--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/epoc32/include/stdapis/boost/math/complex/atanh.hpp Wed Mar 31 12:27:01 2010 +0100
@@ -0,0 +1,267 @@
+// boost atanh.hpp header file
+
+// (C) Copyright Hubert Holin 2001.
+// Distributed under the Boost Software License, Version 1.0. (See
+// accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+
+// See http://www.boost.org for updates, documentation, and revision history.
+
+#ifndef BOOST_ATANH_HPP
+#define BOOST_ATANH_HPP
+
+
+#include <cmath>
+#include <limits>
+#include <string>
+#include <stdexcept>
+
+
+#include <boost/config.hpp>
+
+
+// This is the inverse of the hyperbolic tangent function.
+
+namespace boost
+{
+ namespace math
+ {
+#if defined(__GNUC__) && (__GNUC__ < 3)
+ // gcc 2.x ignores function scope using declarations,
+ // put them in the scope of the enclosing namespace instead:
+
+ using ::std::abs;
+ using ::std::sqrt;
+ using ::std::log;
+
+ using ::std::numeric_limits;
+#endif
+
+#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
+ // This is the main fare
+
+ template<typename T>
+ inline T atanh(const T x)
+ {
+ using ::std::abs;
+ using ::std::sqrt;
+ using ::std::log;
+
+ using ::std::numeric_limits;
+
+ T const one = static_cast<T>(1);
+ T const two = static_cast<T>(2);
+
+ static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
+ static T const taylor_n_bound = sqrt(taylor_2_bound);
+
+ if (x < -one)
+ {
+ if (numeric_limits<T>::has_quiet_NaN)
+ {
+ return(numeric_limits<T>::quiet_NaN());
+ }
+ else
+ {
+ ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
+ ::std::domain_error bad_argument(error_reporting);
+
+ throw(bad_argument);
+ }
+ }
+ else if (x < -one+numeric_limits<T>::epsilon())
+ {
+ if (numeric_limits<T>::has_infinity)
+ {
+ return(-numeric_limits<T>::infinity());
+ }
+ else
+ {
+ ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!");
+ ::std::out_of_range bad_argument(error_reporting);
+
+ throw(bad_argument);
+ }
+ }
+ else if (x > +one-numeric_limits<T>::epsilon())
+ {
+ if (numeric_limits<T>::has_infinity)
+ {
+ return(+numeric_limits<T>::infinity());
+ }
+ else
+ {
+ ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!");
+ ::std::out_of_range bad_argument(error_reporting);
+
+ throw(bad_argument);
+ }
+ }
+ else if (x > +one)
+ {
+ if (numeric_limits<T>::has_quiet_NaN)
+ {
+ return(numeric_limits<T>::quiet_NaN());
+ }
+ else
+ {
+ ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
+ ::std::domain_error bad_argument(error_reporting);
+
+ throw(bad_argument);
+ }
+ }
+ else if (abs(x) >= taylor_n_bound)
+ {
+ return(log( (one + x) / (one - x) ) / two);
+ }
+ else
+ {
+ // approximation by taylor series in x at 0 up to order 2
+ T result = x;
+
+ if (abs(x) >= taylor_2_bound)
+ {
+ T x3 = x*x*x;
+
+ // approximation by taylor series in x at 0 up to order 4
+ result += x3/static_cast<T>(3);
+ }
+
+ return(result);
+ }
+ }
+#else
+ // These are implementation details (for main fare see below)
+
+ namespace detail
+ {
+ template <
+ typename T,
+ bool InfinitySupported
+ >
+ struct atanh_helper1_t
+ {
+ static T get_pos_infinity()
+ {
+ return(+::std::numeric_limits<T>::infinity());
+ }
+
+ static T get_neg_infinity()
+ {
+ return(-::std::numeric_limits<T>::infinity());
+ }
+ }; // boost::math::detail::atanh_helper1_t
+
+
+ template<typename T>
+ struct atanh_helper1_t<T, false>
+ {
+ static T get_pos_infinity()
+ {
+ ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!");
+ ::std::out_of_range bad_argument(error_reporting);
+
+ throw(bad_argument);
+ }
+
+ static T get_neg_infinity()
+ {
+ ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!");
+ ::std::out_of_range bad_argument(error_reporting);
+
+ throw(bad_argument);
+ }
+ }; // boost::math::detail::atanh_helper1_t
+
+
+ template <
+ typename T,
+ bool QuietNanSupported
+ >
+ struct atanh_helper2_t
+ {
+ static T get_NaN()
+ {
+ return(::std::numeric_limits<T>::quiet_NaN());
+ }
+ }; // boost::detail::atanh_helper2_t
+
+
+ template<typename T>
+ struct atanh_helper2_t<T, false>
+ {
+ static T get_NaN()
+ {
+ ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
+ ::std::domain_error bad_argument(error_reporting);
+
+ throw(bad_argument);
+ }
+ }; // boost::detail::atanh_helper2_t
+ } // boost::detail
+
+
+ // This is the main fare
+
+ template<typename T>
+ inline T atanh(const T x)
+ {
+ using ::std::abs;
+ using ::std::sqrt;
+ using ::std::log;
+
+ using ::std::numeric_limits;
+
+ typedef detail::atanh_helper1_t<T, ::std::numeric_limits<T>::has_infinity> helper1_type;
+ typedef detail::atanh_helper2_t<T, ::std::numeric_limits<T>::has_quiet_NaN> helper2_type;
+
+
+ T const one = static_cast<T>(1);
+ T const two = static_cast<T>(2);
+
+ static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
+ static T const taylor_n_bound = sqrt(taylor_2_bound);
+
+ if (x < -one)
+ {
+ return(helper2_type::get_NaN());
+ }
+ else if (x < -one+numeric_limits<T>::epsilon())
+ {
+ return(helper1_type::get_neg_infinity());
+ }
+ else if (x > +one-numeric_limits<T>::epsilon())
+ {
+ return(helper1_type::get_pos_infinity());
+ }
+ else if (x > +one)
+ {
+ return(helper2_type::get_NaN());
+ }
+ else if (abs(x) >= taylor_n_bound)
+ {
+ return(log( (one + x) / (one - x) ) / two);
+ }
+ else
+ {
+ // approximation by taylor series in x at 0 up to order 2
+ T result = x;
+
+ if (abs(x) >= taylor_2_bound)
+ {
+ T x3 = x*x*x;
+
+ // approximation by taylor series in x at 0 up to order 4
+ result += x3/static_cast<T>(3);
+ }
+
+ return(result);
+ }
+ }
+#endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */
+ }
+}
+
+#endif /* BOOST_ATANH_HPP */
+