    {  return complex<_Tp>(-__x.real(), -__x.imag()); }
+
+  //@{
+  ///  Return true if @a x is equal to @a y.
+  template<typename _Tp>
+    inline bool
+    operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)
+    { return __x.real() == __y.real() && __x.imag() == __y.imag(); }
+
+  template<typename _Tp>
+    inline bool
+    operator==(const complex<_Tp>& __x, const _Tp& __y)
+    { return __x.real() == __y && __x.imag() == _Tp(); }
+
+  template<typename _Tp>
+    inline bool
+    operator==(const _Tp& __x, const complex<_Tp>& __y)
+    { return __x == __y.real() && _Tp() == __y.imag(); }
+  //@}
+
+  //@{
+  ///  Return false if @a x is equal to @a y.
+  template<typename _Tp>
+    inline bool
+    operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)
+    { return __x.real() != __y.real() || __x.imag() != __y.imag(); }
+
+  template<typename _Tp>
+    inline bool
+    operator!=(const complex<_Tp>& __x, const _Tp& __y)
+    { return __x.real() != __y || __x.imag() != _Tp(); }
+
+  template<typename _Tp>
+    inline bool
+    operator!=(const _Tp& __x, const complex<_Tp>& __y)
+    { return __x != __y.real() || _Tp() != __y.imag(); }
+  //@}
+
+  ///  Extraction operator for complex values.
+  template<typename _Tp, typename _CharT, class _Traits>
+    basic_istream<_CharT, _Traits>&
+    operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x)
+    {
+      _Tp __re_x, __im_x;
+      _CharT __ch;
+      __is >> __ch;
+      if (__ch == '(') 
+	{
+	  __is >> __re_x >> __ch;
+	  if (__ch == ',') 
+	    {
+	      __is >> __im_x >> __ch;
+	      if (__ch == ')') 
+		__x = complex<_Tp>(__re_x, __im_x);
+	      else
+		__is.setstate(ios_base::failbit);
+	    }
+	  else if (__ch == ')') 
+	    __x = __re_x;
+	  else
+	    __is.setstate(ios_base::failbit);
+	}
+      else 
+	{
+	  __is.putback(__ch);
+	  __is >> __re_x;
+	  __x = __re_x;
+	}
+      return __is;
+    }
+
+  ///  Insertion operator for complex values.
+  template<typename _Tp, typename _CharT, class _Traits>
+    basic_ostream<_CharT, _Traits>&
+    operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)
+    {
+      basic_ostringstream<_CharT, _Traits> __s;
+      __s.flags(__os.flags());
+      __s.imbue(__os.getloc());
+      __s.precision(__os.precision());
+      __s << '(' << __x.real() << ',' << __x.imag() << ')';
+      return __os << __s.str();
+    }
+
+  // Values
+  template<typename _Tp>
+    inline _Tp&
+    real(complex<_Tp>& __z)
+    { return __z.real(); }
+    
+  template<typename _Tp>
+    inline const _Tp&
+    real(const complex<_Tp>& __z)
+    { return __z.real(); }
+    
+  template<typename _Tp>
+    inline _Tp&
+    imag(complex<_Tp>& __z)
+    { return __z.imag(); }
+    
+  template<typename _Tp>
+    inline const _Tp&
+    imag(const complex<_Tp>& __z)
+    { return __z.imag(); }
+
+  template<typename _Tp>
+    inline _Tp
+    abs(const complex<_Tp>& __z)
+    {
+      _Tp __x = __z.real();
+      _Tp __y = __z.imag();
+      const _Tp __s = std::max(abs(__x), abs(__y));
+      if (__s == _Tp())  // well ...
+        return __s;
+      __x /= __s; 
+      __y /= __s;
+      return __s * sqrt(__x * __x + __y * __y);
+    }
+
+  template<typename _Tp>
+    inline _Tp
+    arg(const complex<_Tp>& __z)
+    { return atan2(__z.imag(), __z.real()); }
+
+  // 26.2.7/5: norm(__z) returns the squared magintude of __z.
+  //     As defined, norm() is -not- a norm is the common mathematical
+  //     sens used in numerics.  The helper class _Norm_helper<> tries to
+  //     distinguish between builtin floating point and the rest, so as
+  //     to deliver an answer as close as possible to the real value.
+  template<bool>
+    struct _Norm_helper
+    {
+      template<typename _Tp>
+        static inline _Tp _S_do_it(const complex<_Tp>& __z)
+        {
+          const _Tp __x = __z.real();
+          const _Tp __y = __z.imag();
+          return __x * __x + __y * __y;
+        }
+    };
+
+  template<>
+    struct _Norm_helper<true>
+    {
+      template<typename _Tp>
+        static inline _Tp _S_do_it(const complex<_Tp>& __z)
+        {
+          _Tp __res = std::abs(__z);
+          return __res * __res;
+        }
+    };
+  
+  template<typename _Tp>
+    inline _Tp
+    norm(const complex<_Tp>& __z)
+    {
+      return _Norm_helper<__is_floating<_Tp>::_M_type && !_GLIBCXX_FAST_MATH>::_S_do_it(__z);
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    polar(const _Tp& __rho, const _Tp& __theta)
+    { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    conj(const complex<_Tp>& __z)
+    { return complex<_Tp>(__z.real(), -__z.imag()); }
+  
+  // Transcendentals
+  template<typename _Tp>
+    inline complex<_Tp>
+    cos(const complex<_Tp>& __z)
+    {
+      const _Tp __x = __z.real();
+      const _Tp __y = __z.imag();
+      return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    cosh(const complex<_Tp>& __z)
+    {
+      const _Tp __x = __z.real();
+      const _Tp __y = __z.imag();
+      return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    exp(const complex<_Tp>& __z)
+    { return std::polar(exp(__z.real()), __z.imag()); }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    log(const complex<_Tp>& __z)
+    { return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    log10(const complex<_Tp>& __z)
+    { return std::log(__z) / log(_Tp(10.0)); }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    sin(const complex<_Tp>& __z)
+    {
+      const _Tp __x = __z.real();
+      const _Tp __y = __z.imag();
+      return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y)); 
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    sinh(const complex<_Tp>& __z)
+    {
+      const _Tp __x = __z.real();
+      const _Tp  __y = __z.imag();
+      return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));
+    }
+
+  template<typename _Tp>
+    complex<_Tp>
+    sqrt(const complex<_Tp>& __z)
+    {
+      _Tp __x = __z.real();
+      _Tp __y = __z.imag();
+
+      if (__x == _Tp())
+        {
+          _Tp __t = sqrt(abs(__y) / 2);
+          return complex<_Tp>(__t, __y < _Tp() ? -__t : __t);
+        }
+      else
+        {
+          _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x)));
+          _Tp __u = __t / 2;
+          return __x > _Tp()
+            ? complex<_Tp>(__u, __y / __t)
+            : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u);
+        }
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    tan(const complex<_Tp>& __z)
+    {
+      return std::sin(__z) / std::cos(__z);
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    tanh(const complex<_Tp>& __z)
+    {
+      return std::sinh(__z) / std::cosh(__z);
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    pow(const complex<_Tp>& __z, int __n)
+    {
+      return std::__pow_helper(__z, __n);
+    }
+
+  template<typename _Tp>
+    complex<_Tp>
+    pow(const complex<_Tp>& __x, const _Tp& __y)
+    {
+      if (__x.imag() == _Tp() && __x.real() > _Tp())
+        return pow(__x.real(), __y);
+
+      complex<_Tp> __t = std::log(__x);
+      return std::polar(exp(__y * __t.real()), __y * __t.imag());
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    pow(const complex<_Tp>& __x, const complex<_Tp>& __y)
+    {
+      return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x));
+    }
+
+  template<typename _Tp>
+    inline complex<_Tp>
+    pow(const _Tp& __x, const complex<_Tp>& __y)
+    {
+      return __x > _Tp() ? std::polar(pow(__x, __y.real()),
+				      __y.imag() * log(__x))
+	                 : std::pow(complex<_Tp>(__x, _Tp()), __y);
+    }
+
+  // 26.2.3  complex specializations
+  // complex<float> specialization
+  template<> class complex<float>
+  {
+  public:
+    typedef float value_type;
+    
+    complex(float = 0.0f, float = 0.0f);
+
+    explicit complex(const complex<double>&);
+    explicit complex(const complex<long double>&);
+
+    float& real();
+    const float& real() const;
+    float& imag();
+    const float& imag() const;
+
+    complex<float>& operator=(float);
+    complex<float>& operator+=(float);
+    complex<float>& operator-=(float);
+    complex<float>& operator*=(float);
+    complex<float>& operator/=(float);
+        
+    // Let's the compiler synthetize the copy and assignment
+    // operator.  It always does a pretty good job.
+    // complex& operator= (const complex&);
+    template<typename _Tp>
+      complex<float>&operator=(const complex<_Tp>&);
+    template<typename _Tp>
+      complex<float>& operator+=(const complex<_Tp>&);
+    template<class _Tp>
+      complex<float>& operator-=(const complex<_Tp>&);
+    template<class _Tp>
+      complex<float>& operator*=(const complex<_Tp>&);
+    template<class _Tp>
+      complex<float>&operator/=(const complex<_Tp>&);
+
+  private:
+    typedef __complex__ float _ComplexT;
+    _ComplexT _M_value;
+
+    complex(_ComplexT __z) : _M_value(__z) { }
+        
+    friend class complex<double>;
+    friend class complex<long double>;
+  };
+
+  inline float&
+  complex<float>::real()
+  { return __real__ _M_value; }
+
+  inline const float&
+  complex<float>::real() const
+  { return __real__ _M_value; }
+
+  inline float&
+  complex<float>::imag()
+  { return __imag__ _M_value; }
+
+  inline const float&
+  complex<float>::imag() const
+  { return __imag__ _M_value; }
+
+  inline
+  complex<float>::complex(float r, float i)
+  {
+    __real__ _M_value = r;
+    __imag__ _M_value = i;
+  }
+
+  inline complex<float>&
+  complex<float>::operator=(float __f)
+  {
+    __real__ _M_value = __f;
+    __imag__ _M_value = 0.0f;
+    return *this;
+  }
+
+  inline complex<float>&
+  complex<float>::operator+=(float __f)
+  {
+    __real__ _M_value += __f;
+    return *this;
+  }
+
+  inline complex<float>&
+  complex<float>::operator-=(float __f)
+  {
+    __real__ _M_value -= __f;
+    return *this;
+  }
+
+  inline complex<float>&
+  complex<float>::operator*=(float __f)
+  {
+    _M_value *= __f;
+    return *this;
+  }
+
+  inline complex<float>&
+  complex<float>::operator/=(float __f)
+  {
+    _M_value /= __f;
+    return *this;
+  }
+
+  template<typename _Tp>
+  inline complex<float>&
+  complex<float>::operator=(const complex<_Tp>& __z)
+  {
+    __real__ _M_value = __z.real();
+    __imag__ _M_value = __z.imag();
+    return *this;
+  }
+
+  template<typename _Tp>
+  inline complex<float>&
+  complex<float>::operator+=(const complex<_Tp>& __z)
+  {
+    __real__ _M_value += __z.real();
+    __imag__ _M_value += __z.imag();
+    return *this;
+  }
+    
+  template<typename _Tp>
+    inline complex<float>&
+    complex<float>::operator-=(const complex<_Tp>& __z)
+    {
+     __real__ _M_value -= __z.real();
+     __imag__ _M_value -= __z.imag();
+     return *this;
+    } 
+
+  template<typename _Tp>
+    inline complex<float>&
+    complex<float>::operator*=(const complex<_Tp>& __z)
+    {
+      _ComplexT __t;
+      __real__ __t = __z.real();
+      __imag__ __t = __z.imag();
+      _M_value *= __t;
+      return *this;
+    }
+
+  template<typename _Tp>
+    inline complex<float>&
+    complex<float>::operator/=(const complex<_Tp>& __z)
+    {
+      _ComplexT __t;
+      __real__ __t = __z.real();
+      __imag__ __t = __z.imag();
+      _M_value /= __t;
+      return *this;
+    }
+
+  // 26.2.3  complex specializations
+  // complex<double> specialization
+  template<> class complex<double>
+  {
+  public:
+    typedef double value_type;
+
+    complex(double = 0.0, double = 0.0);
+
+    complex(const complex<float>&);
+    explicit complex(const complex<long double>&);
+
+    double& real();
+    const double& real() const;
+    double& imag();
+    const double& imag() const;
+        
+    complex<double>& operator=(double);
+    complex<double>& operator+=(double);
+    complex<double>& operator-=(double);
+    complex<double>& operator*=(double);
+    complex<double>& operator/=(double);
+
+    // The compiler will synthetize this, efficiently.
+    // complex& operator= (const complex&);
+    template<typename _Tp>
+      complex<double>& operator=(const complex<_Tp>&);
+    template<typename _Tp>
+      complex<double>& operator+=(const complex<_Tp>&);
+    template<typename _Tp>
+      complex<double>& operator-=(const complex<_Tp>&);
+    template<typename _Tp>
+      complex<double>& operator*=(const complex<_Tp>&);
+    template<typename _Tp>
+      complex<double>& operator/=(const complex<_Tp>&);
+
+  private:
+    typedef __complex__ double _ComplexT;
+    _ComplexT _M_value;
+
+    complex(_ComplexT __z) : _M_value(__z) { }
+        
+    friend class complex<float>;
+    friend class complex<long double>;
+  };
+
+  inline double&
+  complex<double>::real()
+  { return __real__ _M_value; }
+
+  inline const double&
+  complex<double>::real() const
+  { return __real__ _M_value; }
+
+  inline double&
+  complex<double>::imag()
+  { return __imag__ _M_value; }
+
+  inline const double&
+  complex<double>::imag() const
+  { return __imag__ _M_value; }
+
+  inline
+  complex<double>::complex(double __r, double __i)
+  {
+    __real__ _M_value = __r;
+    __imag__ _M_value = __i;
+  }
+
+  inline complex<double>&
+  complex<double>::operator=(double __d)
+  {
+    __real__ _M_value = __d;
+    __imag__ _M_value = 0.0;
+    return *this;
+  }
+
+  inline complex<double>&
+  complex<double>::operator+=(double __d)
+  {
+    __real__ _M_value += __d;
+    return *this;
+  }
+
+  inline complex<double>&
+  complex<double>::operator-=(double __d)
+  {
+    __real__ _M_value -= __d;
+    return *this;
+  }
+
+  inline complex<double>&
+  complex<double>::operator*=(double __d)
+  {
+    _M_value *= __d;
+    return *this;
+  }
+
+  inline complex<double>&
+  complex<double>::operator/=(double __d)
+  {
+    _M_value /= __d;
+    return *this;
+  }
+
+  template<typename _Tp>
+    inline complex<double>&
+    complex<double>::operator=(const complex<_Tp>& __z)
+    {
+      __real__ _M_value = __z.real();
+      __imag__ _M_value = __z.imag();
+      return *this;
+    }
+    
+  template<typename _Tp>
+    inline complex<double>&
+    complex<double>::operator+=(const complex<_Tp>& __z)
+    {
+      __real__ _M_value += __z.real();
+      __imag__ _M_value += __z.imag();
+      return *this;
+    }
+
+  template<typename _Tp>
+    inline complex<double>&
+    complex<double>::operator-=(const complex<_Tp>& __z)
+    {
+      __real__ _M_value -= __z.real();
+      __imag__ _M_value -= __z.imag();
+      return *this;
+    }
+
+  template<typename _Tp>
+    inline complex<double>&
+    complex<double>::operator*=(const complex<_Tp>& __z)
+    {
+      _ComplexT __t;
+      __real__ __t = __z.real();
+      __imag__ __t = __z.imag();
+      _M_value *= __t;
+      return *this;
+    }
+
+  template<typename _Tp>
+    inline complex<double>&
+    complex<double>::operator/=(const complex<_Tp>& __z)
+    {
+      _ComplexT __t;
+      __real__ __t = __z.real();
+      __imag__ __t = __z.imag();
+      _M_value /= __t;
+      return *this;
+    }
+
+  // 26.2.3  complex specializations
+  // complex<long double> specialization
+  template<> class complex<long double>
+  {
+  public:
+    typedef long double value_type;
+
+    complex(long double = 0.0L, long double = 0.0L);
+
+    complex(const complex<float>&);
+    complex(const complex<double>&);
+
+    long double& real();
+    const long double& real() const;
+    long double& imag();
+    const long double& imag() const;
+
+    complex<long double>& operator= (long double);
+    complex<long double>& operator+= (long double);
+    complex<long double>& operator-= (long double);
+    complex<long double>& operator*= (long double);
+    complex<long double>& operator/= (long double);
+
+    // The compiler knows how to do this efficiently
+    // complex& operator= (const complex&);
+    template<typename _Tp>
+      complex<long double>& operator=(const complex<_Tp>&);
+    template<typename _Tp>
+      complex<long double>& operator+=(const complex<_Tp>&);
+    template<typename _Tp>
+      complex<long double>& operator-=(const complex<_Tp>&);
+    template<typename _Tp>
+      complex<long double>& operator*=(const complex<_Tp>&);
+    template<typename _Tp>
+      complex<long double>& operator/=(const complex<_Tp>&);
+
+  private:
+    typedef __complex__ long double _ComplexT;
+    _ComplexT _M_value;
+
+    complex(_ComplexT __z) : _M_value(__z) { }
+
+    friend class complex<float>;
+    friend class complex<double>;
+  };
+
+  inline
+  complex<long double>::complex(long double __r, long double __i)
+  {
+    __real__ _M_value = __r;
+    __imag__ _M_value = __i;
+  }
+
+  inline long double&
+  complex<long double>::real()
+  { return __real__ _M_value; }
+
+  inline const long double&
+  complex<long double>::real() const
+  { return __real__ _M_value; }
+
+  inline long double&
+  complex<long double>::imag()
+  { return __imag__ _M_value; }
+
+  inline const long double&
+  complex<long double>::imag() const
+  { return __imag__ _M_value; }
+
+  inline complex<long double>&   
+  complex<long double>::operator=(long double __r)
+  {
+    __real__ _M_value = __r;
+    __imag__ _M_value = 0.0L;
+    return *this;
+  }
+
+  inline complex<long double>&
+  complex<long double>::operator+=(long double __r)
+  {
+    __real__ _M_value += __r;
+    return *this;
+  }
+
+  inline complex<long double>&
+  complex<long double>::operator-=(long double __r)
+  {
+    __real__ _M_value -= __r;
+    return *this;
+  }
+
+  inline complex<long double>&
+  complex<long double>::operator*=(long double __r)
+  {
+    _M_value *= __r;
+    return *this;
+  }
+
+  inline complex<long double>&
+  complex<long double>::operator/=(long double __r)
+  {
+    _M_value /= __r;
+    return *this;
+  }
+
+  template<typename _Tp>
+    inline complex<long double>&
+    complex<long double>::operator=(const complex<_Tp>& __z)
+    {
+      __real__ _M_value = __z.real();
+      __imag__ _M_value = __z.imag();
+      return *this;
+    }
+
+  template<typename _Tp>
+    inline complex<long double>&
+    complex<long double>::operator+=(const complex<_Tp>& __z)
+    {
+      __real__ _M_value += __z.real();
+      __imag__ _M_value += __z.imag();
+      return *this;
+    }
+
+  template<typename _Tp>
+    inline complex<long double>&
+    complex<long double>::operator-=(const complex<_Tp>& __z)
+    {
+      __real__ _M_value -= __z.real();
+      __imag__ _M_value -= __z.imag();
+      return *this;
+    }
+    
+  template<typename _Tp>
+    inline complex<long double>&
+    complex<long double>::operator*=(const complex<_Tp>& __z)
+    {
+      _ComplexT __t;
+      __real__ __t = __z.real();
+      __imag__ __t = __z.imag();
+      _M_value *= __t;
+      return *this;
+    }
+
+  template<typename _Tp>
+    inline complex<long double>&
+    complex<long double>::operator/=(const complex<_Tp>& __z)
+    {
+      _ComplexT __t;
+      __real__ __t = __z.real();
+      __imag__ __t = __z.imag();
+      _M_value /= __t;
+      return *this;
+    }
+
+  // These bits have to be at the end of this file, so that the
+  // specializations have all been defined.
+  // ??? No, they have to be there because of compiler limitation at
+  // inlining.  It suffices that class specializations be defined.
+  inline
+  complex<float>::complex(const complex<double>& __z)
+  : _M_value(_ComplexT(__z._M_value)) { }
+
+  inline
+  complex<float>::complex(const complex<long double>& __z)
+  : _M_value(_ComplexT(__z._M_value)) { }
+
+  inline
+  complex<double>::complex(const complex<float>& __z) 
+  : _M_value(_ComplexT(__z._M_value)) { }
+
+  inline
+  complex<double>::complex(const complex<long double>& __z)
+  {
+    __real__ _M_value = __z.real();
+    __imag__ _M_value = __z.imag();
+  }
+
+  inline
+  complex<long double>::complex(const complex<float>& __z)
+  : _M_value(_ComplexT(__z._M_value)) { }
+
+  inline
+  complex<long double>::complex(const complex<double>& __z)
+  : _M_value(_ComplexT(__z._M_value)) { }
+} // namespace std
+
+#endif	/* _GLIBCXX_COMPLEX */