ReadMe file for /common/testtools/smoketest
This folder is the root of the Smoketest component, which implements automated smoketesting of MCL builds. It contains the build files for the component, source-code, scripts and test-data for automated smoketesting.

Functional Synopsis

There are 3 major components of the solution:

The SmokeTest Client a program that is executed as a step in the build just after ROMs have been built. It invokes TestDriver to build and run the smoketest suite for the emulator and hardware targets that are specified for the build.

The emulator smoketests are built and run locally, in the context of the epoc32 tree provided by the build.

For the hardware targets, the smoketest client polls a pool of smoketest server machines that are listed in the environment and selects the server that is least busy executing smoketests. Each smoketest server is connected to a development board on which to run hardware tests. The smoketest client then builds a test package comprising the smoketest suite and invokes TestDriver remotely on the chosen smoketest server to execute the test package on the connect board and retrieve the test results to the server.
Having invoked TestDriver for a hardware smoketest, the smoketest client captures the job number that TestDriver assigns to the smoketest. The job number enables the smoketest client to identify the folder on the smoketest server where the output from this job will appear. The smoketest client then deposits in that folder a text file that specifies the network publication folder of the build to which the smoketest belongs.
The Smoketest Server is a program that runs continuously on each smoketest server. Its job is to find smoketest results that have been retrieved from from the server’s development board and copy these results into the network publication folder for the build to which the smoketest belongs. The smoketest server sleeps for 15 minute intervals and each time it awakens it searches for new test results by traversing TestDriver’s job output folders. When fresh job output is found in a job output folder, the text file already placed there by the smoketest client identifies the network publication for the build to which it belongs. The smoketest server copies the test results into logs\smoketest within the publication folder and deletes the job output so that it will not be found in the next sweep.
The Smoketest Suite is the set of tests that constitute the smoketest and supporting files. It comprises:

· A set of TestExecute servers.

· Test data files.

· TestExecute driver scripts.

· TestDriver XML files that enable the test suite to be built and executed by TestDriver.

Elements of the Smoketest Suite

The Smoketest suite comprises 6 shallow tests that can be executed on any Symbian OS Emulator or ROM. These tests are:

· Agenda test. Create an Agenda database and add some appointments to it.
· Contacts test. Create a Contacts database and add some contacts to it.

· Messaging test. Clean the message folder. Create an SMS account with Vodafone. Set Vodafone as the default Service Centre. Create an SMS message (without sending it).

· Phone App test. Start the Phone app and run it for 10 seconds.

· SyncMLApp test. Start the SyncML app and run it for 10 seconds.

· TimeW test. Set an alarm and exit.
Production of test results in the MCL

The Smoketest Server publishes the results of the Smoketest suite in the subfolder logs/smoketest in the publication folder of the build to which the results belong, e.g.

\\builds01\devbuilds\master\03485_Symbian_OS_v9.1\logs\smoketest.
Within this folder, results are organised as in the following example:

\ARMV5
-> Test results for ARMV5 hardware

\Lu bbock
-> Test results on Lubbock board

\Smoketest
-> Individual test results

\smoketest_agenda
-> Detailed Agenda results

\smoketest_contacts
-> Detailed Contacts results

\smoketest_mess
-> Detailed Messaging results

\smoketest_phone
-> Detailed Phone results

\smoketest_syncmlapp -> Detailed SyncmlApp results

\smoketest_timew
-> Detailed TimeW results

\testlog.html

-> Summary report for target

\trace.txt

-> Progress log of TestMaster (TestDriver server)

\emulator
-> Test Results for emulator targets

\03487_Symbian_OS_v9.1

\RunNo33_winscw_udeb
-> Results for WINSCW emulator

\Smoketest

-> Individual test results

\smoketest_agenda
-> Detailed Agenda results

\smoketest_contacts
-> Detailed Contacts results

\smoketest_mess
-> Detailed Messaging results

\smoketest_phone
-> Detailed Phone results

\smoketest_syncmlapp -> Detailed SyncmlApp results

\smoketest_timew
-> Detailed TimeW results

\testlog.html

-> Summary report for target
Building the component.

The build for the smoketest component is unconventional. The test suite is not built by the MCL build stage. It is intended only to be built by TestDriver under control of the smoketest client, or else built “by hand” for the purpose of running individual tests against an emulator using TestExecute. TestDriver always builds in abld test mode. The MCL build stage is employed only to perform exports, which place TestExecute scripts and test data files in the places where they are expected by TestExecute or TestDriver. TestDriver always sources these scripts and test files from epoc32\release\winscw\{udeb|urel}\z, regardless of the target that is actually to be tested. The exports are specified accordingly.

If you wish to build the component “by hand” with abld, the correct steps are therefore:

>abld export

>abld test build <target> {udeb | urel}

And if you wish to cleanup all the build products, including exports, you must do:

>abld reallyclean <target>
>abld test reallyclean <target>
When a build emits warnings for exports not frozen, you must freeze the exports with:

>abld test freeze <target>
Specialising the Build Configuration
The Smoketest component provides a mechanism for supplying special configuration macros to the build of the test suite for a given OS release, through a C++ header file configuration.cfg that is variable per OS release.

Under the component’s group folder there is a sub-folder named after each OS release for which the component might possibly be built, i.e. 7.0s, 8.0a,…,9.1. Each of these folders contains a version of the configuration.cfg file in which to define the special macros that shall apply in building the component for the corresponding OS release.

To build the component, configuration.cfg must also exist in the group folder itself. To specialise the build for a given OS release, this file should first be copied from the sub-folder for that OS release into the group folder itself. If you are building the component “by hand” with abld, then you must perform this copy yourself. If the build is being carried under control of the smoketest client, then it will copy the correct configuration.cfg into the group folder.
Although this mechanism is in place, no use is made of it at the time of writing. No special macros yet are defined in any version of configuration.cfg. This mechanism should be used only with a compelling reason: it is desirable that the test suite build should be as constant as can be between OS releases.

Using TestExecute from the commandline.
TestExecute is shipped with Symbian OS in epoc32\release\<target>\{udeb|urel}. No special installation is required. General documentation can found in Perforce at \epoc\master\common\testtools\testexecute\documentation.
You can build the component for the WINS or WINSCW emulator with abld at the commandline and then run individual tests on that emulator using TestExecute. Assume EPOCROOT is M:\

M:>cd \src\common\testtools\smoketest\group

M:>src\common\testtools\smoketest\group>abld export
…

M:>src\common\testtools\smoketest\group>abld test build wins udeb

…

M:>src\common\testtools\smoketest\group>cd \epoc32\release\wins\udeb

M:\epoc32\release\wins\udeb>testexecute z:\smoketest\setup_<testname>.script

…

M:\epoc32\release\wins\udeb>testexecute z:\smoketest\<testname>.script

You run setup_<testname>.script to initialise any test data required by <testname>.script. If a test requires no initialisation then the setup script will not exist. The setup script will direct TestExecute to find the test files at the places to which they have been exported by abld export and copy them into the right places in the device filesystem.

The script pathnames that are passed to TestExecute refer to the emulator’s filesystem, not the filesystem of your machine. The z: drive in the emulator’s filesystem corresponds to M:\epoc32\release\wins\udeb\z on your machine. The Smoketest test scripts and test data are placed in M:\epoc32\release\wins\udeb\z\smoketest by the abld export step.
Each time you run TestExecute it starts the emulator to carry out the actions specified in the script. Thus after running the setup_<testname>.script, you must wait for the emulator to launch, run and exit before you run the <testname>.script.

The results of running setup_<testname>.script and <testname>.script will be found in M:\epoc32\wins\c\logs\testexecute, in the files setup_<testname>.htm and <testname>.htm respectively.

For WINSCW, substitute winscw for wins above.
Doh! – Checks for Test Failures
A test may fail because the functionality under test if genuinely defective, but it may also fail because you have overlooked an error in the construction of the test.

· Make sure that the test setup step, if any, was successful. If the setup step failed due to failure to find some file, then your abld export is probably not doing everything that it needs to do.
· Look for errors or omissions in the test scripts or test data.

· If a test fails with the fundamental error server could not be created, error code -1, then make sure you have not overlooked a build error. If there is no build error, then your test server probably depends on a DLL that you are not providing. If this error occurs on hardware but not on emulators, you are probably dependent on a DLL that is present in the epoc32 tree but not in the ROM.
Using TestDriver from the commandline.
TestDriver’s components are shipped with Symbian OS as Zip archives in epoc32\tools\testdriver. The 3 archives are:
TestDriver.zip

TestClient.zip

TestMaster.zip

General documentation, including installation and configuration, can be found in the Developer Library at Tools & Utilities -> Symbian OS Test Tools -> Test Driver.
You can use TestDriver from the commandline to build and run the test suite against an emulator locally, or remotely on a smoketest server. Assuming that:

· Testdriver.exe is in your path

· EPOCROOT = M:\

· Your Symbian OS source tree is at M:\src
then TestDriver must have configuration settings like this:
M:>testdriver config –e M:\
M:>testdriver config –x M:\src\common\testtools\smoketest\xml

M:>testdriver config –s M:\src\common\testtools

M:>testdriver config –r <YourPreferredRepositoryPath>

M:>testdriver config –l <YourPeferredResultsPath>

Building and running the test suite for local emulator tests

With the configuration above you can build the Smoketest suite from the commandline with:

M:>testdriver build –p wins –b udeb –s smoketest

This command builds the suite for the WINS udeb emulator. You may substitute winscw for wins, or urel or udeb.
If the suite builds successfully, you can run the tests against the emulator with the command:

M:>testdriver run –p wins –b udeb –s smoketest
Packaging and running the test suite for remote hardware testing
With the configuration above you can create a test package of the Smoketest suite for execution on a remote machine connected to a development board. Assume the remote machine is called smoketest_server.

· You should have installed and configured TestDriver on both machines as described in the Developer Library documentation, with TestClient on the local machine and TestMaster on smoketest_server.

· You should have started TestMaster running on smoketest_server.

· The ROM image that you wish to test, say sys$rom.zip, should reside in m:\src\common\testtools\smoketest.

Then do:
M:>testdriver build -p armv5 -b udeb -s smoketest

…

M:>testdriver package -p armv5 -b udeb -s smoketest
…

M:>testdriver runremote -m async -i m:\src\common\testtools\smoketest --tp smoketest.tpkg -r sys$rom.zip --srv //smoketest_server/RemoteTestDriver

The test package is sent to smoketest_server and executed asynchronously. TestMaster issues a numeric job ID that is reported on the client console. Say your job ID = 1. When it has finished, you can retrieve the results from smoketest_server with:

M:>testdriver results –j 1 –srv //smoketest_server/RemoteTestDriver

The test results will be returned under <YourPreferredResultsPath> as the configured with testdriver config –l.

Debugging the Smoketest suite
You may need to do interactive debugging of the components of the smoketest suite. These components are not directly executable. They are entered through TestExecute. Therefore you must run a TestExecute command to execute the problem component and break into the debugger at a chosen point after entering the component.

Suppose that you need to debug into the TimeW smoketest, and that the problem is a failure to connect to the AlarmServer when the smoketest attempts to create its CAlmModel instance in the WINS emulator build.

You will need to have made a WINS udeb build of the Smoketest component and the AlarmServer component, having coded a __DEBUGGER() statement at the point where you want to break into the debugger. Remember that you must do an abld export, followed by an abld test build for the Smoketest component.

Then run the test setup step:

M:>release\wins\udeb>testexecute z:\smoketest\setup_timew.script
And finally run the test itself, passing the –d option to TestExecute:

M:>release\wins\udeb>testexecute z:\smoketest\timew.script –d

The emulator will run and break into the debugger at the __DEBUGGER() statement. If you do pass the –d option, TestExecute will disable debugging.
Contents of this folder
Dir: Agenda. Contains the sub-component for the Agenda smoketest.
Dir: Contacts. Contains the sub-component for the Contacts smoketest.
Dir: Group. Contains the build files for the Smoketest component.
Dir: Messaging. Contains the sub-component for the Messaging smoketest.
Dir: Phone. Contains the sub-component for the Phone App smoketest.
Dir: SyncMLApp. Contains the sub-component for the SyncMLApp smoketest.
Dir: TimeW. Contains the sub-component for the TimeW smoketest.

Dir: Utils. Contains the sub-component PlatTest_Utils. This is a support sub-component for the Messaging smoketest.

Dir: Xml. Contains the XML files that define the Smoketest suite for TestDriver.

File: SmokeTestClient.pl. The Perl script that implements the SmokeTest client.

File: SmokeTestServer.pl. The Perl script that implements the SmokeTest server.

File: ReadMe.doc. This file.

