|
1 |
|
2 """ |
|
3 csv.py - read/write/investigate CSV files |
|
4 """ |
|
5 |
|
6 import re |
|
7 from _csv import Error, __version__, writer, reader, register_dialect, \ |
|
8 unregister_dialect, get_dialect, list_dialects, \ |
|
9 field_size_limit, \ |
|
10 QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \ |
|
11 __doc__ |
|
12 from _csv import Dialect as _Dialect |
|
13 |
|
14 try: |
|
15 from cStringIO import StringIO |
|
16 except ImportError: |
|
17 from StringIO import StringIO |
|
18 |
|
19 __all__ = [ "QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE", |
|
20 "Error", "Dialect", "excel", "excel_tab", "reader", "writer", |
|
21 "register_dialect", "get_dialect", "list_dialects", "Sniffer", |
|
22 "unregister_dialect", "__version__", "DictReader", "DictWriter" ] |
|
23 |
|
24 class Dialect: |
|
25 """Describe an Excel dialect. |
|
26 |
|
27 This must be subclassed (see csv.excel). Valid attributes are: |
|
28 delimiter, quotechar, escapechar, doublequote, skipinitialspace, |
|
29 lineterminator, quoting. |
|
30 |
|
31 """ |
|
32 _name = "" |
|
33 _valid = False |
|
34 # placeholders |
|
35 delimiter = None |
|
36 quotechar = None |
|
37 escapechar = None |
|
38 doublequote = None |
|
39 skipinitialspace = None |
|
40 lineterminator = None |
|
41 quoting = None |
|
42 |
|
43 def __init__(self): |
|
44 if self.__class__ != Dialect: |
|
45 self._valid = True |
|
46 self._validate() |
|
47 |
|
48 def _validate(self): |
|
49 try: |
|
50 _Dialect(self) |
|
51 except TypeError, e: |
|
52 # We do this for compatibility with py2.3 |
|
53 raise Error(str(e)) |
|
54 |
|
55 class excel(Dialect): |
|
56 """Describe the usual properties of Excel-generated CSV files.""" |
|
57 delimiter = ',' |
|
58 quotechar = '"' |
|
59 doublequote = True |
|
60 skipinitialspace = False |
|
61 lineterminator = '\r\n' |
|
62 quoting = QUOTE_MINIMAL |
|
63 register_dialect("excel", excel) |
|
64 |
|
65 class excel_tab(excel): |
|
66 """Describe the usual properties of Excel-generated TAB-delimited files.""" |
|
67 delimiter = '\t' |
|
68 register_dialect("excel-tab", excel_tab) |
|
69 |
|
70 |
|
71 class DictReader: |
|
72 def __init__(self, f, fieldnames=None, restkey=None, restval=None, |
|
73 dialect="excel", *args, **kwds): |
|
74 self.fieldnames = fieldnames # list of keys for the dict |
|
75 self.restkey = restkey # key to catch long rows |
|
76 self.restval = restval # default value for short rows |
|
77 self.reader = reader(f, dialect, *args, **kwds) |
|
78 |
|
79 def __iter__(self): |
|
80 return self |
|
81 |
|
82 def next(self): |
|
83 row = self.reader.next() |
|
84 if self.fieldnames is None: |
|
85 self.fieldnames = row |
|
86 row = self.reader.next() |
|
87 |
|
88 # unlike the basic reader, we prefer not to return blanks, |
|
89 # because we will typically wind up with a dict full of None |
|
90 # values |
|
91 while row == []: |
|
92 row = self.reader.next() |
|
93 d = dict(zip(self.fieldnames, row)) |
|
94 lf = len(self.fieldnames) |
|
95 lr = len(row) |
|
96 if lf < lr: |
|
97 d[self.restkey] = row[lf:] |
|
98 elif lf > lr: |
|
99 for key in self.fieldnames[lr:]: |
|
100 d[key] = self.restval |
|
101 return d |
|
102 |
|
103 |
|
104 class DictWriter: |
|
105 def __init__(self, f, fieldnames, restval="", extrasaction="raise", |
|
106 dialect="excel", *args, **kwds): |
|
107 self.fieldnames = fieldnames # list of keys for the dict |
|
108 self.restval = restval # for writing short dicts |
|
109 if extrasaction.lower() not in ("raise", "ignore"): |
|
110 raise ValueError, \ |
|
111 ("extrasaction (%s) must be 'raise' or 'ignore'" % |
|
112 extrasaction) |
|
113 self.extrasaction = extrasaction |
|
114 self.writer = writer(f, dialect, *args, **kwds) |
|
115 |
|
116 def _dict_to_list(self, rowdict): |
|
117 if self.extrasaction == "raise": |
|
118 for k in rowdict.keys(): |
|
119 if k not in self.fieldnames: |
|
120 raise ValueError, "dict contains fields not in fieldnames" |
|
121 return [rowdict.get(key, self.restval) for key in self.fieldnames] |
|
122 |
|
123 def writerow(self, rowdict): |
|
124 return self.writer.writerow(self._dict_to_list(rowdict)) |
|
125 |
|
126 def writerows(self, rowdicts): |
|
127 rows = [] |
|
128 for rowdict in rowdicts: |
|
129 rows.append(self._dict_to_list(rowdict)) |
|
130 return self.writer.writerows(rows) |
|
131 |
|
132 # Guard Sniffer's type checking against builds that exclude complex() |
|
133 try: |
|
134 complex |
|
135 except NameError: |
|
136 complex = float |
|
137 |
|
138 class Sniffer: |
|
139 ''' |
|
140 "Sniffs" the format of a CSV file (i.e. delimiter, quotechar) |
|
141 Returns a Dialect object. |
|
142 ''' |
|
143 def __init__(self): |
|
144 # in case there is more than one possible delimiter |
|
145 self.preferred = [',', '\t', ';', ' ', ':'] |
|
146 |
|
147 |
|
148 def sniff(self, sample, delimiters=None): |
|
149 """ |
|
150 Returns a dialect (or None) corresponding to the sample |
|
151 """ |
|
152 |
|
153 quotechar, delimiter, skipinitialspace = \ |
|
154 self._guess_quote_and_delimiter(sample, delimiters) |
|
155 if not delimiter: |
|
156 delimiter, skipinitialspace = self._guess_delimiter(sample, |
|
157 delimiters) |
|
158 |
|
159 if not delimiter: |
|
160 raise Error, "Could not determine delimiter" |
|
161 |
|
162 class dialect(Dialect): |
|
163 _name = "sniffed" |
|
164 lineterminator = '\r\n' |
|
165 quoting = QUOTE_MINIMAL |
|
166 # escapechar = '' |
|
167 doublequote = False |
|
168 |
|
169 dialect.delimiter = delimiter |
|
170 # _csv.reader won't accept a quotechar of '' |
|
171 dialect.quotechar = quotechar or '"' |
|
172 dialect.skipinitialspace = skipinitialspace |
|
173 |
|
174 return dialect |
|
175 |
|
176 |
|
177 def _guess_quote_and_delimiter(self, data, delimiters): |
|
178 """ |
|
179 Looks for text enclosed between two identical quotes |
|
180 (the probable quotechar) which are preceded and followed |
|
181 by the same character (the probable delimiter). |
|
182 For example: |
|
183 ,'some text', |
|
184 The quote with the most wins, same with the delimiter. |
|
185 If there is no quotechar the delimiter can't be determined |
|
186 this way. |
|
187 """ |
|
188 |
|
189 matches = [] |
|
190 for restr in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?", |
|
191 '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?", |
|
192 '(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?" |
|
193 '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space) |
|
194 regexp = re.compile(restr, re.DOTALL | re.MULTILINE) |
|
195 matches = regexp.findall(data) |
|
196 if matches: |
|
197 break |
|
198 |
|
199 if not matches: |
|
200 return ('', None, 0) # (quotechar, delimiter, skipinitialspace) |
|
201 |
|
202 quotes = {} |
|
203 delims = {} |
|
204 spaces = 0 |
|
205 for m in matches: |
|
206 n = regexp.groupindex['quote'] - 1 |
|
207 key = m[n] |
|
208 if key: |
|
209 quotes[key] = quotes.get(key, 0) + 1 |
|
210 try: |
|
211 n = regexp.groupindex['delim'] - 1 |
|
212 key = m[n] |
|
213 except KeyError: |
|
214 continue |
|
215 if key and (delimiters is None or key in delimiters): |
|
216 delims[key] = delims.get(key, 0) + 1 |
|
217 try: |
|
218 n = regexp.groupindex['space'] - 1 |
|
219 except KeyError: |
|
220 continue |
|
221 if m[n]: |
|
222 spaces += 1 |
|
223 |
|
224 quotechar = reduce(lambda a, b, quotes = quotes: |
|
225 (quotes[a] > quotes[b]) and a or b, quotes.keys()) |
|
226 |
|
227 if delims: |
|
228 delim = reduce(lambda a, b, delims = delims: |
|
229 (delims[a] > delims[b]) and a or b, delims.keys()) |
|
230 skipinitialspace = delims[delim] == spaces |
|
231 if delim == '\n': # most likely a file with a single column |
|
232 delim = '' |
|
233 else: |
|
234 # there is *no* delimiter, it's a single column of quoted data |
|
235 delim = '' |
|
236 skipinitialspace = 0 |
|
237 |
|
238 return (quotechar, delim, skipinitialspace) |
|
239 |
|
240 |
|
241 def _guess_delimiter(self, data, delimiters): |
|
242 """ |
|
243 The delimiter /should/ occur the same number of times on |
|
244 each row. However, due to malformed data, it may not. We don't want |
|
245 an all or nothing approach, so we allow for small variations in this |
|
246 number. |
|
247 1) build a table of the frequency of each character on every line. |
|
248 2) build a table of freqencies of this frequency (meta-frequency?), |
|
249 e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows, |
|
250 7 times in 2 rows' |
|
251 3) use the mode of the meta-frequency to determine the /expected/ |
|
252 frequency for that character |
|
253 4) find out how often the character actually meets that goal |
|
254 5) the character that best meets its goal is the delimiter |
|
255 For performance reasons, the data is evaluated in chunks, so it can |
|
256 try and evaluate the smallest portion of the data possible, evaluating |
|
257 additional chunks as necessary. |
|
258 """ |
|
259 |
|
260 data = filter(None, data.split('\n')) |
|
261 |
|
262 ascii = [chr(c) for c in range(127)] # 7-bit ASCII |
|
263 |
|
264 # build frequency tables |
|
265 chunkLength = min(10, len(data)) |
|
266 iteration = 0 |
|
267 charFrequency = {} |
|
268 modes = {} |
|
269 delims = {} |
|
270 start, end = 0, min(chunkLength, len(data)) |
|
271 while start < len(data): |
|
272 iteration += 1 |
|
273 for line in data[start:end]: |
|
274 for char in ascii: |
|
275 metaFrequency = charFrequency.get(char, {}) |
|
276 # must count even if frequency is 0 |
|
277 freq = line.count(char) |
|
278 # value is the mode |
|
279 metaFrequency[freq] = metaFrequency.get(freq, 0) + 1 |
|
280 charFrequency[char] = metaFrequency |
|
281 |
|
282 for char in charFrequency.keys(): |
|
283 items = charFrequency[char].items() |
|
284 if len(items) == 1 and items[0][0] == 0: |
|
285 continue |
|
286 # get the mode of the frequencies |
|
287 if len(items) > 1: |
|
288 modes[char] = reduce(lambda a, b: a[1] > b[1] and a or b, |
|
289 items) |
|
290 # adjust the mode - subtract the sum of all |
|
291 # other frequencies |
|
292 items.remove(modes[char]) |
|
293 modes[char] = (modes[char][0], modes[char][1] |
|
294 - reduce(lambda a, b: (0, a[1] + b[1]), |
|
295 items)[1]) |
|
296 else: |
|
297 modes[char] = items[0] |
|
298 |
|
299 # build a list of possible delimiters |
|
300 modeList = modes.items() |
|
301 total = float(chunkLength * iteration) |
|
302 # (rows of consistent data) / (number of rows) = 100% |
|
303 consistency = 1.0 |
|
304 # minimum consistency threshold |
|
305 threshold = 0.9 |
|
306 while len(delims) == 0 and consistency >= threshold: |
|
307 for k, v in modeList: |
|
308 if v[0] > 0 and v[1] > 0: |
|
309 if ((v[1]/total) >= consistency and |
|
310 (delimiters is None or k in delimiters)): |
|
311 delims[k] = v |
|
312 consistency -= 0.01 |
|
313 |
|
314 if len(delims) == 1: |
|
315 delim = delims.keys()[0] |
|
316 skipinitialspace = (data[0].count(delim) == |
|
317 data[0].count("%c " % delim)) |
|
318 return (delim, skipinitialspace) |
|
319 |
|
320 # analyze another chunkLength lines |
|
321 start = end |
|
322 end += chunkLength |
|
323 |
|
324 if not delims: |
|
325 return ('', 0) |
|
326 |
|
327 # if there's more than one, fall back to a 'preferred' list |
|
328 if len(delims) > 1: |
|
329 for d in self.preferred: |
|
330 if d in delims.keys(): |
|
331 skipinitialspace = (data[0].count(d) == |
|
332 data[0].count("%c " % d)) |
|
333 return (d, skipinitialspace) |
|
334 |
|
335 # nothing else indicates a preference, pick the character that |
|
336 # dominates(?) |
|
337 items = [(v,k) for (k,v) in delims.items()] |
|
338 items.sort() |
|
339 delim = items[-1][1] |
|
340 |
|
341 skipinitialspace = (data[0].count(delim) == |
|
342 data[0].count("%c " % delim)) |
|
343 return (delim, skipinitialspace) |
|
344 |
|
345 |
|
346 def has_header(self, sample): |
|
347 # Creates a dictionary of types of data in each column. If any |
|
348 # column is of a single type (say, integers), *except* for the first |
|
349 # row, then the first row is presumed to be labels. If the type |
|
350 # can't be determined, it is assumed to be a string in which case |
|
351 # the length of the string is the determining factor: if all of the |
|
352 # rows except for the first are the same length, it's a header. |
|
353 # Finally, a 'vote' is taken at the end for each column, adding or |
|
354 # subtracting from the likelihood of the first row being a header. |
|
355 |
|
356 rdr = reader(StringIO(sample), self.sniff(sample)) |
|
357 |
|
358 header = rdr.next() # assume first row is header |
|
359 |
|
360 columns = len(header) |
|
361 columnTypes = {} |
|
362 for i in range(columns): columnTypes[i] = None |
|
363 |
|
364 checked = 0 |
|
365 for row in rdr: |
|
366 # arbitrary number of rows to check, to keep it sane |
|
367 if checked > 20: |
|
368 break |
|
369 checked += 1 |
|
370 |
|
371 if len(row) != columns: |
|
372 continue # skip rows that have irregular number of columns |
|
373 |
|
374 for col in columnTypes.keys(): |
|
375 |
|
376 for thisType in [int, long, float, complex]: |
|
377 try: |
|
378 thisType(row[col]) |
|
379 break |
|
380 except (ValueError, OverflowError): |
|
381 pass |
|
382 else: |
|
383 # fallback to length of string |
|
384 thisType = len(row[col]) |
|
385 |
|
386 # treat longs as ints |
|
387 if thisType == long: |
|
388 thisType = int |
|
389 |
|
390 if thisType != columnTypes[col]: |
|
391 if columnTypes[col] is None: # add new column type |
|
392 columnTypes[col] = thisType |
|
393 else: |
|
394 # type is inconsistent, remove column from |
|
395 # consideration |
|
396 del columnTypes[col] |
|
397 |
|
398 # finally, compare results against first row and "vote" |
|
399 # on whether it's a header |
|
400 hasHeader = 0 |
|
401 for col, colType in columnTypes.items(): |
|
402 if type(colType) == type(0): # it's a length |
|
403 if len(header[col]) != colType: |
|
404 hasHeader += 1 |
|
405 else: |
|
406 hasHeader -= 1 |
|
407 else: # attempt typecast |
|
408 try: |
|
409 colType(header[col]) |
|
410 except (ValueError, TypeError): |
|
411 hasHeader += 1 |
|
412 else: |
|
413 hasHeader -= 1 |
|
414 |
|
415 return hasHeader > 0 |