--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/epoc32/include/stdapis/boost/math/complex/asinh.hpp Wed Mar 31 12:27:01 2010 +0100
@@ -0,0 +1,101 @@
+// boost asinh.hpp header file
+
+// (C) Copyright Eric Ford & Hubert Holin 2001.
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+// See http://www.boost.org for updates, documentation, and revision history.
+
+#ifndef BOOST_ASINH_HPP
+#define BOOST_ASINH_HPP
+
+
+#include <cmath>
+#include <limits>
+#include <string>
+#include <stdexcept>
+
+
+#include <boost/config.hpp>
+
+
+// This is the inverse of the hyperbolic sine function.
+
+namespace boost
+{
+ namespace math
+ {
+#if defined(__GNUC__) && (__GNUC__ < 3)
+ // gcc 2.x ignores function scope using declarations,
+ // put them in the scope of the enclosing namespace instead:
+
+ using ::std::abs;
+ using ::std::sqrt;
+ using ::std::log;
+
+ using ::std::numeric_limits;
+#endif
+
+ template<typename T>
+ inline T asinh(const T x)
+ {
+ using ::std::abs;
+ using ::std::sqrt;
+ using ::std::log;
+
+ using ::std::numeric_limits;
+
+
+ T const one = static_cast<T>(1);
+ T const two = static_cast<T>(2);
+
+ static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
+ static T const taylor_n_bound = sqrt(taylor_2_bound);
+ static T const upper_taylor_2_bound = one/taylor_2_bound;
+ static T const upper_taylor_n_bound = one/taylor_n_bound;
+
+ if (x >= +taylor_n_bound)
+ {
+ if (x > upper_taylor_n_bound)
+ {
+ if (x > upper_taylor_2_bound)
+ {
+ // approximation by laurent series in 1/x at 0+ order from -1 to 0
+ return( log( x * two) );
+ }
+ else
+ {
+ // approximation by laurent series in 1/x at 0+ order from -1 to 1
+ return( log( x*two + (one/(x*two)) ) );
+ }
+ }
+ else
+ {
+ return( log( x + sqrt(x*x+one) ) );
+ }
+ }
+ else if (x <= -taylor_n_bound)
+ {
+ return(-asinh(-x));
+ }
+ else
+ {
+ // approximation by taylor series in x at 0 up to order 2
+ T result = x;
+
+ if (abs(x) >= taylor_2_bound)
+ {
+ T x3 = x*x*x;
+
+ // approximation by taylor series in x at 0 up to order 4
+ result -= x3/static_cast<T>(6);
+ }
+
+ return(result);
+ }
+ }
+ }
+}
+
+#endif /* BOOST_ASINH_HPP */