epoc32/include/stdapis/boost/math/complex/asinh.hpp
branchSymbian2
changeset 3 e1b950c65cb4
parent 2 2fe1408b6811
child 4 837f303aceeb
equal deleted inserted replaced
2:2fe1408b6811 3:e1b950c65cb4
       
     1 //    boost asinh.hpp header file
       
     2 
       
     3 //  (C) Copyright Eric Ford & Hubert Holin 2001.
       
     4 //  Distributed under the Boost Software License, Version 1.0. (See
       
     5 //  accompanying file LICENSE_1_0.txt or copy at
       
     6 //  http://www.boost.org/LICENSE_1_0.txt)
       
     7 
       
     8 // See http://www.boost.org for updates, documentation, and revision history.
       
     9 
       
    10 #ifndef BOOST_ASINH_HPP
       
    11 #define BOOST_ASINH_HPP
       
    12 
       
    13 
       
    14 #include <cmath>
       
    15 #include <limits>
       
    16 #include <string>
       
    17 #include <stdexcept>
       
    18 
       
    19 
       
    20 #include <boost/config.hpp>
       
    21 
       
    22 
       
    23 // This is the inverse of the hyperbolic sine function.
       
    24 
       
    25 namespace boost
       
    26 {
       
    27     namespace math
       
    28     {
       
    29 #if defined(__GNUC__) && (__GNUC__ < 3)
       
    30         // gcc 2.x ignores function scope using declarations,
       
    31         // put them in the scope of the enclosing namespace instead:
       
    32         
       
    33         using    ::std::abs;
       
    34         using    ::std::sqrt;
       
    35         using    ::std::log;
       
    36         
       
    37         using    ::std::numeric_limits;
       
    38 #endif
       
    39         
       
    40         template<typename T>
       
    41         inline T    asinh(const T x)
       
    42         {
       
    43             using    ::std::abs;
       
    44             using    ::std::sqrt;
       
    45             using    ::std::log;
       
    46             
       
    47             using    ::std::numeric_limits;
       
    48             
       
    49             
       
    50             T const            one = static_cast<T>(1);
       
    51             T const            two = static_cast<T>(2);
       
    52             
       
    53             static T const    taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
       
    54             static T const    taylor_n_bound = sqrt(taylor_2_bound);
       
    55             static T const    upper_taylor_2_bound = one/taylor_2_bound;
       
    56             static T const    upper_taylor_n_bound = one/taylor_n_bound;
       
    57             
       
    58             if        (x >= +taylor_n_bound)
       
    59             {
       
    60                 if        (x > upper_taylor_n_bound)
       
    61                 {
       
    62                     if        (x > upper_taylor_2_bound)
       
    63                     {
       
    64                         // approximation by laurent series in 1/x at 0+ order from -1 to 0
       
    65                         return( log( x * two) );
       
    66                     }
       
    67                     else
       
    68                     {
       
    69                         // approximation by laurent series in 1/x at 0+ order from -1 to 1
       
    70                         return( log( x*two + (one/(x*two)) ) );
       
    71                     }
       
    72                 }
       
    73                 else
       
    74                 {
       
    75                     return( log( x + sqrt(x*x+one) ) );
       
    76                 }
       
    77             }
       
    78             else if    (x <= -taylor_n_bound)
       
    79             {
       
    80                 return(-asinh(-x));
       
    81             }
       
    82             else
       
    83             {
       
    84                 // approximation by taylor series in x at 0 up to order 2
       
    85                 T    result = x;
       
    86                 
       
    87                 if    (abs(x) >= taylor_2_bound)
       
    88                 {
       
    89                     T    x3 = x*x*x;
       
    90                     
       
    91                     // approximation by taylor series in x at 0 up to order 4
       
    92                     result -= x3/static_cast<T>(6);
       
    93                 }
       
    94                 
       
    95                 return(result);
       
    96             }
       
    97         }
       
    98     }
       
    99 }
       
   100 
       
   101 #endif /* BOOST_ASINH_HPP */