0
|
1 |
// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// omap3530/omap3530_drivers/usbcc/pa_usbc.cpp
|
|
15 |
//
|
|
16 |
|
|
17 |
#include <usbc.h>
|
|
18 |
//#include <resourceman.h>
|
|
19 |
#include <assp/omap3530_assp/omap3530_assp_priv.h>
|
|
20 |
#include <assp/omap3530_assp/omap3530_irqmap.h>
|
|
21 |
#include <assp/omap3530_assp/omap3530_usbc.h>
|
|
22 |
//#include <assp/omap3530_assp/omap3530_prm.h>
|
|
23 |
#include <assp/omap3530_assp/omap3530_prcm.h>
|
|
24 |
|
|
25 |
|
|
26 |
// Debug support
|
|
27 |
#ifdef _DEBUG
|
|
28 |
static const char KUsbPanicCat[] = "USB PSL";
|
|
29 |
#endif
|
|
30 |
|
|
31 |
_LIT(KDfcName, "USB_DFC");
|
|
32 |
|
|
33 |
// Register definitions - move to a seperate header file at some point..
|
|
34 |
|
|
35 |
const TUint KCM_ICLKEN1_CORE = Omap3530HwBase::TVirtual<0x48004A10>::Value;
|
|
36 |
const TUint KENHOSTOTGUSB_BIT = KBit4;
|
|
37 |
const TUint KCM_AUTOIDLE1_CORE = Omap3530HwBase::TVirtual<0x48004A30>::Value;
|
|
38 |
const TUint KAUTO_HOSTOTGUSB_BIT = KBit4;
|
|
39 |
|
|
40 |
|
|
41 |
const TInt KSetupPacketSize = 8;
|
|
42 |
const TInt KMaxPayload = 0x400;
|
|
43 |
const TInt KUsbDfcPriority = 45;
|
|
44 |
const TUint KUSBBase = Omap3530HwBase::TVirtual<0x480AB000>::Value;
|
|
45 |
|
|
46 |
// USB registers - need the slave clock enabled to access most of these
|
|
47 |
const TUint KFADDR_REG = 0x0;
|
|
48 |
const TUint KADDRESS_MSK = 0x7F;
|
|
49 |
const TUint KPOWER_REG = 0x1;
|
|
50 |
const TUint KSOFTCONNECT_BIT = KBit6;
|
|
51 |
const TUint KSUSPENDM_BIT = KBit1;
|
|
52 |
const TUint KRESUME_BIT = KBit2;
|
|
53 |
const TUint KHSEN_BIT = KBit5;
|
|
54 |
// const TUint KRESET_BIT = KBit3;
|
|
55 |
const TUint K_INTRTX_REG =0x2;
|
|
56 |
const TUint K_INTRRX_REG =0x4;
|
|
57 |
const TUint K_INTRTXE_REG =0x6;
|
|
58 |
const TUint K_INTRRXE_REG =0x8;
|
|
59 |
const TUint K_INTRUSB_REG = 0xA;
|
|
60 |
const TUint K_INTRUSBE_REG = 0xB;
|
|
61 |
const TUint K_INT_RESET = KBit2;
|
|
62 |
const TUint K_INT_RESUME = KBit1;
|
|
63 |
const TUint K_INT_SUSPEND = KBit0;
|
|
64 |
//const TUint K_DEVCTRL_REG = 0x60;
|
|
65 |
const TUint K_FIFO0_REG = 0x20;
|
|
66 |
const TUint K_FIFO_OFFSET = 0x4;
|
|
67 |
const TUint K_COUNT0_REG = 0x18;
|
|
68 |
const TUint K_RXCOUNT_REG = 0x18;
|
|
69 |
const TUint K_CONFIGDATA_REG = 0x1F;
|
|
70 |
const TUint K_MPRXE = KBit7;
|
|
71 |
const TUint K_MPTXE = KBit6;
|
|
72 |
const TUint K_DYNFIFO = KBit2;
|
|
73 |
const TUint K_SOFTCONNECT = KBit1;
|
|
74 |
const TUint K_INDEX_REG = 0xE;
|
|
75 |
const TUint K_PERI_CSR0_REG = 0x12;
|
|
76 |
const TUint K_EP0_FLUSHFIFO = KBit8;
|
|
77 |
const TUint K_EP0_SERV_SETUPEND = KBit7;
|
|
78 |
const TUint K_EP0_SERV_RXPKTRDY = KBit6;
|
|
79 |
const TUint K_EP0_SETUPEND = KBit4;
|
|
80 |
const TUint K_EP0_SENDSTALL = KBit5;
|
|
81 |
const TUint K_EP0_DATAEND = KBit3;
|
|
82 |
const TUint K_EP0_SENTSTALL = KBit2;
|
|
83 |
const TUint K_EP0_TXPKTRDY = KBit1;
|
|
84 |
const TUint K_EP0_RXPKTRDY = KBit0;
|
|
85 |
const TUint K_TXMAXP_REG = 0x10;
|
|
86 |
const TUint K_RXMAXP_REG = 0x14;
|
|
87 |
const TUint K_PERI_TXCSR_REG = 0x12;
|
|
88 |
const TUint K_TX_ISO = KBit14;
|
|
89 |
const TUint K_TX_DMAEN = KBit12;
|
|
90 |
const TUint K_TX_DMAMODE = KBit10;
|
|
91 |
const TUint K_TX_CLRDATATOG = KBit6;
|
|
92 |
const TUint K_TX_SENTSTALL = KBit5;
|
|
93 |
const TUint K_TX_SENDSTALL = KBit4;
|
|
94 |
const TUint K_TX_FLUSHFIFO = KBit3;
|
|
95 |
const TUint K_TX_UNDERRUN = KBit2;
|
|
96 |
// const TUint K_TX_FIFONOTEMPTY = KBit1;
|
|
97 |
const TUint K_TX_TXPKTRDY = KBit0;
|
|
98 |
const TUint K_PERI_RXCSR_REG = 0x16;
|
|
99 |
const TUint K_RX_ISO = KBit14;
|
|
100 |
const TUint K_RX_DMAEN = KBit13;
|
|
101 |
const TUint K_RX_DISNYET = KBit12;
|
|
102 |
const TUint K_RX_CLRDATATOG = KBit7;
|
|
103 |
const TUint K_RX_SENTSTALL = KBit6;
|
|
104 |
const TUint K_RX_SENDSTALL = KBit5;
|
|
105 |
const TUint K_RX_FLUSHFIFO = KBit4;
|
|
106 |
const TUint K_RX_OVERRUN = KBit2;
|
|
107 |
const TUint K_RX_RXPKTRDY = KBit0;
|
|
108 |
const TUint K_TXFIFOSZ_REG = 0x62;
|
|
109 |
const TUint K_RXFIFOSZ_REG = 0x63;
|
|
110 |
const TUint K_TXFIFOADDR_REG = 0x64;
|
|
111 |
const TUint K_RXFIFOADDR_REG = 0x66;
|
|
112 |
const TUint K_OTG_SYSCONFIG_REG = 0x404;
|
|
113 |
const TUint K_ENABLEWAKEUP = KBit2;
|
|
114 |
//const TUint K_OTG_SYSSTATUS_REG = 0x408;
|
|
115 |
|
|
116 |
// End of Register definitions
|
|
117 |
|
|
118 |
// Define USB_SUPPORTS_PREMATURE_STATUS_IN to enable proper handling of a premature STATUS_IN stage, i.e. a
|
|
119 |
// situation where the host sends less data than first announced and instead of more data (OUT) will send an
|
|
120 |
// IN token to start the status stage. What we do in order to implement this here is to prime the TX fifo with
|
|
121 |
// a ZLP immediately when we find out that we're dealing with a DATA_OUT request. This way, as soon as the
|
|
122 |
// premature IN token is received, we complete the transaction by sending off the ZLP. If we don't prime the
|
|
123 |
// TX fifo then there is no way for us to recognise a premature status because the IN token itself doesn't
|
|
124 |
// raise an interrupt. We would simply wait forever for more data, or rather we would time out and the host
|
|
125 |
// would move on and send the next Setup packet.
|
|
126 |
// The reason why we would not want to implement the proper behaviour is this: After having primed the TX fifo
|
|
127 |
// with a ZLP, it is impossible for a user to reject such a (class/vendor specific) Setup request, basically
|
|
128 |
// because the successful status stage happens automatically. At the time the user has received and decoded
|
|
129 |
// the Setup request there's for her no way to stall Ep0 in order to show to the host that this Setup packet
|
|
130 |
// is invalid or inappropriate or whatever, because she cannot prevent the status stage from happening.
|
|
131 |
// (All this is strictly true only if the amount of data in the data stage is less than or equal to Ep0's max
|
|
132 |
// packet size. However this is almost always the case.)
|
|
133 |
//#define USB_SUPPORTS_PREMATURE_STATUS_IN
|
|
134 |
|
|
135 |
|
|
136 |
static const TUsbcEndpointCaps DeviceEndpoints[KUsbTotalEndpoints] =
|
|
137 |
{
|
|
138 |
// Hardware # iEndpoints index
|
|
139 |
{KEp0MaxPktSzMask, (KUsbEpTypeControl | KUsbEpDirOut)}, // 0 - 0
|
|
140 |
{KEp0MaxPktSzMask, (KUsbEpTypeControl | KUsbEpDirIn )}, // 0 - 1
|
|
141 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 1 - 2
|
|
142 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 2 - 3
|
|
143 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 3 - 4
|
|
144 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 4 - 5
|
|
145 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 5 - 6
|
|
146 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 6 - 7
|
|
147 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 7 - 8
|
|
148 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 8 - 9
|
|
149 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 9 - 10
|
|
150 |
{KEp0MaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 10 - 11
|
|
151 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 11 - 12
|
|
152 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 12 - 13
|
|
153 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 13 - 14
|
|
154 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 14 - 15
|
|
155 |
// Disabled due to limited FIFO space
|
|
156 |
/*{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 15 - 16
|
|
157 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 16 - 17
|
|
158 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 17 - 18
|
|
159 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 18 - 19
|
|
160 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 19 - 20
|
|
161 |
{KEp0MaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 20 - 21
|
|
162 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 21 - 22
|
|
163 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 22 - 23
|
|
164 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 23 - 24
|
|
165 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 24 - 25
|
|
166 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 25 - 26
|
|
167 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 26 - 27
|
|
168 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 27 - 28
|
|
169 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirIn )}, // 28 - 29
|
|
170 |
{KBlkMaxPktSzMask, (KUsbEpTypeBulk | KUsbEpDirOut)}, // 29 - 30
|
|
171 |
{KIntMaxPktSzMask, (KUsbEpTypeInterrupt | KUsbEpDirIn )} // 30- 31*/
|
|
172 |
};
|
|
173 |
|
|
174 |
|
|
175 |
// --- TEndpoint --------------------------------------------------------------
|
|
176 |
|
|
177 |
TEndpoint::TEndpoint()
|
|
178 |
//
|
|
179 |
// Constructor
|
|
180 |
//
|
|
181 |
: iRxBuf(NULL), iReceived(0), iLength(0), iZlpReqd(EFalse), iNoBuffer(EFalse), iDisabled(EFalse),
|
|
182 |
iPackets(0), iLastError(KErrNone), iRequest(NULL), iRxTimer(RxTimerCallback, this),
|
|
183 |
iRxTimerSet(EFalse), iRxMoreDataRcvd(EFalse), iPacketIndex(NULL), iPacketSize(NULL)
|
|
184 |
{
|
|
185 |
__KTRACE_OPT(KUSB, Kern::Printf("TEndpoint::TEndpoint"));
|
|
186 |
}
|
|
187 |
|
|
188 |
|
|
189 |
void TEndpoint::RxTimerCallback(TAny* aPtr)
|
|
190 |
//
|
|
191 |
// (This function is static.)
|
|
192 |
//
|
|
193 |
{
|
|
194 |
TEndpoint* const ep = static_cast<TEndpoint*>(aPtr);
|
|
195 |
if (!ep)
|
|
196 |
{
|
|
197 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !ep"));
|
|
198 |
}
|
|
199 |
else if (!ep->iRxTimerSet)
|
|
200 |
{
|
|
201 |
// Timer 'stop' substitute (instead of stopping it,
|
|
202 |
// we just let it expire after clearing iRxTimerSet)
|
|
203 |
__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxTimerSet - returning"));
|
|
204 |
}
|
|
205 |
else if (!ep->iRxBuf)
|
|
206 |
{
|
|
207 |
// Request already completed
|
|
208 |
__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxBuf - returning"));
|
|
209 |
}
|
|
210 |
else if (ep->iRxMoreDataRcvd)
|
|
211 |
{
|
|
212 |
__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: not yet completing..."));
|
|
213 |
ep->iRxMoreDataRcvd = EFalse;
|
|
214 |
ep->iRxTimer.Again(KRxTimerTimeout);
|
|
215 |
}
|
|
216 |
else
|
|
217 |
{
|
|
218 |
__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: completing now..."));
|
|
219 |
*ep->iPacketSize = ep->iReceived;
|
|
220 |
ep->iController->RxComplete(ep);
|
|
221 |
}
|
|
222 |
}
|
|
223 |
|
|
224 |
|
|
225 |
// --- DOmap3530Usbcc public ---------------------------------------------------
|
|
226 |
|
|
227 |
DOmap3530Usbcc::DOmap3530Usbcc()
|
|
228 |
//
|
|
229 |
// Constructor.
|
|
230 |
//
|
|
231 |
: iCableConnected(ETrue), iBusIsPowered(EFalse),
|
|
232 |
iInitialized(EFalse), iUsbClientConnectorCallback(UsbClientConnectorCallback),
|
|
233 |
iAssp( static_cast<Omap3530Assp*>( Arch::TheAsic() ) ),
|
|
234 |
iEp0Configured(EFalse), iSuspendDfc(SuspendDfcFn, this, 7),
|
|
235 |
iResumeDfc(ResumeDfcFn, this, 7), iResetDfc(ResetDfcFn, this, 7)
|
|
236 |
{
|
|
237 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DOmap3530Usbcc"));
|
|
238 |
|
|
239 |
TInt r = Kern::DfcQCreate(iDfcQueue, KUsbDfcPriority, &KDfcName);
|
|
240 |
|
|
241 |
iSuspendDfc.SetDfcQ(iDfcQueue);
|
|
242 |
iResetDfc.SetDfcQ(iDfcQueue);
|
|
243 |
iResumeDfc.SetDfcQ(iDfcQueue);
|
|
244 |
|
|
245 |
iSoftwareConnectable = iAssp->UsbSoftwareConnectable();
|
|
246 |
|
|
247 |
iCableDetectable = iAssp->UsbClientConnectorDetectable();
|
|
248 |
|
|
249 |
if (iCableDetectable)
|
|
250 |
{
|
|
251 |
// Register our callback for detecting USB cable insertion/removal.
|
|
252 |
// We ignore the error code: if the registration fails, we just won't get any events.
|
|
253 |
// (Which of course is bad enough...)
|
|
254 |
(void) iAssp->RegisterUsbClientConnectorCallback(iUsbClientConnectorCallback, this);
|
|
255 |
// Call the callback straight away so we get the proper PIL state from the beginning.
|
|
256 |
(void) UsbClientConnectorCallback(this);
|
|
257 |
}
|
|
258 |
|
|
259 |
for (TInt i = 0; i < KUsbTotalEndpoints; i++)
|
|
260 |
{
|
|
261 |
iEndpoints[i].iController = this;
|
|
262 |
}
|
|
263 |
|
|
264 |
__KTRACE_OPT(KUSB, Kern::Printf("-DOmap3530Usbcc::DOmap3530Usbcc"));
|
|
265 |
}
|
|
266 |
|
|
267 |
|
|
268 |
TInt DOmap3530Usbcc::Construct()
|
|
269 |
//
|
|
270 |
// Construct.
|
|
271 |
//
|
|
272 |
{
|
|
273 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Construct"));
|
|
274 |
|
|
275 |
iPhy = MOmap3530UsbPhy::New();
|
|
276 |
if( !iPhy )
|
|
277 |
{
|
|
278 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Failed to get pointer to USB PHY"));
|
|
279 |
return KErrNoMemory;
|
|
280 |
}
|
|
281 |
|
|
282 |
//TInt r = PowerResourceManager::RegisterClient( iPrmClientId, KDfcName );
|
|
283 |
//if( r != KErrNone )
|
|
284 |
// {
|
|
285 |
// __KTRACE_OPT(KPANIC, Kern::Printf(" Error: Failed to connect to PRM"));
|
|
286 |
// return r;
|
|
287 |
// }
|
|
288 |
|
|
289 |
|
|
290 |
TUsbcDeviceDescriptor* DeviceDesc = TUsbcDeviceDescriptor::New(
|
|
291 |
0x00, // aDeviceClass
|
|
292 |
0x00, // aDeviceSubClass
|
|
293 |
0x00, // aDeviceProtocol
|
|
294 |
KEp0MaxPktSz, // aMaxPacketSize0
|
|
295 |
KUsbVendorId, // aVendorId
|
|
296 |
KUsbProductId, // aProductId
|
|
297 |
KUsbDevRelease, // aDeviceRelease
|
|
298 |
1); // aNumConfigurations
|
|
299 |
if (!DeviceDesc)
|
|
300 |
{
|
|
301 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for dev desc failed."));
|
|
302 |
return KErrGeneral;
|
|
303 |
}
|
|
304 |
|
|
305 |
TUsbcConfigDescriptor* ConfigDesc = TUsbcConfigDescriptor::New(
|
|
306 |
1, // aConfigurationValue
|
|
307 |
ETrue, // aSelfPowered (see 12.4.2 "Bus-Powered Devices")
|
|
308 |
ETrue, // aRemoteWakeup
|
|
309 |
0); // aMaxPower (mA)
|
|
310 |
if (!ConfigDesc)
|
|
311 |
{
|
|
312 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for config desc failed."));
|
|
313 |
return KErrGeneral;
|
|
314 |
}
|
|
315 |
|
|
316 |
TUsbcLangIdDescriptor* StringDescLang = TUsbcLangIdDescriptor::New(KUsbLangId);
|
|
317 |
if (!StringDescLang)
|
|
318 |
{
|
|
319 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for lang id $ desc failed."));
|
|
320 |
return KErrGeneral;
|
|
321 |
}
|
|
322 |
|
|
323 |
// ('sizeof(x) - 2' because 'wchar_t KStringXyz' created a wide string that ends in '\0\0'.)
|
|
324 |
|
|
325 |
TUsbcStringDescriptor* StringDescManu =
|
|
326 |
TUsbcStringDescriptor::New(TPtr8(
|
|
327 |
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringManufacturer)),
|
|
328 |
sizeof(KStringManufacturer) - 2, sizeof(KStringManufacturer) - 2));
|
|
329 |
if (!StringDescManu)
|
|
330 |
{
|
|
331 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for manufacturer $ desc failed."));
|
|
332 |
return KErrGeneral;
|
|
333 |
}
|
|
334 |
|
|
335 |
TUsbcStringDescriptor* StringDescProd =
|
|
336 |
TUsbcStringDescriptor::New(TPtr8(
|
|
337 |
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringProduct)),
|
|
338 |
sizeof(KStringProduct) - 2, sizeof(KStringProduct) - 2));
|
|
339 |
if (!StringDescProd)
|
|
340 |
{
|
|
341 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for product $ desc failed."));
|
|
342 |
return KErrGeneral;
|
|
343 |
}
|
|
344 |
|
|
345 |
TUsbcStringDescriptor* StringDescSer =
|
|
346 |
TUsbcStringDescriptor::New(TPtr8(
|
|
347 |
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringSerialNo)),
|
|
348 |
sizeof(KStringSerialNo) - 2, sizeof(KStringSerialNo) - 2));
|
|
349 |
if (!StringDescSer)
|
|
350 |
{
|
|
351 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for serial no $ desc failed."));
|
|
352 |
return KErrGeneral;
|
|
353 |
}
|
|
354 |
|
|
355 |
TUsbcStringDescriptor* StringDescConf =
|
|
356 |
TUsbcStringDescriptor::New(TPtr8(
|
|
357 |
const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringConfig)),
|
|
358 |
sizeof(KStringConfig) - 2, sizeof(KStringConfig) - 2));
|
|
359 |
if (!StringDescConf)
|
|
360 |
{
|
|
361 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for config $ desc failed."));
|
|
362 |
return KErrGeneral;
|
|
363 |
}
|
|
364 |
|
|
365 |
const TBool b = InitialiseBaseClass(DeviceDesc,
|
|
366 |
ConfigDesc,
|
|
367 |
StringDescLang,
|
|
368 |
StringDescManu,
|
|
369 |
StringDescProd,
|
|
370 |
StringDescSer,
|
|
371 |
StringDescConf);
|
|
372 |
if (!b)
|
|
373 |
{
|
|
374 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UsbClientController::InitialiseBaseClass failed."));
|
|
375 |
return KErrGeneral;
|
|
376 |
}
|
|
377 |
|
|
378 |
return KErrNone;
|
|
379 |
}
|
|
380 |
|
|
381 |
|
|
382 |
DOmap3530Usbcc::~DOmap3530Usbcc()
|
|
383 |
//
|
|
384 |
// Destructor.
|
|
385 |
//
|
|
386 |
{
|
|
387 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::~DOmap3530Usbcc"));
|
|
388 |
|
|
389 |
// Unregister our callback for detecting USB cable insertion/removal
|
|
390 |
if (iCableDetectable)
|
|
391 |
{
|
|
392 |
iAssp->UnregisterUsbClientConnectorCallback();
|
|
393 |
}
|
|
394 |
if (iInitialized)
|
|
395 |
{
|
|
396 |
// (The explicit scope operator is used against Lint warning #1506.)
|
|
397 |
DOmap3530Usbcc::StopUdc();
|
|
398 |
}
|
|
399 |
}
|
|
400 |
|
|
401 |
|
|
402 |
TBool DOmap3530Usbcc::DeviceStateChangeCaps() const
|
|
403 |
//
|
|
404 |
// Returns capability of hardware to accurately track the device state (Chapter 9 state).
|
|
405 |
//
|
|
406 |
{
|
|
407 |
return EFalse;
|
|
408 |
}
|
|
409 |
|
|
410 |
|
|
411 |
TInt DOmap3530Usbcc::SignalRemoteWakeup()
|
|
412 |
//
|
|
413 |
// Forces the UDC into a non-idle state to perform a remote wakeup operation.
|
|
414 |
//
|
|
415 |
{
|
|
416 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SignalRemoteWakeup"));
|
|
417 |
Kern::Printf("DOmap3530Usbcc::SignalRemoteWakeup");
|
|
418 |
// Resume signal
|
|
419 |
|
|
420 |
TInt sysconfig = AsspRegister::Read32(KUSBBase+K_OTG_SYSCONFIG_REG );
|
|
421 |
if(sysconfig&K_ENABLEWAKEUP && iRmWakeupStatus_Enabled)
|
|
422 |
{
|
|
423 |
AsspRegister::Modify8(KUSBBase+KPOWER_REG, KClearNone , KRESUME_BIT);
|
|
424 |
Kern::NanoWait(10000000); // Wait 10ms - Use a callback instead!
|
|
425 |
AsspRegister::Modify8(KUSBBase+KPOWER_REG, KRESUME_BIT, KSetNone);
|
|
426 |
}
|
|
427 |
return KErrNone;
|
|
428 |
}
|
|
429 |
|
|
430 |
|
|
431 |
void DOmap3530Usbcc::DumpRegisters()
|
|
432 |
//
|
|
433 |
// Dumps the contents of a number of UDC registers to the screen (using Kern::Printf()).
|
|
434 |
// Rarely used, but might prove helpful when needed.
|
|
435 |
//
|
|
436 |
{
|
|
437 |
Kern::Printf("DOmap3530Usbcc::DumpRegisters:");
|
|
438 |
}
|
|
439 |
|
|
440 |
|
|
441 |
TDfcQue* DOmap3530Usbcc::DfcQ(TInt /* aUnit */)
|
|
442 |
//
|
|
443 |
// Returns a pointer to the kernel DFC queue to be used buy the USB LDD.
|
|
444 |
//
|
|
445 |
{
|
|
446 |
return iDfcQueue;
|
|
447 |
}
|
|
448 |
|
|
449 |
|
|
450 |
// --- DOmap3530Usbcc private virtual ------------------------------------------
|
|
451 |
|
|
452 |
TInt DOmap3530Usbcc::SetDeviceAddress(TInt aAddress)
|
|
453 |
//
|
|
454 |
// Sets the PIL-provided device address manually (if possible - otherwise do nothing).
|
|
455 |
//
|
|
456 |
{
|
|
457 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetDeviceAddress: %d", aAddress));
|
|
458 |
|
|
459 |
AsspRegister::Write8(KUSBBase+KFADDR_REG, aAddress & KADDRESS_MSK);
|
|
460 |
|
|
461 |
if (aAddress || GetDeviceStatus()==EUsbcDeviceStateAddress)
|
|
462 |
{
|
|
463 |
// Address can be zero.
|
|
464 |
MoveToAddressState();
|
|
465 |
}
|
|
466 |
|
|
467 |
return KErrNone;
|
|
468 |
}
|
|
469 |
|
|
470 |
|
|
471 |
TInt DOmap3530Usbcc::ConfigureEndpoint(TInt aRealEndpoint, const TUsbcEndpointInfo& aEndpointInfo)
|
|
472 |
//
|
|
473 |
// Prepares (enables) an endpoint (incl. Ep0) for data transmission or reception.
|
|
474 |
//
|
|
475 |
{
|
|
476 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ConfigureEndpoint(%d)", aRealEndpoint));
|
|
477 |
|
|
478 |
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
|
|
479 |
if (n < 0)
|
|
480 |
return KErrArgument;
|
|
481 |
|
|
482 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
|
|
483 |
if (ep->iDisabled == EFalse)
|
|
484 |
{
|
|
485 |
EnableEndpointInterrupt(aRealEndpoint);
|
|
486 |
if(n!=0)
|
|
487 |
{
|
|
488 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
489 |
if(aRealEndpoint%2==0)
|
|
490 |
{
|
|
491 |
|
|
492 |
AsspRegister::Write16(KUSBBase+K_PERI_RXCSR_REG, K_RX_CLRDATATOG | K_RX_DISNYET);
|
|
493 |
}
|
|
494 |
else
|
|
495 |
{
|
|
496 |
AsspRegister::Write16(KUSBBase+K_PERI_TXCSR_REG, K_TX_CLRDATATOG);
|
|
497 |
}
|
|
498 |
}
|
|
499 |
else
|
|
500 |
{
|
|
501 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
|
|
502 |
AsspRegister::Write16(KUSBBase+K_PERI_CSR0_REG, K_EP0_FLUSHFIFO); // FlushFifo;
|
|
503 |
}
|
|
504 |
}
|
|
505 |
ep->iNoBuffer = EFalse;
|
|
506 |
if (n == 0)
|
|
507 |
iEp0Configured = ETrue;
|
|
508 |
|
|
509 |
return KErrNone;
|
|
510 |
}
|
|
511 |
|
|
512 |
|
|
513 |
TInt DOmap3530Usbcc::DeConfigureEndpoint(TInt aRealEndpoint)
|
|
514 |
//
|
|
515 |
// Disables an endpoint (incl. Ep0).
|
|
516 |
//
|
|
517 |
{
|
|
518 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeConfigureEndpoint(%d)", aRealEndpoint));
|
|
519 |
|
|
520 |
const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
|
|
521 |
if (n < 0)
|
|
522 |
return KErrArgument;
|
|
523 |
|
|
524 |
DisableEndpointInterrupt(aRealEndpoint);
|
|
525 |
if (n == 0)
|
|
526 |
{
|
|
527 |
iEp0Configured = EFalse;
|
|
528 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
|
|
529 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO);
|
|
530 |
}
|
|
531 |
else
|
|
532 |
{
|
|
533 |
if(aRealEndpoint%2==0)
|
|
534 |
{
|
|
535 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
536 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_FLUSHFIFO);
|
|
537 |
}
|
|
538 |
else
|
|
539 |
{
|
|
540 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
541 |
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_FLUSHFIFO);
|
|
542 |
}
|
|
543 |
}
|
|
544 |
return KErrNone;
|
|
545 |
}
|
|
546 |
|
|
547 |
|
|
548 |
TInt DOmap3530Usbcc::AllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource)
|
|
549 |
//
|
|
550 |
// Puts the requested endpoint resource to use, if possible.
|
|
551 |
//
|
|
552 |
{
|
|
553 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::AllocateEndpointResource(%d): %d",
|
|
554 |
aRealEndpoint, aResource));
|
|
555 |
|
|
556 |
// TO DO: Allocate endpoint resource here.
|
|
557 |
|
|
558 |
return KErrNone;
|
|
559 |
}
|
|
560 |
|
|
561 |
|
|
562 |
TInt DOmap3530Usbcc::DeAllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource)
|
|
563 |
//
|
|
564 |
// Stops the use of the indicated endpoint resource, if beneficial.
|
|
565 |
//
|
|
566 |
{
|
|
567 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeAllocateEndpointResource(%d): %d",
|
|
568 |
aRealEndpoint, aResource));
|
|
569 |
|
|
570 |
// TO DO: Deallocate endpoint resource here.
|
|
571 |
|
|
572 |
return KErrNone;
|
|
573 |
}
|
|
574 |
|
|
575 |
|
|
576 |
TBool DOmap3530Usbcc::QueryEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) const
|
|
577 |
//
|
|
578 |
// Returns the status of the indicated resource and endpoint.
|
|
579 |
//
|
|
580 |
{
|
|
581 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::QueryEndpointResource(%d): %d",
|
|
582 |
aRealEndpoint, aResource));
|
|
583 |
|
|
584 |
// TO DO: Query endpoint resource here. The return value should reflect the actual state.
|
|
585 |
return ETrue;
|
|
586 |
}
|
|
587 |
|
|
588 |
|
|
589 |
TInt DOmap3530Usbcc::OpenDmaChannel(TInt aRealEndpoint)
|
|
590 |
//
|
|
591 |
// Opens a DMA channel for this endpoint. This function is always called during the creation of an endpoint
|
|
592 |
// in the PIL. If DMA channels are a scarce resource, it's possible to do nothing here and wait for an
|
|
593 |
// AllocateEndpointResource call instead.
|
|
594 |
//
|
|
595 |
{
|
|
596 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::OpenDmaChannel(%d)", aRealEndpoint));
|
|
597 |
|
|
598 |
// TO DO (optional): Open DMA channel here.
|
|
599 |
|
|
600 |
// An error should only be returned in case of an actual DMA problem.
|
|
601 |
return KErrNone;
|
|
602 |
}
|
|
603 |
|
|
604 |
|
|
605 |
void DOmap3530Usbcc::CloseDmaChannel(TInt aRealEndpoint)
|
|
606 |
//
|
|
607 |
// Closes a DMA channel for this endpoint. This function is always called during the destruction of an
|
|
608 |
// endpoint in the PIL.
|
|
609 |
//
|
|
610 |
{
|
|
611 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::CloseDmaChannel(%d)", aRealEndpoint));
|
|
612 |
|
|
613 |
// TO DO (optional): Close DMA channel here (only if it was opened via OpenDmaChannel).
|
|
614 |
}
|
|
615 |
|
|
616 |
|
|
617 |
TInt DOmap3530Usbcc::SetupEndpointRead(TInt aRealEndpoint, TUsbcRequestCallback& aCallback)
|
|
618 |
//
|
|
619 |
// Sets up a read request for an endpoint on behalf of the LDD.
|
|
620 |
//
|
|
621 |
{
|
|
622 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointRead(%d)", aRealEndpoint));
|
|
623 |
if (!IS_OUT_ENDPOINT(aRealEndpoint))
|
|
624 |
{
|
|
625 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint));
|
|
626 |
return KErrArgument;
|
|
627 |
}
|
|
628 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
|
|
629 |
if (ep->iRxBuf != NULL)
|
|
630 |
{
|
|
631 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", aRealEndpoint));
|
|
632 |
return KErrGeneral;
|
|
633 |
}
|
|
634 |
ep->iRxBuf = aCallback.iBufferStart;
|
|
635 |
ep->iReceived = 0;
|
|
636 |
ep->iLength = aCallback.iLength;
|
|
637 |
|
|
638 |
// For Bulk reads we start out with the assumption of 1 packet (see BulkReceive for why):
|
|
639 |
ep->iPackets = IS_BULK_OUT_ENDPOINT(aRealEndpoint) ? 1 : 0;
|
|
640 |
ep->iRequest = &aCallback;
|
|
641 |
ep->iPacketIndex = aCallback.iPacketIndex;
|
|
642 |
if (IS_BULK_OUT_ENDPOINT(aRealEndpoint))
|
|
643 |
*ep->iPacketIndex = 0; // a one-off optimization
|
|
644 |
ep->iPacketSize = aCallback.iPacketSize;
|
|
645 |
|
|
646 |
if (ep->iDisabled)
|
|
647 |
{
|
|
648 |
ep->iDisabled = EFalse;
|
|
649 |
EnableEndpointInterrupt(aRealEndpoint);
|
|
650 |
}
|
|
651 |
else if (ep->iNoBuffer)
|
|
652 |
{
|
|
653 |
__KTRACE_OPT(KUSB, Kern::Printf(" > There had been no Rx buffer available: reading Rx FIFO now"));
|
|
654 |
ep->iNoBuffer = EFalse;
|
|
655 |
if (IS_BULK_OUT_ENDPOINT(aRealEndpoint))
|
|
656 |
{
|
|
657 |
BulkReadRxFifo(aRealEndpoint);
|
|
658 |
}
|
|
659 |
else if (IS_ISO_OUT_ENDPOINT(aRealEndpoint))
|
|
660 |
{
|
|
661 |
IsoReadRxFifo(aRealEndpoint);
|
|
662 |
}
|
|
663 |
else
|
|
664 |
{
|
|
665 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found"));
|
|
666 |
}
|
|
667 |
}
|
|
668 |
|
|
669 |
return KErrNone;
|
|
670 |
}
|
|
671 |
|
|
672 |
|
|
673 |
TInt DOmap3530Usbcc::SetupEndpointWrite(TInt aRealEndpoint, TUsbcRequestCallback& aCallback)
|
|
674 |
//
|
|
675 |
// Sets up a write request for an endpoint on behalf of the LDD.
|
|
676 |
//
|
|
677 |
{
|
|
678 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointWrite(%d)", aRealEndpoint));
|
|
679 |
|
|
680 |
if (!IS_IN_ENDPOINT(aRealEndpoint))
|
|
681 |
{
|
|
682 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint));
|
|
683 |
return KErrArgument;
|
|
684 |
}
|
|
685 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
|
|
686 |
if (ep->iTxBuf != NULL)
|
|
687 |
{
|
|
688 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: iEndpoints[%d].iTxBuf != NULL", aRealEndpoint));
|
|
689 |
return KErrGeneral;
|
|
690 |
}
|
|
691 |
ep->iTxBuf = aCallback.iBufferStart;
|
|
692 |
ep->iTransmitted = 0;
|
|
693 |
ep->iLength = aCallback.iLength;
|
|
694 |
ep->iPackets = 0;
|
|
695 |
ep->iZlpReqd = aCallback.iZlpReqd;
|
|
696 |
ep->iRequest = &aCallback;
|
|
697 |
|
|
698 |
if (IS_BULK_IN_ENDPOINT(aRealEndpoint))
|
|
699 |
{
|
|
700 |
if (ep->iDisabled)
|
|
701 |
{
|
|
702 |
ep->iDisabled = EFalse;
|
|
703 |
EnableEndpointInterrupt(aRealEndpoint);
|
|
704 |
}
|
|
705 |
BulkTransmit(aRealEndpoint);
|
|
706 |
}
|
|
707 |
else if (IS_ISO_IN_ENDPOINT(aRealEndpoint))
|
|
708 |
{
|
|
709 |
IsoTransmit(aRealEndpoint);
|
|
710 |
}
|
|
711 |
else if (IS_INT_IN_ENDPOINT(aRealEndpoint))
|
|
712 |
{
|
|
713 |
IntTransmit(aRealEndpoint);
|
|
714 |
}
|
|
715 |
else
|
|
716 |
{
|
|
717 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found"));
|
|
718 |
}
|
|
719 |
|
|
720 |
return KErrNone;
|
|
721 |
}
|
|
722 |
|
|
723 |
|
|
724 |
TInt DOmap3530Usbcc::CancelEndpointRead(TInt aRealEndpoint)
|
|
725 |
//
|
|
726 |
// Cancels a read request for an endpoint on behalf of the LDD.
|
|
727 |
// No completion to the PIL occurs.
|
|
728 |
//
|
|
729 |
{
|
|
730 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::CancelEndpointRead(%d)", aRealEndpoint));
|
|
731 |
|
|
732 |
if (!IS_OUT_ENDPOINT(aRealEndpoint))
|
|
733 |
{
|
|
734 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint));
|
|
735 |
return KErrArgument;
|
|
736 |
}
|
|
737 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
|
|
738 |
if (ep->iRxBuf == NULL)
|
|
739 |
{
|
|
740 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf == NULL", aRealEndpoint));
|
|
741 |
return KErrNone;
|
|
742 |
}
|
|
743 |
|
|
744 |
// : Flush the Ep's Rx FIFO here
|
|
745 |
if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
|
|
746 |
{
|
|
747 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
|
|
748 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO );
|
|
749 |
}
|
|
750 |
else
|
|
751 |
{
|
|
752 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
753 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_FLUSHFIFO );
|
|
754 |
}
|
|
755 |
|
|
756 |
ep->iRxBuf = NULL;
|
|
757 |
ep->iReceived = 0;
|
|
758 |
ep->iNoBuffer = EFalse;
|
|
759 |
|
|
760 |
return KErrNone;
|
|
761 |
}
|
|
762 |
|
|
763 |
|
|
764 |
TInt DOmap3530Usbcc::CancelEndpointWrite(TInt aRealEndpoint)
|
|
765 |
//
|
|
766 |
// Cancels a write request for an endpoint on behalf of the LDD.
|
|
767 |
// No completion to the PIL occurs.
|
|
768 |
//
|
|
769 |
{
|
|
770 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::CancelEndpointWrite(%d)", aRealEndpoint));
|
|
771 |
|
|
772 |
if (!IS_IN_ENDPOINT(aRealEndpoint))
|
|
773 |
{
|
|
774 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint));
|
|
775 |
return KErrArgument;
|
|
776 |
}
|
|
777 |
TEndpoint* const ep = &iEndpoints[aRealEndpoint];
|
|
778 |
if (ep->iTxBuf == NULL)
|
|
779 |
{
|
|
780 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iTxBuf == NULL", aRealEndpoint));
|
|
781 |
return KErrNone;
|
|
782 |
}
|
|
783 |
|
|
784 |
// TO DO (optional): Flush the Ep's Tx FIFO here, if possible.
|
|
785 |
if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
|
|
786 |
{
|
|
787 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
|
|
788 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO );
|
|
789 |
}
|
|
790 |
else
|
|
791 |
{
|
|
792 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
793 |
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_FLUSHFIFO );
|
|
794 |
}
|
|
795 |
|
|
796 |
ep->iTxBuf = NULL;
|
|
797 |
ep->iTransmitted = 0;
|
|
798 |
ep->iNoBuffer = EFalse;
|
|
799 |
|
|
800 |
return KErrNone;
|
|
801 |
}
|
|
802 |
|
|
803 |
|
|
804 |
TInt DOmap3530Usbcc::SetupEndpointZeroRead()
|
|
805 |
//
|
|
806 |
// Sets up an Ep0 read request (own function due to Ep0's special status).
|
|
807 |
//
|
|
808 |
{
|
|
809 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointZeroRead"));
|
|
810 |
|
|
811 |
TEndpoint* const ep = &iEndpoints[KEp0_Out];
|
|
812 |
if (ep->iRxBuf != NULL)
|
|
813 |
{
|
|
814 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", KEp0_Out));
|
|
815 |
return KErrGeneral;
|
|
816 |
}
|
|
817 |
ep->iRxBuf = iEp0_RxBuf;
|
|
818 |
ep->iReceived = 0;
|
|
819 |
|
|
820 |
return KErrNone;
|
|
821 |
}
|
|
822 |
|
|
823 |
|
|
824 |
TInt DOmap3530Usbcc::SetupEndpointZeroWrite(const TUint8* aBuffer, TInt aLength, TBool aZlpReqd)
|
|
825 |
//
|
|
826 |
// Sets up an Ep0 write request (own function due to Ep0's special status).
|
|
827 |
//
|
|
828 |
{
|
|
829 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointZeroWrite"));
|
|
830 |
|
|
831 |
TEndpoint* const ep = &iEndpoints[KEp0_In];
|
|
832 |
if (ep->iTxBuf != NULL)
|
|
833 |
{
|
|
834 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: iEndpoints[%d].iTxBuf != NULL", KEp0_In));
|
|
835 |
return KErrGeneral;
|
|
836 |
}
|
|
837 |
ep->iTxBuf = aBuffer;
|
|
838 |
ep->iTransmitted = 0;
|
|
839 |
ep->iLength = aLength;
|
|
840 |
ep->iZlpReqd = aZlpReqd;
|
|
841 |
ep->iRequest = NULL;
|
|
842 |
Ep0Transmit();
|
|
843 |
|
|
844 |
return KErrNone;
|
|
845 |
}
|
|
846 |
|
|
847 |
|
|
848 |
TInt DOmap3530Usbcc::SendEp0ZeroByteStatusPacket()
|
|
849 |
//
|
|
850 |
// Sets up an Ep0 write request for zero bytes.
|
|
851 |
// This is a separate function because no data transfer is involved here.
|
|
852 |
//
|
|
853 |
{
|
|
854 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SendEp0ZeroByteStatusPacket"));
|
|
855 |
|
|
856 |
// This is possibly a bit tricky. When this function is called it just means that the higher layer wants a
|
|
857 |
// ZLP to be sent. Whether we actually send one manually here depends on a number of factors, as the
|
|
858 |
// current Ep0 state (i.e. the stage of the Ep0 Control transfer), and, in case the hardware handles some
|
|
859 |
// ZLPs itself, whether it might already handle this one.
|
|
860 |
|
|
861 |
// Here is an example of what the checking of the conditions might look like:
|
|
862 |
|
|
863 |
#ifndef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
|
|
864 |
if ((!iEp0ReceivedNonStdRequest && iEp0State == EP0_IN_DATA_PHASE) ||
|
|
865 |
#else
|
|
866 |
if ((!iEp0ReceivedNonStdRequest && iEp0State != EP0_IDLE) ||
|
|
867 |
#endif
|
|
868 |
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
|
|
869 |
(iEp0ReceivedNonStdRequest && iEp0State != EP0_OUT_DATA_PHASE))
|
|
870 |
#else
|
|
871 |
(iEp0ReceivedNonStdRequest))
|
|
872 |
#endif
|
|
873 |
|
|
874 |
{
|
|
875 |
// TO DO: Arrange for the sending of a ZLP here.
|
|
876 |
Kern::Printf("ZLP!");
|
|
877 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
|
|
878 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND );
|
|
879 |
}
|
|
880 |
|
|
881 |
return KErrNone;
|
|
882 |
}
|
|
883 |
|
|
884 |
|
|
885 |
TInt DOmap3530Usbcc::StallEndpoint(TInt aRealEndpoint)
|
|
886 |
//
|
|
887 |
// Stalls an endpoint.
|
|
888 |
//
|
|
889 |
{
|
|
890 |
__KTRACE_OPT(KPANIC, Kern::Printf("DOmap3530Usbcc::StallEndpoint(%d)", aRealEndpoint));
|
|
891 |
|
|
892 |
if (IS_ISO_ENDPOINT(aRealEndpoint))
|
|
893 |
{
|
|
894 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint cannot be stalled"));
|
|
895 |
return KErrArgument;
|
|
896 |
}
|
|
897 |
|
|
898 |
// Stall the endpoint here.
|
|
899 |
if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
|
|
900 |
{
|
|
901 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
|
|
902 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SENDSTALL);
|
|
903 |
}
|
|
904 |
else
|
|
905 |
if(aRealEndpoint%2==0)
|
|
906 |
{
|
|
907 |
// RX stall
|
|
908 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
909 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_SENDSTALL);
|
|
910 |
}
|
|
911 |
else
|
|
912 |
{
|
|
913 |
// TX stall
|
|
914 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
915 |
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_SENDSTALL );
|
|
916 |
}
|
|
917 |
return KErrNone;
|
|
918 |
}
|
|
919 |
|
|
920 |
|
|
921 |
TInt DOmap3530Usbcc::ClearStallEndpoint(TInt aRealEndpoint)
|
|
922 |
//
|
|
923 |
// Clears the stall condition of an endpoint.
|
|
924 |
//
|
|
925 |
{
|
|
926 |
__KTRACE_OPT(KPANIC, Kern::Printf("DOmap3530Usbcc::ClearStallEndpoint(%d)", aRealEndpoint));
|
|
927 |
|
|
928 |
if (IS_ISO_ENDPOINT(aRealEndpoint))
|
|
929 |
{
|
|
930 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint cannot be unstalled"));
|
|
931 |
return KErrArgument;
|
|
932 |
}
|
|
933 |
|
|
934 |
// De-stall the endpoint here.
|
|
935 |
|
|
936 |
if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
|
|
937 |
{
|
|
938 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
|
|
939 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, K_EP0_SENTSTALL, KSetNone );
|
|
940 |
}
|
|
941 |
else
|
|
942 |
if(aRealEndpoint%2==0)
|
|
943 |
{
|
|
944 |
//Clear RX stall
|
|
945 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
946 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_SENDSTALL, KSetNone );
|
|
947 |
}
|
|
948 |
else
|
|
949 |
{
|
|
950 |
//Clear TX stall
|
|
951 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
952 |
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_SENDSTALL, KSetNone );
|
|
953 |
}
|
|
954 |
|
|
955 |
return KErrNone;
|
|
956 |
}
|
|
957 |
|
|
958 |
|
|
959 |
TInt DOmap3530Usbcc::EndpointStallStatus(TInt aRealEndpoint) const
|
|
960 |
//
|
|
961 |
// Reports the stall status of an endpoint.
|
|
962 |
//
|
|
963 |
{
|
|
964 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EndpointStallStatus(%d)", aRealEndpoint));
|
|
965 |
if (IS_ISO_ENDPOINT(aRealEndpoint))
|
|
966 |
{
|
|
967 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Iso endpoint has no stall status"));
|
|
968 |
return KErrArgument;
|
|
969 |
}
|
|
970 |
|
|
971 |
// Query endpoint stall status here. The return value should reflect the actual state.
|
|
972 |
if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
|
|
973 |
{
|
|
974 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
|
|
975 |
TInt status = AsspRegister::Read16(KUSBBase+K_PERI_CSR0_REG);
|
|
976 |
return status & K_EP0_SENTSTALL;
|
|
977 |
}
|
|
978 |
else
|
|
979 |
if(aRealEndpoint%2==0)
|
|
980 |
{
|
|
981 |
//Clear RX stall
|
|
982 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
983 |
TInt status = AsspRegister::Read16(KUSBBase+K_PERI_RXCSR_REG);
|
|
984 |
return status & K_RX_SENDSTALL;
|
|
985 |
}
|
|
986 |
else
|
|
987 |
{
|
|
988 |
//Clear TX stall
|
|
989 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
990 |
TInt status = AsspRegister::Read16(KUSBBase+K_PERI_TXCSR_REG);
|
|
991 |
return status & K_TX_SENDSTALL;
|
|
992 |
|
|
993 |
}
|
|
994 |
}
|
|
995 |
|
|
996 |
|
|
997 |
TInt DOmap3530Usbcc::EndpointErrorStatus(TInt aRealEndpoint) const
|
|
998 |
//
|
|
999 |
// Reports the error status of an endpoint.
|
|
1000 |
//
|
|
1001 |
{
|
|
1002 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EndpointErrorStatus(%d)", aRealEndpoint));
|
|
1003 |
|
|
1004 |
if (!IS_VALID_ENDPOINT(aRealEndpoint))
|
|
1005 |
{
|
|
1006 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: !IS_VALID_ENDPOINT(%d)", aRealEndpoint));
|
|
1007 |
return KErrArgument;
|
|
1008 |
}
|
|
1009 |
|
|
1010 |
// TO DO: Query endpoint error status here. The return value should reflect the actual state.
|
|
1011 |
// With some UDCs there is no way of inquiring the endpoint error status; say 'ETrue' in that case.
|
|
1012 |
|
|
1013 |
// Bulk EP's don't have an error status
|
|
1014 |
return ETrue;
|
|
1015 |
}
|
|
1016 |
|
|
1017 |
|
|
1018 |
TInt DOmap3530Usbcc::ResetDataToggle(TInt aRealEndpoint)
|
|
1019 |
//
|
|
1020 |
// Resets to zero the data toggle bit of an endpoint.
|
|
1021 |
//
|
|
1022 |
{
|
|
1023 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ResetDataToggle(%d)", aRealEndpoint));
|
|
1024 |
|
|
1025 |
// Reset the endpoint's data toggle bit here.
|
|
1026 |
// With some UDCs there is no way to individually reset the endpoint's toggle bits; just return KErrNone
|
|
1027 |
// in that case.
|
|
1028 |
|
|
1029 |
if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
|
|
1030 |
{
|
|
1031 |
// No way of setting data toggle for EP0
|
|
1032 |
}
|
|
1033 |
else
|
|
1034 |
if(aRealEndpoint%2==0)
|
|
1035 |
{
|
|
1036 |
//Clear RX stall
|
|
1037 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
1038 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_CLRDATATOG);
|
|
1039 |
}
|
|
1040 |
else
|
|
1041 |
{
|
|
1042 |
//Clear TX stall
|
|
1043 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
|
|
1044 |
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_CLRDATATOG);
|
|
1045 |
}
|
|
1046 |
|
|
1047 |
return KErrNone;
|
|
1048 |
}
|
|
1049 |
|
|
1050 |
|
|
1051 |
TInt DOmap3530Usbcc::SynchFrameNumber() const
|
|
1052 |
//
|
|
1053 |
// For use with isochronous endpoints only. Causes the SOF frame number to be returned.
|
|
1054 |
//
|
|
1055 |
{
|
|
1056 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SynchFrameNumber"));
|
|
1057 |
|
|
1058 |
// TO DO: Query and return the SOF frame number here.
|
|
1059 |
return 0;
|
|
1060 |
}
|
|
1061 |
|
|
1062 |
void DOmap3530Usbcc::SetSynchFrameNumber(TInt aFrameNumber)
|
|
1063 |
//
|
|
1064 |
// For use with isochronous endpoints only. Causes the SOF frame number to be stored.
|
|
1065 |
//
|
|
1066 |
{
|
|
1067 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetSynchFrameNumber(%d)", aFrameNumber));
|
|
1068 |
|
|
1069 |
// We should actually store this number somewhere. But the PIL always sends '0x00'
|
|
1070 |
// in response to a SYNCH_FRAME request...
|
|
1071 |
// TO DO: Store the frame number. Alternatively (until SYNCH_FRAME request specification changes): Do
|
|
1072 |
// nothing.
|
|
1073 |
}
|
|
1074 |
|
|
1075 |
TInt DOmap3530Usbcc::StartUdc()
|
|
1076 |
//
|
|
1077 |
// Called to initialize the device controller hardware before any operation can be performed.
|
|
1078 |
//
|
|
1079 |
{
|
|
1080 |
__KTRACE_OPT(KUSB,Kern::Printf("DOmap3530Usbcc::StartUdc"));
|
|
1081 |
|
|
1082 |
if (iInitialized)
|
|
1083 |
{
|
|
1084 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UDC already initialised"));
|
|
1085 |
return KErrNone;
|
|
1086 |
}
|
|
1087 |
|
|
1088 |
// Disable UDC (might also reset the entire design):
|
|
1089 |
UdcDisable();
|
|
1090 |
|
|
1091 |
// Bind & enable the UDC interrupt
|
|
1092 |
if (SetupUdcInterrupt() != KErrNone)
|
|
1093 |
{
|
|
1094 |
return KErrGeneral;
|
|
1095 |
}
|
|
1096 |
// Enable the slave clock
|
|
1097 |
EnableSICLK();
|
|
1098 |
|
|
1099 |
// Write meaningful values to some registers:
|
|
1100 |
InitialiseUdcRegisters();
|
|
1101 |
|
|
1102 |
// Finally, turn on the UDC:
|
|
1103 |
UdcEnable();
|
|
1104 |
|
|
1105 |
// and enable the PHY
|
|
1106 |
iPhy->StartPHY();
|
|
1107 |
iPhy->SetPHYMode(ENormal);
|
|
1108 |
|
|
1109 |
// Even if only one USB feature has been enabled, we later need to undo it:
|
|
1110 |
iInitialized = ETrue;
|
|
1111 |
|
|
1112 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc: UDC Enabled"));
|
|
1113 |
|
|
1114 |
return KErrNone;
|
|
1115 |
}
|
|
1116 |
|
|
1117 |
|
|
1118 |
TInt DOmap3530Usbcc::StopUdc()
|
|
1119 |
//
|
|
1120 |
// Basically, makes undone what happened in StartUdc.
|
|
1121 |
//
|
|
1122 |
{
|
|
1123 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::StopUdc"));
|
|
1124 |
|
|
1125 |
if (!iInitialized)
|
|
1126 |
{
|
|
1127 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: UDC not initialized"));
|
|
1128 |
return KErrNone;
|
|
1129 |
}
|
|
1130 |
|
|
1131 |
// Disable UDC:
|
|
1132 |
UdcDisable();
|
|
1133 |
// Disable & unbind the UDC interrupt:
|
|
1134 |
ReleaseUdcInterrupt();
|
|
1135 |
iPhy->SetPHYMode(EUART);
|
|
1136 |
|
|
1137 |
// Finally turn off slave clock
|
|
1138 |
DisableSICLK();
|
|
1139 |
|
|
1140 |
// Only when all USB features have been disabled we'll call it a day:
|
|
1141 |
iInitialized = EFalse;
|
|
1142 |
|
|
1143 |
return KErrNone;
|
|
1144 |
}
|
|
1145 |
|
|
1146 |
|
|
1147 |
TInt DOmap3530Usbcc::UdcConnect()
|
|
1148 |
//
|
|
1149 |
// Connects the UDC to the bus under software control. How this is achieved depends on the UDC; the
|
|
1150 |
// functionality might also be part of the Variant component (instead of the ASSP).
|
|
1151 |
//
|
|
1152 |
{
|
|
1153 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcConnect"));
|
|
1154 |
|
|
1155 |
//AsspRegister::Modify8(KUSBBase+KPOWER_REG , KClearNone, KSOFTCONNECT_BIT);
|
|
1156 |
AsspRegister::Write8(KUSBBase+KPOWER_REG , KSOFTCONNECT_BIT | KHSEN_BIT);
|
|
1157 |
iPhy->EnablePHY();
|
|
1158 |
|
|
1159 |
// Here: A call into the Variant-provided function.
|
|
1160 |
return iAssp->UsbConnect();
|
|
1161 |
}
|
|
1162 |
|
|
1163 |
|
|
1164 |
TInt DOmap3530Usbcc::UdcDisconnect()
|
|
1165 |
//
|
|
1166 |
// Disconnects the UDC from the bus under software control. How this is achieved depends on the UDC; the
|
|
1167 |
// functionality might also be part of the Variant component (instead of the ASSP).
|
|
1168 |
//
|
|
1169 |
{
|
|
1170 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcDisconnect"));
|
|
1171 |
|
|
1172 |
// Here: A call into the Variant-provided function.
|
|
1173 |
return iAssp->UsbDisconnect();
|
|
1174 |
}
|
|
1175 |
|
|
1176 |
|
|
1177 |
TBool DOmap3530Usbcc::UsbConnectionStatus() const
|
|
1178 |
//
|
|
1179 |
// Returns a value showing the USB cable connection status of the device.
|
|
1180 |
//
|
|
1181 |
{
|
|
1182 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UsbConnectionStatus"));
|
|
1183 |
|
|
1184 |
return iCableConnected;
|
|
1185 |
}
|
|
1186 |
|
|
1187 |
|
|
1188 |
TBool DOmap3530Usbcc::UsbPowerStatus() const
|
|
1189 |
//
|
|
1190 |
// Returns a truth value showing whether VBUS is currently powered or not.
|
|
1191 |
//
|
|
1192 |
{
|
|
1193 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UsbPowerStatus"));
|
|
1194 |
|
|
1195 |
return iBusIsPowered;
|
|
1196 |
}
|
|
1197 |
|
|
1198 |
|
|
1199 |
TBool DOmap3530Usbcc::DeviceSelfPowered() const
|
|
1200 |
//
|
|
1201 |
// Returns a truth value showing whether the device is currently self-powered or not.
|
|
1202 |
//
|
|
1203 |
{
|
|
1204 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceSelfPowered"));
|
|
1205 |
|
|
1206 |
// TO DO: Query and return self powered status here. The return value should reflect the actual state.
|
|
1207 |
// (This can be always 'ETrue' if the UDC does not support bus-powered devices.)
|
|
1208 |
return ETrue;
|
|
1209 |
}
|
|
1210 |
|
|
1211 |
const TUsbcEndpointCaps* DOmap3530Usbcc::DeviceEndpointCaps() const
|
|
1212 |
//
|
|
1213 |
// Returns a pointer to an array of elements, each of which describes the capabilities of one endpoint.
|
|
1214 |
//
|
|
1215 |
{
|
|
1216 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceEndpointCaps"));
|
|
1217 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Ep: Sizes Mask, Types Mask"));
|
|
1218 |
__KTRACE_OPT(KUSB, Kern::Printf(" > --------------------------"));
|
|
1219 |
for (TInt i = 0; i < KUsbTotalEndpoints; ++i)
|
|
1220 |
{
|
|
1221 |
__KTRACE_OPT(KUSB, Kern::Printf(" > %02d: 0x%08x, 0x%08x",
|
|
1222 |
i, DeviceEndpoints[i].iSizes, DeviceEndpoints[i].iTypesAndDir));
|
|
1223 |
}
|
|
1224 |
return DeviceEndpoints;
|
|
1225 |
}
|
|
1226 |
|
|
1227 |
|
|
1228 |
TInt DOmap3530Usbcc::DeviceTotalEndpoints() const
|
|
1229 |
//
|
|
1230 |
// Returns the element number of the endpoints array a pointer to which is returned by DeviceEndpointCaps.
|
|
1231 |
//
|
|
1232 |
{
|
|
1233 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceTotalEndpoints"));
|
|
1234 |
|
|
1235 |
return KUsbTotalEndpoints;
|
|
1236 |
}
|
|
1237 |
|
|
1238 |
|
|
1239 |
TBool DOmap3530Usbcc::SoftConnectCaps() const
|
|
1240 |
//
|
|
1241 |
// Returns a truth value showing whether or not there is the capability to disconnect and re-connect the D+
|
|
1242 |
// line under software control.
|
|
1243 |
//
|
|
1244 |
{
|
|
1245 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SoftConnectCaps"));
|
|
1246 |
|
|
1247 |
return iSoftwareConnectable;
|
|
1248 |
}
|
|
1249 |
|
|
1250 |
|
|
1251 |
void DOmap3530Usbcc::Suspend()
|
|
1252 |
//
|
|
1253 |
// Called by the PIL after a Suspend event has been reported (by us).
|
|
1254 |
//
|
|
1255 |
{
|
|
1256 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Suspend"));
|
|
1257 |
|
|
1258 |
if (NKern::CurrentContext() == EThread)
|
|
1259 |
{
|
|
1260 |
iSuspendDfc.Enque();
|
|
1261 |
}
|
|
1262 |
else
|
|
1263 |
{
|
|
1264 |
iSuspendDfc.Add();
|
|
1265 |
}
|
|
1266 |
// TO DO (optional): Implement here anything the device might require after bus SUSPEND signalling.
|
|
1267 |
// Need to put the transceiver into suspend too. Can't do it here as it requries I2C and we are in an interrupt context.
|
|
1268 |
AsspRegister::Modify8(KUSBBase+KPOWER_REG , KClearNone, KSUSPENDM_BIT);
|
|
1269 |
}
|
|
1270 |
|
|
1271 |
|
|
1272 |
void DOmap3530Usbcc::Resume()
|
|
1273 |
//
|
|
1274 |
// Called by the PIL after a Resume event has been reported (by us).
|
|
1275 |
//
|
|
1276 |
{
|
|
1277 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Resume"));
|
|
1278 |
if (NKern::CurrentContext() == EThread)
|
|
1279 |
{
|
|
1280 |
iResumeDfc.Enque();
|
|
1281 |
}
|
|
1282 |
else
|
|
1283 |
{
|
|
1284 |
iResumeDfc.Add();
|
|
1285 |
}
|
|
1286 |
|
|
1287 |
// TO DO (optional): Implement here anything the device might require after bus RESUME signalling.
|
|
1288 |
// Need to put the transceiver into resume too. Can't do it here as it requries I2C and we are in an interrupt context.
|
|
1289 |
AsspRegister::Modify8(KUSBBase+KPOWER_REG, KClearNone , KRESUME_BIT);
|
|
1290 |
Kern::NanoWait(10000000); // Wait 10ms - Use a callback instead!
|
|
1291 |
AsspRegister::Modify8(KUSBBase+KPOWER_REG, KRESUME_BIT, KSetNone);
|
|
1292 |
}
|
|
1293 |
|
|
1294 |
|
|
1295 |
void DOmap3530Usbcc::Reset()
|
|
1296 |
//
|
|
1297 |
// Called by the PIL after a Reset event has been reported (by us).
|
|
1298 |
//
|
|
1299 |
{
|
|
1300 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Reset"));
|
|
1301 |
|
|
1302 |
// This does not really belong here, but has to do with the way the PIL sets
|
|
1303 |
// up Ep0 reads and writes.
|
|
1304 |
TEndpoint* ep = &iEndpoints[0];
|
|
1305 |
ep->iRxBuf = NULL;
|
|
1306 |
++ep;
|
|
1307 |
ep->iTxBuf = NULL;
|
|
1308 |
// Idle
|
|
1309 |
Ep0NextState(EP0_IDLE);
|
|
1310 |
// TO DO (optional): Implement here anything the device might require after bus RESET signalling.
|
|
1311 |
// Need to put the transceiver into reset too. Can't do it here as it requries I2C and we are in an interrupt context.
|
|
1312 |
if (NKern::CurrentContext() == EThread)
|
|
1313 |
{
|
|
1314 |
iResetDfc.Enque();
|
|
1315 |
}
|
|
1316 |
else
|
|
1317 |
{
|
|
1318 |
iResetDfc.Add();
|
|
1319 |
}
|
|
1320 |
|
|
1321 |
// Write meaningful values to some registers
|
|
1322 |
InitialiseUdcRegisters();
|
|
1323 |
UdcEnable();
|
|
1324 |
if (iEp0Configured)
|
|
1325 |
EnableEndpointInterrupt(0);
|
|
1326 |
}
|
|
1327 |
|
|
1328 |
|
|
1329 |
// --- DOmap3530Usbcc private --------------------------------------------------
|
|
1330 |
|
|
1331 |
void DOmap3530Usbcc::InitialiseUdcRegisters()
|
|
1332 |
//
|
|
1333 |
// Called after every USB Reset etc.
|
|
1334 |
//
|
|
1335 |
{
|
|
1336 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::InitialiseUdcRegisters"));
|
|
1337 |
|
|
1338 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
|
|
1339 |
AsspRegister::Write8(KUSBBase+K_CONFIGDATA_REG, K_SOFTCONNECT | K_DYNFIFO | K_MPTXE | K_MPRXE);// Dynamic FIFO
|
|
1340 |
|
|
1341 |
// Configure FIFO's
|
|
1342 |
for(TUint n=1; n<KUsbTotalEndpoints; n++) // Fifo for EP 0 is fixed. Size 0x200 (512) for the ISO ep is wrong! FIXME!!!!!!!!!!!! Hacked to make all FIFO's 1024 bytes (ignore ep>16!)
|
|
1343 |
{
|
|
1344 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)((n+1)/2));
|
|
1345 |
if(n%2==0)
|
|
1346 |
{
|
|
1347 |
AsspRegister::Write16(KUSBBase+K_TXMAXP_REG, KMaxPayload | 0x1<<11); // Not sure how many packets we want to split into. Use 2 because it is OK for Bulk and INT
|
|
1348 |
AsspRegister::Write8(KUSBBase+K_TXFIFOSZ_REG, 0x7); // No double buffering, FIFO size == 2^(7+3) = 1024
|
|
1349 |
AsspRegister::Write16(KUSBBase+K_TXFIFOADDR_REG, 128*((TInt)n/2)); // We have 16kb of memory and 16 endpoints. Start each fifo on a 1kb boundary
|
|
1350 |
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_DMAMODE | K_TX_ISO | K_TX_DMAEN, K_TX_CLRDATATOG | K_TX_FLUSHFIFO);
|
|
1351 |
}
|
|
1352 |
else
|
|
1353 |
{
|
|
1354 |
AsspRegister::Write16(KUSBBase+K_RXMAXP_REG, KMaxPayload | 0x1<<11); // Not sure how many packets we want to split into. Use 2 because it is OK for Bulk and INT
|
|
1355 |
AsspRegister::Write8(KUSBBase+K_RXFIFOSZ_REG, 0x7); // No double buffering, FIFO size == 2^(7+3) = 1024
|
|
1356 |
AsspRegister::Write16(KUSBBase+K_RXFIFOADDR_REG, 128*((TInt)(n/2)+8)); // We have 16kb of memory and 16 endpoints. Start each fifo on a 1kb boundary
|
|
1357 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_ISO | K_RX_DMAEN, K_RX_CLRDATATOG | K_RX_FLUSHFIFO | K_RX_DISNYET);
|
|
1358 |
}
|
|
1359 |
}
|
|
1360 |
|
|
1361 |
// Disable interrupt requests for all endpoints
|
|
1362 |
AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG, 0xFFFF, KSetNone);
|
|
1363 |
AsspRegister::Modify16(KUSBBase+K_INTRRXE_REG, 0XFFFE, KSetNone);
|
|
1364 |
|
|
1365 |
AsspRegister::Modify32(KUSBBase+K_OTG_SYSCONFIG_REG, KClearNone, K_ENABLEWAKEUP);
|
|
1366 |
}
|
|
1367 |
|
|
1368 |
|
|
1369 |
void DOmap3530Usbcc::UdcEnable()
|
|
1370 |
//
|
|
1371 |
// Enables the UDC for USB transmission or reception.
|
|
1372 |
//
|
|
1373 |
{
|
|
1374 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcEnable"));
|
|
1375 |
EnableSICLK();
|
|
1376 |
// TO DO: Do whatever is necessary to enable the UDC here. This might include enabling (unmasking)
|
|
1377 |
// the USB Reset interrupt, setting a UDC enable bit, etc.
|
|
1378 |
AsspRegister::Read8(KUSBBase+K_INTRUSB_REG); // Reading this register clears it
|
|
1379 |
AsspRegister::Write8(KUSBBase+K_INTRUSBE_REG, K_INT_SUSPEND | K_INT_RESUME | K_INT_RESET);
|
|
1380 |
DisableSICLK();
|
|
1381 |
}
|
|
1382 |
|
|
1383 |
|
|
1384 |
void DOmap3530Usbcc::UdcDisable()
|
|
1385 |
//
|
|
1386 |
// Disables the UDC.
|
|
1387 |
//
|
|
1388 |
{
|
|
1389 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcDisable"));
|
|
1390 |
EnableSICLK();
|
|
1391 |
// TO DO: Do whatever is necessary to disable the UDC here. This might include disabling (masking)
|
|
1392 |
// the USB Reset interrupt, clearing a UDC enable bit, etc.
|
|
1393 |
AsspRegister::Write8(KUSBBase+K_INTRUSBE_REG, 0x0);
|
|
1394 |
AsspRegister::Read8(KUSBBase+K_INTRUSB_REG); // Reading this register clears it
|
|
1395 |
DisableSICLK();
|
|
1396 |
}
|
|
1397 |
|
|
1398 |
|
|
1399 |
void DOmap3530Usbcc::EnableEndpointInterrupt(TInt aEndpoint)
|
|
1400 |
//
|
|
1401 |
// Enables interrupt requests for an endpoint.
|
|
1402 |
//
|
|
1403 |
{
|
|
1404 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EnableEndpointInterrupt(%d)", aEndpoint));
|
|
1405 |
|
|
1406 |
// Enable (unmask) interrupt requests for this endpoint:
|
|
1407 |
if(aEndpoint==0)
|
|
1408 |
{
|
|
1409 |
AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG , KClearNone, 1<<(int)(aEndpoint/2));
|
|
1410 |
}
|
|
1411 |
else
|
|
1412 |
{
|
|
1413 |
if(aEndpoint%2==0)
|
|
1414 |
{
|
|
1415 |
AsspRegister::Modify16(KUSBBase+K_INTRRXE_REG , KClearNone, 1<<(int)((aEndpoint)/2));
|
|
1416 |
}
|
|
1417 |
else
|
|
1418 |
{
|
|
1419 |
AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG, KClearNone, 1<<(int)((aEndpoint)/2));
|
|
1420 |
}
|
|
1421 |
}
|
|
1422 |
}
|
|
1423 |
|
|
1424 |
|
|
1425 |
void DOmap3530Usbcc::DisableEndpointInterrupt(TInt aEndpoint)
|
|
1426 |
//
|
|
1427 |
// Disables interrupt requests for an endpoint.
|
|
1428 |
//
|
|
1429 |
{
|
|
1430 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DisableEndpointInterrupt(%d)", aEndpoint));
|
|
1431 |
|
|
1432 |
// Disable (mask) interrupt requests for this endpoint:
|
|
1433 |
if(aEndpoint==0)
|
|
1434 |
{
|
|
1435 |
AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG , 1<<(int)(aEndpoint/2), KSetNone);
|
|
1436 |
}
|
|
1437 |
else
|
|
1438 |
{
|
|
1439 |
if(aEndpoint%2==0)
|
|
1440 |
{
|
|
1441 |
AsspRegister::Modify16(KUSBBase+K_INTRRXE_REG , 1<<(int)((aEndpoint)/2), KSetNone);
|
|
1442 |
}
|
|
1443 |
else
|
|
1444 |
{
|
|
1445 |
AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG, 1<<(int)((aEndpoint)/2), KSetNone);
|
|
1446 |
}
|
|
1447 |
}
|
|
1448 |
}
|
|
1449 |
|
|
1450 |
|
|
1451 |
void DOmap3530Usbcc::ClearEndpointInterrupt(TInt aEndpoint)
|
|
1452 |
//
|
|
1453 |
// Clears a pending interrupt request for an endpoint.
|
|
1454 |
//
|
|
1455 |
{
|
|
1456 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ClearEndpointInterrupt(%d)", aEndpoint));
|
|
1457 |
|
|
1458 |
// Clear (reset) pending interrupt request for this endpoint:
|
|
1459 |
if(aEndpoint==0)
|
|
1460 |
{
|
|
1461 |
AsspRegister::Modify16(KUSBBase+K_INTRTX_REG , 1<<(int)(aEndpoint/2), KSetNone);
|
|
1462 |
}
|
|
1463 |
else
|
|
1464 |
{
|
|
1465 |
if(aEndpoint%2==0)
|
|
1466 |
{
|
|
1467 |
AsspRegister::Modify16(KUSBBase+K_INTRRX_REG , 1<<(int)((aEndpoint)/2), KSetNone);
|
|
1468 |
}
|
|
1469 |
else
|
|
1470 |
{
|
|
1471 |
AsspRegister::Modify16(KUSBBase+K_INTRTX_REG, 1<<(int)((aEndpoint)/2), KSetNone);
|
|
1472 |
}
|
|
1473 |
}
|
|
1474 |
}
|
|
1475 |
|
|
1476 |
|
|
1477 |
void DOmap3530Usbcc::Ep0IntService()
|
|
1478 |
//
|
|
1479 |
// ISR for endpoint zero interrupt.
|
|
1480 |
//
|
|
1481 |
{
|
|
1482 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0IntService"));
|
|
1483 |
Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
1484 |
|
|
1485 |
// Enquire about Ep0 status & the interrupt cause here. Depending on the event and the Ep0 state,
|
|
1486 |
|
|
1487 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
|
|
1488 |
TUint ep0 = AsspRegister::Read16(KUSBBase+K_PERI_CSR0_REG);
|
|
1489 |
|
|
1490 |
if(ep0 & K_EP0_SETUPEND)
|
|
1491 |
{
|
|
1492 |
// Setupend is set - A setup transaction ended unexpectedly
|
|
1493 |
Ep0Cancel();
|
|
1494 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_SETUPEND);
|
|
1495 |
Ep0NextState(EP0_IDLE);
|
|
1496 |
}
|
|
1497 |
if(ep0&K_EP0_SENTSTALL)
|
|
1498 |
{
|
|
1499 |
// Stalled! Complete the stall handshake
|
|
1500 |
ClearStallEndpoint(0);
|
|
1501 |
}
|
|
1502 |
|
|
1503 |
switch(iEp0State)
|
|
1504 |
{
|
|
1505 |
case EP0_END_XFER:
|
|
1506 |
Ep0EndXfer();
|
|
1507 |
break;
|
|
1508 |
case EP0_IDLE:
|
|
1509 |
if(ep0&K_EP0_RXPKTRDY)
|
|
1510 |
{
|
|
1511 |
Ep0ReadSetupPkt();
|
|
1512 |
}
|
|
1513 |
else
|
|
1514 |
{
|
|
1515 |
Ep0StatusIn();
|
|
1516 |
}
|
|
1517 |
break;
|
|
1518 |
case EP0_OUT_DATA_PHASE:
|
|
1519 |
Ep0Receive();
|
|
1520 |
break;
|
|
1521 |
case EP0_IN_DATA_PHASE:
|
|
1522 |
Ep0Transmit();
|
|
1523 |
break;
|
|
1524 |
default:
|
|
1525 |
break; // Do nothing
|
|
1526 |
}
|
|
1527 |
|
|
1528 |
ClearEndpointInterrupt(0);
|
|
1529 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
1530 |
}
|
|
1531 |
|
|
1532 |
|
|
1533 |
void DOmap3530Usbcc::Ep0ReadSetupPkt()
|
|
1534 |
//
|
|
1535 |
// Called from the Ep0 ISR when a new Setup packet has been received.
|
|
1536 |
//
|
|
1537 |
{
|
|
1538 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0ReadSetupPkt"));
|
|
1539 |
|
|
1540 |
TEndpoint* const ep = &iEndpoints[KEp0_Out];
|
|
1541 |
TUint8* buf = ep->iRxBuf;
|
|
1542 |
if (!buf)
|
|
1543 |
{
|
|
1544 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Ep0 Rx buffer available (1)"));
|
|
1545 |
StallEndpoint(KEp0_Out);
|
|
1546 |
return;
|
|
1547 |
}
|
|
1548 |
|
|
1549 |
// Read Setup packet data from Rx FIFO into 'buf' here.
|
|
1550 |
// (In this function we don't need to use "ep->iReceived" since Setup packets
|
|
1551 |
// are always 8 bytes long.)
|
|
1552 |
for(TInt x=0; x<KSetupPacketSize; x++)
|
|
1553 |
{
|
|
1554 |
// Should try and check we aren't running out of FIFO!
|
|
1555 |
buf[x] = AsspRegister::Read8(KUSBBase+K_FIFO0_REG);
|
|
1556 |
}
|
|
1557 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY); // The packet has been retrieved from the FIFO
|
|
1558 |
|
|
1559 |
// Upcall into PIL to determine next Ep0 state:
|
|
1560 |
TUsbcEp0State state = EnquireEp0NextState(ep->iRxBuf);
|
|
1561 |
|
|
1562 |
if (state == EEp0StateStatusIn)
|
|
1563 |
{
|
|
1564 |
Ep0NextState(EP0_IDLE); // Ep0 No Data
|
|
1565 |
}
|
|
1566 |
else if (state == EEp0StateDataIn)
|
|
1567 |
{
|
|
1568 |
Ep0NextState(EP0_IN_DATA_PHASE); // Ep0 Control Read
|
|
1569 |
}
|
|
1570 |
else
|
|
1571 |
{
|
|
1572 |
Ep0NextState(EP0_OUT_DATA_PHASE); // Ep0 Control Write
|
|
1573 |
}
|
|
1574 |
|
|
1575 |
ep->iRxBuf = NULL;
|
|
1576 |
const TInt r = Ep0RequestComplete(KEp0_Out, KSetupPacketSize, KErrNone);
|
|
1577 |
|
|
1578 |
// Don't finish (proceed) if request completion returned 'KErrNotFound'!
|
|
1579 |
if (!(r == KErrNone || r == KErrGeneral))
|
|
1580 |
{
|
|
1581 |
DisableEndpointInterrupt(0);
|
|
1582 |
}
|
|
1583 |
|
|
1584 |
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
|
|
1585 |
if (iEp0State == EP0_OUT_DATA_PHASE)
|
|
1586 |
{
|
|
1587 |
// Allow for a premature STATUS IN
|
|
1588 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND); // TXPKTRDY, DATAEND
|
|
1589 |
}
|
|
1590 |
#endif
|
|
1591 |
}
|
|
1592 |
|
|
1593 |
|
|
1594 |
void DOmap3530Usbcc::Ep0ReadSetupPktProceed()
|
|
1595 |
//
|
|
1596 |
// Called by the PIL to signal that it has finished processing a received Setup packet and that the PSL can
|
|
1597 |
// now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 interrupt).
|
|
1598 |
//
|
|
1599 |
{
|
|
1600 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0ReadSetupPktProceed"));
|
|
1601 |
|
|
1602 |
EnableEndpointInterrupt(0);
|
|
1603 |
}
|
|
1604 |
|
|
1605 |
|
|
1606 |
void DOmap3530Usbcc::Ep0Receive()
|
|
1607 |
//
|
|
1608 |
// Called from the Ep0 ISR when a data packet has been received.
|
|
1609 |
//
|
|
1610 |
{
|
|
1611 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0Receive"));
|
|
1612 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
|
|
1613 |
TEndpoint* const ep = &iEndpoints[KEp0_Out];
|
|
1614 |
TUint8* buf = ep->iRxBuf;
|
|
1615 |
if (!buf)
|
|
1616 |
{
|
|
1617 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Ep0 Rx buffer available (2)"));
|
|
1618 |
StallEndpoint(KEp0_Out);
|
|
1619 |
return;
|
|
1620 |
}
|
|
1621 |
|
|
1622 |
TInt n = 0;
|
|
1623 |
// Read packet data from Rx FIFO into 'buf' and update 'n' (# of received bytes) here.
|
|
1624 |
TInt FIFOCount = AsspRegister::Read8(KUSBBase+K_COUNT0_REG);
|
|
1625 |
for(; n<FIFOCount; n++)
|
|
1626 |
{
|
|
1627 |
// Should try and check we aren't running out of FIFO!
|
|
1628 |
buf[n] = AsspRegister::Read8(KUSBBase+K_FIFO0_REG);
|
|
1629 |
}
|
|
1630 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY); // The packet has been retrieved from the FIFO
|
|
1631 |
|
|
1632 |
ep->iReceived = n;
|
|
1633 |
ep->iRxBuf = NULL;
|
|
1634 |
const TInt r = Ep0RequestComplete(KEp0_Out, n, KErrNone);
|
|
1635 |
|
|
1636 |
// Don't finish (proceed) if request was 'KErrNotFound'!
|
|
1637 |
if (!(r == KErrNone || r == KErrGeneral))
|
|
1638 |
{
|
|
1639 |
DisableEndpointInterrupt(0);
|
|
1640 |
}
|
|
1641 |
|
|
1642 |
#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
|
|
1643 |
// Allow for a premature STATUS IN
|
|
1644 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND); // TXPKTRDY, DATAEND
|
|
1645 |
#endif
|
|
1646 |
}
|
|
1647 |
|
|
1648 |
|
|
1649 |
void DOmap3530Usbcc::Ep0ReceiveProceed()
|
|
1650 |
//
|
|
1651 |
// Called by the PIL to signal that it has finished processing a received Ep0 data packet and that the PSL can
|
|
1652 |
// now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 Ep0ReadSetupPkt).
|
|
1653 |
//
|
|
1654 |
{
|
|
1655 |
Ep0ReadSetupPktProceed();
|
|
1656 |
}
|
|
1657 |
|
|
1658 |
|
|
1659 |
void DOmap3530Usbcc::Ep0Transmit()
|
|
1660 |
//
|
|
1661 |
// Called from either the Ep0 ISR or the PIL when a data packet has been or is to be transmitted.
|
|
1662 |
//
|
|
1663 |
{
|
|
1664 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0Transmit"));
|
|
1665 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
|
|
1666 |
if (iEp0State != EP0_IN_DATA_PHASE)
|
|
1667 |
{
|
|
1668 |
__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: Invalid Ep0 state when trying to handle EP0 IN (0x%x)", iEp0State));
|
|
1669 |
// TO DO (optional): Do something about this warning.
|
|
1670 |
}
|
|
1671 |
|
|
1672 |
TEndpoint* const ep = &iEndpoints[KEp0_In];
|
|
1673 |
const TUint8* buf = ep->iTxBuf;
|
|
1674 |
if (!buf)
|
|
1675 |
{
|
|
1676 |
__KTRACE_OPT(KUSB, Kern::Printf(" > No Tx buffer available: returning"));
|
|
1677 |
return;
|
|
1678 |
}
|
|
1679 |
const TInt t = ep->iTransmitted; // already transmitted
|
|
1680 |
buf += t;
|
|
1681 |
TInt n = 0; // now transmitted
|
|
1682 |
|
|
1683 |
// Write packet data (if any) into Tx FIFO from 'buf' and update 'n' (# of tx'ed bytes) here.
|
|
1684 |
for(; n<ep->iLength-ep->iTransmitted && n<KEp0MaxPktSz; n++)
|
|
1685 |
{
|
|
1686 |
// Should try and check we aren't running out of FIFO!
|
|
1687 |
AsspRegister::Write8(KUSBBase+K_FIFO0_REG, buf[n]);
|
|
1688 |
}
|
|
1689 |
|
|
1690 |
ep->iTransmitted += n;
|
|
1691 |
if (n == KEp0MaxPktSz)
|
|
1692 |
{
|
|
1693 |
if (ep->iTransmitted == ep->iLength && !(ep->iZlpReqd))
|
|
1694 |
{
|
|
1695 |
Ep0NextState(EP0_END_XFER);
|
|
1696 |
}
|
|
1697 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY); // TXPKTY,
|
|
1698 |
}
|
|
1699 |
else if (n && n != KEp0MaxPktSz)
|
|
1700 |
{
|
|
1701 |
// Send off the data
|
|
1702 |
__ASSERT_DEBUG((ep->iTransmitted == ep->iLength),
|
|
1703 |
Kern::Printf(" > ERROR: Short packet in mid-transfer"));
|
|
1704 |
Ep0NextState(EP0_END_XFER);
|
|
1705 |
// Send off the data here.
|
|
1706 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY); // TXPKTRDY,
|
|
1707 |
}
|
|
1708 |
else // if (n == 0)
|
|
1709 |
{
|
|
1710 |
__ASSERT_DEBUG((ep->iTransmitted == ep->iLength),
|
|
1711 |
Kern::Printf(" > ERROR: Nothing transmitted but still not finished"));
|
|
1712 |
if (ep->iZlpReqd)
|
|
1713 |
{
|
|
1714 |
// Send a zero length packet
|
|
1715 |
ep->iZlpReqd = EFalse;
|
|
1716 |
Ep0NextState(EP0_END_XFER);
|
|
1717 |
// Arrange for the sending of a ZLP here.
|
|
1718 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND); // TXPKTRDY, DATAEND
|
|
1719 |
}
|
|
1720 |
else
|
|
1721 |
{
|
|
1722 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: nothing transmitted & no ZLP req'd"));
|
|
1723 |
}
|
|
1724 |
}
|
|
1725 |
}
|
|
1726 |
|
|
1727 |
|
|
1728 |
void DOmap3530Usbcc::Ep0EndXfer()
|
|
1729 |
//
|
|
1730 |
// Called at the end of a Ep0 Control transfer.
|
|
1731 |
//
|
|
1732 |
{
|
|
1733 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0EndXfer"));
|
|
1734 |
// Clear Ep0 Rx condition flags here.
|
|
1735 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY | K_EP0_DATAEND); // DATAEND
|
|
1736 |
|
|
1737 |
Ep0NextState(EP0_IDLE);
|
|
1738 |
TEndpoint* const ep = &iEndpoints[KEp0_In];
|
|
1739 |
ep->iTxBuf = NULL;
|
|
1740 |
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrNone);
|
|
1741 |
}
|
|
1742 |
|
|
1743 |
|
|
1744 |
void DOmap3530Usbcc::Ep0Cancel()
|
|
1745 |
//
|
|
1746 |
// Called when an ongoing Ep0 Control transfer has to be aborted prematurely (for instance when receiving a
|
|
1747 |
// new Setup packet before the processing of the old one has completed).
|
|
1748 |
//
|
|
1749 |
{
|
|
1750 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0Cancel"));
|
|
1751 |
|
|
1752 |
Ep0NextState(EP0_IDLE);
|
|
1753 |
TEndpoint* const ep = &iEndpoints[KEp0_In];
|
|
1754 |
if (ep->iTxBuf)
|
|
1755 |
{
|
|
1756 |
ep->iTxBuf = NULL;
|
|
1757 |
const TInt err = (ep->iTransmitted == ep->iLength) ? KErrNone : KErrCancel;
|
|
1758 |
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, err);
|
|
1759 |
}
|
|
1760 |
}
|
|
1761 |
|
|
1762 |
|
|
1763 |
void DOmap3530Usbcc::Ep0PrematureStatusOut()
|
|
1764 |
//
|
|
1765 |
// Called when an ongoing Ep0 Control transfer encounters a premature Status OUT condition.
|
|
1766 |
//
|
|
1767 |
{
|
|
1768 |
__KTRACE_OPT(KPANIC, Kern::Printf("DOmap3530Usbcc::Ep0PrematureStatusOut"));
|
|
1769 |
|
|
1770 |
// Clear Ep0 Rx condition flags here.
|
|
1771 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY | K_EP0_DATAEND); // DATAEND
|
|
1772 |
Ep0NextState(EP0_IDLE);
|
|
1773 |
|
|
1774 |
// Flush the Ep0 Tx FIFO here, if possible.
|
|
1775 |
AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO);
|
|
1776 |
|
|
1777 |
TEndpoint* const ep = &iEndpoints[KEp0_In];
|
|
1778 |
if (ep->iTxBuf)
|
|
1779 |
{
|
|
1780 |
ep->iTxBuf = NULL;
|
|
1781 |
(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrPrematureEnd);
|
|
1782 |
}
|
|
1783 |
}
|
|
1784 |
|
|
1785 |
|
|
1786 |
void DOmap3530Usbcc::Ep0StatusIn()
|
|
1787 |
//
|
|
1788 |
// Called when an ongoing Ep0 Control transfer moves to a Status IN stage.
|
|
1789 |
//
|
|
1790 |
{
|
|
1791 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0StatusIn"));
|
|
1792 |
|
|
1793 |
Ep0NextState(EP0_IDLE);
|
|
1794 |
}
|
|
1795 |
|
|
1796 |
|
|
1797 |
void DOmap3530Usbcc::BulkTransmit(TInt aEndpoint)
|
|
1798 |
//
|
|
1799 |
// Endpoint 1 (BULK IN).
|
|
1800 |
// Called from either the Ep ISR or the PIL when a data packet has been or is to be transmitted.
|
|
1801 |
//
|
|
1802 |
{
|
|
1803 |
Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
1804 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::BulkTransmit(%d)", aEndpoint));
|
|
1805 |
|
|
1806 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aEndpoint/2));
|
|
1807 |
|
|
1808 |
TInt status = AsspRegister::Read16(KUSBBase+K_PERI_TXCSR_REG);
|
|
1809 |
|
|
1810 |
if(status & K_TX_UNDERRUN)
|
|
1811 |
{
|
|
1812 |
// TX UNDERRUN
|
|
1813 |
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_UNDERRUN, KSetNone);
|
|
1814 |
}
|
|
1815 |
if(status & K_TX_SENTSTALL)
|
|
1816 |
{
|
|
1817 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Stall Handshake"));
|
|
1818 |
// Complete stall handshake
|
|
1819 |
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_SENTSTALL, KSetNone);
|
|
1820 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
1821 |
return;
|
|
1822 |
}
|
|
1823 |
if(status & K_TX_SENDSTALL)
|
|
1824 |
{
|
|
1825 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Stalled"));
|
|
1826 |
// We are stalled
|
|
1827 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
1828 |
return;
|
|
1829 |
}
|
|
1830 |
|
|
1831 |
TBool calledFromISR=AsspRegister::Read16(KUSBBase+K_INTRTX_REG) & 1<<(aEndpoint/2)==1;
|
|
1832 |
|
|
1833 |
const TInt idx = aEndpoint; // only in our special case of course!
|
|
1834 |
TEndpoint* const ep = &iEndpoints[idx];
|
|
1835 |
const TUint8* buf = ep->iTxBuf;
|
|
1836 |
|
|
1837 |
if (!buf)
|
|
1838 |
{
|
|
1839 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Tx buffer has been set up"));
|
|
1840 |
DisableEndpointInterrupt(aEndpoint);
|
|
1841 |
ep->iDisabled = ETrue;
|
|
1842 |
ClearEndpointInterrupt(aEndpoint);
|
|
1843 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
1844 |
return;
|
|
1845 |
}
|
|
1846 |
const TInt t = ep->iTransmitted; // already transmitted
|
|
1847 |
const TInt len = ep->iLength; // to be sent in total
|
|
1848 |
// (len || ep->iPackets): Don't complete for a zero bytes request straight away.
|
|
1849 |
if (t >= len && (len || ep->iPackets))
|
|
1850 |
{
|
|
1851 |
if (ep->iZlpReqd)
|
|
1852 |
{
|
|
1853 |
__KTRACE_OPT(KPANIC, Kern::Printf(" > 'Transmit Short Packet' explicitly"));
|
|
1854 |
// Arrange for the sending of a ZLP here.
|
|
1855 |
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_TXPKTRDY); // FIFO_NOT_EMPTY, TXPKTRDY
|
|
1856 |
ep->iZlpReqd = EFalse;
|
|
1857 |
}
|
|
1858 |
else
|
|
1859 |
{
|
|
1860 |
__KTRACE_OPT(KUSB, Kern::Printf(" > All data sent: %d --> completing", len));
|
|
1861 |
ep->iTxBuf = NULL;
|
|
1862 |
ep->iRequest->iTxBytes = ep->iTransmitted;
|
|
1863 |
ep->iRequest->iError = KErrNone;
|
|
1864 |
EndpointRequestComplete(ep->iRequest);
|
|
1865 |
ep->iRequest = NULL;
|
|
1866 |
}
|
|
1867 |
}
|
|
1868 |
else
|
|
1869 |
{
|
|
1870 |
buf += t;
|
|
1871 |
TInt left = len - t; // left in total
|
|
1872 |
TInt n = (left >= KBlkMaxPktSz) ? KBlkMaxPktSz : left; // now to be transmitted
|
|
1873 |
__KTRACE_OPT(KUSB, Kern::Printf(" > About to send %d bytes (%d bytes left in total)", n, left));
|
|
1874 |
|
|
1875 |
// Write data into Tx FIFO from 'buf' here...
|
|
1876 |
TInt x=0;
|
|
1877 |
TInt FIFOAddr = K_FIFO0_REG+K_FIFO_OFFSET*(TInt)((aEndpoint)/2);
|
|
1878 |
for(; x<n; x++) // While FIFO is not full...
|
|
1879 |
{
|
|
1880 |
// Should try and check we aren't running out of FIFO!
|
|
1881 |
AsspRegister::Write8(KUSBBase+FIFOAddr, buf[x]);
|
|
1882 |
}
|
|
1883 |
AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, /*K_TX_FIFONOTEMPTY | */K_TX_TXPKTRDY); // TXPKTRDY
|
|
1884 |
ep->iTransmitted += x;
|
|
1885 |
ep->iPackets++; // only used for (len == 0) case
|
|
1886 |
left -= n; // (still) left in total
|
|
1887 |
|
|
1888 |
// If double-buffering is available, it might be possible to stick a second packet
|
|
1889 |
// into the FIFO here.
|
|
1890 |
|
|
1891 |
// TO DO (optional): Send another packet if possible (& available) here.
|
|
1892 |
|
|
1893 |
}
|
|
1894 |
if(calledFromISR)
|
|
1895 |
{
|
|
1896 |
ClearEndpointInterrupt(aEndpoint);
|
|
1897 |
}
|
|
1898 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
1899 |
}
|
|
1900 |
|
|
1901 |
|
|
1902 |
|
|
1903 |
void DOmap3530Usbcc::BulkReceive(TInt aEndpoint)
|
|
1904 |
//
|
|
1905 |
// Endpoint 2 (BULK OUT) (This one is called in an ISR.)
|
|
1906 |
//
|
|
1907 |
{
|
|
1908 |
Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
1909 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::BulkReceive(%d)", aEndpoint));
|
|
1910 |
|
|
1911 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aEndpoint/2));
|
|
1912 |
|
|
1913 |
// Start NYETTING packets..
|
|
1914 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_DISNYET, KSetNone);
|
|
1915 |
|
|
1916 |
TInt status = AsspRegister::Read16(KUSBBase+K_PERI_RXCSR_REG);
|
|
1917 |
|
|
1918 |
if(status & K_RX_OVERRUN)
|
|
1919 |
{
|
|
1920 |
// RX OVERRUN
|
|
1921 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_OVERRUN, KSetNone);
|
|
1922 |
}
|
|
1923 |
if(status & K_RX_SENTSTALL)
|
|
1924 |
{
|
|
1925 |
// Complete stall handshake
|
|
1926 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_SENTSTALL, K_RX_DISNYET);
|
|
1927 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
1928 |
return;
|
|
1929 |
}
|
|
1930 |
|
|
1931 |
if(status & K_RX_SENDSTALL)
|
|
1932 |
{
|
|
1933 |
// We are stalled
|
|
1934 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_DISNYET);
|
|
1935 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
1936 |
return;
|
|
1937 |
}
|
|
1938 |
|
|
1939 |
TBool calledFromISR=AsspRegister::Read16(KUSBBase+K_INTRRX_REG) & 1<<(aEndpoint/2)==1;
|
|
1940 |
|
|
1941 |
const TInt idx = aEndpoint; // only in our special case of course!
|
|
1942 |
TEndpoint* const ep = &iEndpoints[idx];
|
|
1943 |
TUint8* buf = ep->iRxBuf;
|
|
1944 |
if (!buf)
|
|
1945 |
{
|
|
1946 |
__KTRACE_OPT(KUSB, Kern::Printf(" > No Rx buffer available: setting iNoBuffer"));
|
|
1947 |
ep->iNoBuffer = ETrue;
|
|
1948 |
DisableEndpointInterrupt(aEndpoint);
|
|
1949 |
ep->iDisabled = ETrue;
|
|
1950 |
ClearEndpointInterrupt(aEndpoint);
|
|
1951 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
1952 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_DISNYET);
|
|
1953 |
return;
|
|
1954 |
}
|
|
1955 |
TInt bytes = AsspRegister::Read16(KUSBBase+K_RXCOUNT_REG);
|
|
1956 |
const TInt r = ep->iReceived; // already received
|
|
1957 |
// Check whether a ZLP was received here:
|
|
1958 |
if (bytes==0)
|
|
1959 |
{
|
|
1960 |
__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet"));
|
|
1961 |
}
|
|
1962 |
else// if (status & 2) // some other condition
|
|
1963 |
{
|
|
1964 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes));
|
|
1965 |
if (r + bytes > ep->iLength)
|
|
1966 |
{
|
|
1967 |
__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer"));
|
|
1968 |
ep->iNoBuffer = ETrue;
|
|
1969 |
StopRxTimer(ep);
|
|
1970 |
*ep->iPacketSize = ep->iReceived;
|
|
1971 |
RxComplete(ep);
|
|
1972 |
|
|
1973 |
if(calledFromISR)
|
|
1974 |
{
|
|
1975 |
ClearEndpointInterrupt(aEndpoint);
|
|
1976 |
}
|
|
1977 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_DISNYET);
|
|
1978 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
1979 |
return;
|
|
1980 |
}
|
|
1981 |
buf += r; // set buffer pointer
|
|
1982 |
|
|
1983 |
// Read 'bytes' bytes from Rx FIFO into 'buf' here.
|
|
1984 |
TInt FIFOAddr = K_FIFO0_REG+K_FIFO_OFFSET*(TInt)((aEndpoint)/2);
|
|
1985 |
for(TInt n=0; n<bytes; n++)
|
|
1986 |
{
|
|
1987 |
// Should try and check we aren't running out of FIFO!
|
|
1988 |
buf[n] = AsspRegister::Read8(KUSBBase+FIFOAddr);
|
|
1989 |
}
|
|
1990 |
|
|
1991 |
ep->iReceived += bytes;
|
|
1992 |
}
|
|
1993 |
|
|
1994 |
if (bytes == 0)
|
|
1995 |
{
|
|
1996 |
// ZLPs must be recorded separately
|
|
1997 |
const TInt i = ep->iReceived ? 1 : 0;
|
|
1998 |
ep->iPacketIndex[i] = r;
|
|
1999 |
ep->iPacketSize[i] = 0;
|
|
2000 |
// If there were data packets before: total packets reported 1 -> 2
|
|
2001 |
ep->iPackets += i;
|
|
2002 |
}
|
|
2003 |
|
|
2004 |
if ((bytes < KBlkMaxPktSz) ||
|
|
2005 |
(ep->iReceived == ep->iLength))
|
|
2006 |
{
|
|
2007 |
StopRxTimer(ep);
|
|
2008 |
*ep->iPacketSize = ep->iReceived;
|
|
2009 |
RxComplete(ep);
|
|
2010 |
// since we have no buffer any longer we disable interrupts:
|
|
2011 |
DisableEndpointInterrupt(aEndpoint);
|
|
2012 |
ep->iDisabled = ETrue;
|
|
2013 |
}
|
|
2014 |
else
|
|
2015 |
{
|
|
2016 |
if (!ep->iRxTimerSet)
|
|
2017 |
{
|
|
2018 |
__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer"));
|
|
2019 |
ep->iRxTimerSet = ETrue;
|
|
2020 |
ep->iRxTimer.OneShot(KRxTimerTimeout);
|
|
2021 |
}
|
|
2022 |
else
|
|
2023 |
{
|
|
2024 |
ep->iRxMoreDataRcvd = ETrue;
|
|
2025 |
}
|
|
2026 |
}
|
|
2027 |
if(calledFromISR)
|
|
2028 |
{
|
|
2029 |
ClearEndpointInterrupt(aEndpoint);
|
|
2030 |
}
|
|
2031 |
// Clear Ep Rx condition flags here.
|
|
2032 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_RXPKTRDY, K_RX_DISNYET);
|
|
2033 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
2034 |
}
|
|
2035 |
|
|
2036 |
|
|
2037 |
void DOmap3530Usbcc::BulkReadRxFifo(TInt aEndpoint)
|
|
2038 |
//
|
|
2039 |
// Endpoint 2 (BULK OUT) (This one is called w/o interrupt to be served.)
|
|
2040 |
//
|
|
2041 |
{
|
|
2042 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::BulkReadRxFifo(%d)", aEndpoint));
|
|
2043 |
Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
2044 |
|
|
2045 |
AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aEndpoint/2));
|
|
2046 |
|
|
2047 |
// Start NYETTING packets..
|
|
2048 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_DISNYET, KSetNone);
|
|
2049 |
|
|
2050 |
TInt status = AsspRegister::Read16(KUSBBase+K_PERI_RXCSR_REG);
|
|
2051 |
if(status & K_RX_OVERRUN)
|
|
2052 |
{
|
|
2053 |
// RX OVERRUN
|
|
2054 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_OVERRUN, KSetNone);
|
|
2055 |
}
|
|
2056 |
if(status & K_RX_SENTSTALL)
|
|
2057 |
{
|
|
2058 |
// Complete stall handshake
|
|
2059 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_SENTSTALL, K_RX_DISNYET);
|
|
2060 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
2061 |
return;
|
|
2062 |
}
|
|
2063 |
if(status & K_RX_SENTSTALL)
|
|
2064 |
{
|
|
2065 |
// We are stalled
|
|
2066 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_DISNYET);
|
|
2067 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
2068 |
return;
|
|
2069 |
}
|
|
2070 |
|
|
2071 |
TBool calledFromISR=AsspRegister::Read16(KUSBBase+K_INTRRX_REG) & 1<<(aEndpoint/2)==1;
|
|
2072 |
|
|
2073 |
const TInt idx = aEndpoint; // only in our special case of course!
|
|
2074 |
TEndpoint* const ep = &iEndpoints[idx];
|
|
2075 |
TUint8* buf = ep->iRxBuf;
|
|
2076 |
if (!buf)
|
|
2077 |
{
|
|
2078 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: No Rx buffer has been set up"));
|
|
2079 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
2080 |
return;
|
|
2081 |
}
|
|
2082 |
TInt bytes = AsspRegister::Read16(KUSBBase+K_RXCOUNT_REG);
|
|
2083 |
const TInt r = ep->iReceived; // already received
|
|
2084 |
// Check whether a ZLP was received here:
|
|
2085 |
if (bytes==0) // some condition
|
|
2086 |
{
|
|
2087 |
__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet"));
|
|
2088 |
}
|
|
2089 |
else //if (status & 2) // some other condition
|
|
2090 |
{
|
|
2091 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes));
|
|
2092 |
if (r + bytes > ep->iLength)
|
|
2093 |
{
|
|
2094 |
__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer"));
|
|
2095 |
ep->iNoBuffer = ETrue;
|
|
2096 |
*ep->iPacketSize = ep->iReceived;
|
|
2097 |
RxComplete(ep);
|
|
2098 |
|
|
2099 |
// Stop NYETting packets
|
|
2100 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_DISNYET);
|
|
2101 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
2102 |
return;
|
|
2103 |
}
|
|
2104 |
buf += r; // set buffer pointer
|
|
2105 |
|
|
2106 |
// TO DO: Read 'bytes' bytes from Rx FIFO into 'buf' here.
|
|
2107 |
TInt FIFOAddr = K_FIFO0_REG+K_FIFO_OFFSET*(TInt)((aEndpoint)/2);
|
|
2108 |
for(TInt n=0; n<bytes; n++)
|
|
2109 |
{
|
|
2110 |
// Should try and check we aren't running out of FIFO!
|
|
2111 |
buf[n] = AsspRegister::Read8(KUSBBase+FIFOAddr);
|
|
2112 |
}
|
|
2113 |
ep->iReceived += bytes;
|
|
2114 |
}
|
|
2115 |
if (bytes == 0)
|
|
2116 |
{
|
|
2117 |
// ZLPs must be recorded separately
|
|
2118 |
const TInt i = ep->iReceived ? 1 : 0;
|
|
2119 |
ep->iPacketIndex[i] = r;
|
|
2120 |
ep->iPacketSize[i] = 0;
|
|
2121 |
// If there were data packets before: total packets reported 1 -> 2
|
|
2122 |
ep->iPackets += i;
|
|
2123 |
}
|
|
2124 |
|
|
2125 |
if ((bytes < KBlkMaxPktSz) ||
|
|
2126 |
(ep->iReceived == ep->iLength))
|
|
2127 |
{
|
|
2128 |
*ep->iPacketSize = ep->iReceived;
|
|
2129 |
RxComplete(ep);
|
|
2130 |
}
|
|
2131 |
else
|
|
2132 |
{
|
|
2133 |
if (!ep->iRxTimerSet)
|
|
2134 |
{
|
|
2135 |
__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer"));
|
|
2136 |
ep->iRxTimerSet = ETrue;
|
|
2137 |
ep->iRxTimer.OneShot(KRxTimerTimeout);
|
|
2138 |
}
|
|
2139 |
else
|
|
2140 |
{
|
|
2141 |
ep->iRxMoreDataRcvd = ETrue;
|
|
2142 |
}
|
|
2143 |
}
|
|
2144 |
|
|
2145 |
if(calledFromISR)
|
|
2146 |
{
|
|
2147 |
ClearEndpointInterrupt(aEndpoint);
|
|
2148 |
}
|
|
2149 |
|
|
2150 |
// Stop NYETting packets and Clear Ep Rx condition flags here.
|
|
2151 |
AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_RXPKTRDY, K_RX_DISNYET);
|
|
2152 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
2153 |
}
|
|
2154 |
|
|
2155 |
|
|
2156 |
void DOmap3530Usbcc::IsoTransmit(TInt aEndpoint)
|
|
2157 |
//
|
|
2158 |
// Endpoint 3 (ISOCHRONOUS IN).
|
|
2159 |
//
|
|
2160 |
{
|
|
2161 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IsoTransmit(%d)", aEndpoint));
|
|
2162 |
|
|
2163 |
// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit.
|
|
2164 |
|
|
2165 |
}
|
|
2166 |
|
|
2167 |
|
|
2168 |
void DOmap3530Usbcc::IsoReceive(TInt aEndpoint)
|
|
2169 |
//
|
|
2170 |
// Endpoint 4 (ISOCHRONOUS OUT) (This one is called in an ISR.)
|
|
2171 |
//
|
|
2172 |
{
|
|
2173 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IsoReceive(%d)", aEndpoint));
|
|
2174 |
|
|
2175 |
// TO DO: Read data from endpoint FIFO. Might be similar to BulkReceive.
|
|
2176 |
}
|
|
2177 |
|
|
2178 |
|
|
2179 |
void DOmap3530Usbcc::IsoReadRxFifo(TInt aEndpoint)
|
|
2180 |
//
|
|
2181 |
// Endpoint 4 (ISOCHRONOUS OUT) (This one is called w/o interrupt to be served.)
|
|
2182 |
//
|
|
2183 |
{
|
|
2184 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IsoReadRxFifo(%d)", aEndpoint));
|
|
2185 |
|
|
2186 |
// TO DO: Read data from endpoint FIFO. Might be similar to BulkReadRxFifo.
|
|
2187 |
}
|
|
2188 |
|
|
2189 |
|
|
2190 |
void DOmap3530Usbcc::IntTransmit(TInt aEndpoint)
|
|
2191 |
//
|
|
2192 |
// Endpoint 5 (INTERRUPT IN).
|
|
2193 |
//
|
|
2194 |
{
|
|
2195 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IntTransmit(%d)", aEndpoint));
|
|
2196 |
|
|
2197 |
// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit.
|
|
2198 |
}
|
|
2199 |
|
|
2200 |
|
|
2201 |
void DOmap3530Usbcc::RxComplete(TEndpoint* aEndpoint)
|
|
2202 |
//
|
|
2203 |
// Called at the end of an Rx (OUT) transfer to complete to the PIL.
|
|
2204 |
//
|
|
2205 |
{
|
|
2206 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::RxComplete"));
|
|
2207 |
TUsbcRequestCallback* const req = aEndpoint->iRequest;
|
|
2208 |
|
|
2209 |
__ASSERT_DEBUG((req != NULL), Kern::Fault(KUsbPanicCat, __LINE__));
|
|
2210 |
|
|
2211 |
aEndpoint->iRxBuf = NULL;
|
|
2212 |
aEndpoint->iRxTimerSet = EFalse;
|
|
2213 |
aEndpoint->iRxMoreDataRcvd = EFalse;
|
|
2214 |
req->iRxPackets = aEndpoint->iPackets;
|
|
2215 |
req->iError = aEndpoint->iLastError;
|
|
2216 |
EndpointRequestComplete(req);
|
|
2217 |
aEndpoint->iRequest = NULL;
|
|
2218 |
}
|
|
2219 |
|
|
2220 |
|
|
2221 |
void DOmap3530Usbcc::StopRxTimer(TEndpoint* aEndpoint)
|
|
2222 |
//
|
|
2223 |
// Stops (cancels) the Rx timer for an endpoint.
|
|
2224 |
//
|
|
2225 |
{
|
|
2226 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::StopRxTimer"));
|
|
2227 |
|
|
2228 |
if (aEndpoint->iRxTimerSet)
|
|
2229 |
{
|
|
2230 |
__KTRACE_OPT(KUSB, Kern::Printf(" > stopping rx timer"));
|
|
2231 |
aEndpoint->iRxTimer.Cancel();
|
|
2232 |
aEndpoint->iRxTimerSet = EFalse;
|
|
2233 |
}
|
|
2234 |
}
|
|
2235 |
|
|
2236 |
|
|
2237 |
void DOmap3530Usbcc::EndpointIntService(TInt aEndpoint)
|
|
2238 |
//
|
|
2239 |
// ISR for endpoint interrupts.
|
|
2240 |
// Note: the aEndpoint here is a "hardware endpoint", not a aRealEndpoint.
|
|
2241 |
//
|
|
2242 |
{
|
|
2243 |
switch (aEndpoint)
|
|
2244 |
{
|
|
2245 |
case 0:
|
|
2246 |
Ep0IntService();
|
|
2247 |
break;
|
|
2248 |
case 3:
|
|
2249 |
case 5:
|
|
2250 |
case 7:
|
|
2251 |
case 9:
|
|
2252 |
case 11:
|
|
2253 |
case 13:
|
|
2254 |
case 15:
|
|
2255 |
case 17:
|
|
2256 |
case 19:
|
|
2257 |
case 21:
|
|
2258 |
case 23:
|
|
2259 |
case 25:
|
|
2260 |
case 27:
|
|
2261 |
case 29:
|
|
2262 |
BulkTransmit(aEndpoint);
|
|
2263 |
break;
|
|
2264 |
case 2:
|
|
2265 |
case 4:
|
|
2266 |
case 6:
|
|
2267 |
case 8:
|
|
2268 |
case 10:
|
|
2269 |
case 12:
|
|
2270 |
case 14:
|
|
2271 |
case 16:
|
|
2272 |
case 18:
|
|
2273 |
case 20:
|
|
2274 |
case 22:
|
|
2275 |
case 24:
|
|
2276 |
case 26:
|
|
2277 |
case 28:
|
|
2278 |
BulkReceive(aEndpoint);
|
|
2279 |
break;
|
|
2280 |
case 30:
|
|
2281 |
IntTransmit(aEndpoint);
|
|
2282 |
break;
|
|
2283 |
default:
|
|
2284 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Endpoint not found"));
|
|
2285 |
break;
|
|
2286 |
}
|
|
2287 |
}
|
|
2288 |
|
|
2289 |
|
|
2290 |
TInt DOmap3530Usbcc::ResetIntService()
|
|
2291 |
//
|
|
2292 |
// ISR for a USB Reset event interrupt.
|
|
2293 |
// This function returns a value which can be used on the calling end to decide how to proceed.
|
|
2294 |
//
|
|
2295 |
{
|
|
2296 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ResetIntService"));
|
|
2297 |
|
|
2298 |
// Clear an interrupt:
|
|
2299 |
// TO DO: Clear reset interrupt flag here.
|
|
2300 |
|
|
2301 |
// TO DO (optional): Enquire about special conditions and possibly return here.
|
|
2302 |
|
|
2303 |
DeviceEventNotification(EUsbEventReset);
|
|
2304 |
|
|
2305 |
return KErrNone;
|
|
2306 |
}
|
|
2307 |
|
|
2308 |
|
|
2309 |
void DOmap3530Usbcc::SuspendIntService()
|
|
2310 |
//
|
|
2311 |
// ISR for a USB Suspend event interrupt.
|
|
2312 |
//
|
|
2313 |
{
|
|
2314 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SuspendIntService"));
|
|
2315 |
|
|
2316 |
// Clear an interrupt:
|
|
2317 |
// TO DO: Clear suspend interrupt flag here.
|
|
2318 |
|
|
2319 |
DeviceEventNotification(EUsbEventSuspend);
|
|
2320 |
}
|
|
2321 |
|
|
2322 |
|
|
2323 |
void DOmap3530Usbcc::ResumeIntService()
|
|
2324 |
//
|
|
2325 |
// ISR for a USB Resume event interrupt.
|
|
2326 |
//
|
|
2327 |
{
|
|
2328 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ResumeIntService"));
|
|
2329 |
|
|
2330 |
// Clear an interrupt:
|
|
2331 |
// TO DO: Clear resume interrupt flag here.
|
|
2332 |
|
|
2333 |
DeviceEventNotification(EUsbEventResume);
|
|
2334 |
}
|
|
2335 |
|
|
2336 |
|
|
2337 |
void DOmap3530Usbcc::SofIntService()
|
|
2338 |
//
|
|
2339 |
// ISR for a USB Start-of-Frame event interrupt.
|
|
2340 |
//
|
|
2341 |
{
|
|
2342 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SofIntService"));
|
|
2343 |
|
|
2344 |
// Clear an interrupt:
|
|
2345 |
// TO DO: Clear SOF interrupt flag here.
|
|
2346 |
|
|
2347 |
// TO DO (optional): Do something about the SOF condition.
|
|
2348 |
}
|
|
2349 |
|
|
2350 |
|
|
2351 |
void DOmap3530Usbcc::UdcInterruptService()
|
|
2352 |
//
|
|
2353 |
// Main UDC ISR - determines the cause of the interrupt, clears the condition, dispatches further for service.
|
|
2354 |
//
|
|
2355 |
{
|
|
2356 |
Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
2357 |
TUint status = AsspRegister::Read8(KUSBBase+K_INTRUSB_REG);
|
|
2358 |
|
|
2359 |
// Reset interrupt
|
|
2360 |
if (status & K_INT_RESET)
|
|
2361 |
{
|
|
2362 |
ResetIntService();
|
|
2363 |
}
|
|
2364 |
|
|
2365 |
// Resume interrupt
|
|
2366 |
if (status & K_INT_RESUME)
|
|
2367 |
{
|
|
2368 |
ResumeIntService();
|
|
2369 |
}
|
|
2370 |
|
|
2371 |
// Endpoint interrupt
|
|
2372 |
TUint TxEpInt = AsspRegister::Read16(KUSBBase+K_INTRTX_REG);
|
|
2373 |
|
|
2374 |
TInt ep=0;
|
|
2375 |
for(TInt x=0; TxEpInt!=0 && x<16 ; x++)
|
|
2376 |
{
|
|
2377 |
if(TxEpInt&(1<<x))
|
|
2378 |
{
|
|
2379 |
EndpointIntService(ep);
|
|
2380 |
}
|
|
2381 |
if(ep==0) { ep++; } // TX EP's are odd numbered - numbers are array indicies so we start from 2
|
|
2382 |
ep+=2;
|
|
2383 |
}
|
|
2384 |
TUint RxEpInt = AsspRegister::Read16(KUSBBase+K_INTRRX_REG);
|
|
2385 |
ep=2;
|
|
2386 |
for(TInt x=1; RxEpInt!=0 && x<16; x++)
|
|
2387 |
{
|
|
2388 |
if(RxEpInt&(1<<x))
|
|
2389 |
{
|
|
2390 |
EndpointIntService(ep);
|
|
2391 |
}
|
|
2392 |
ep+=2;
|
|
2393 |
}
|
|
2394 |
|
|
2395 |
// Suspend interrupt should be serviced last
|
|
2396 |
if (status & K_INT_SUSPEND)
|
|
2397 |
{
|
|
2398 |
SuspendIntService();
|
|
2399 |
}
|
|
2400 |
|
|
2401 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
2402 |
}
|
|
2403 |
|
|
2404 |
|
|
2405 |
void DOmap3530Usbcc::Ep0NextState(TEp0State aNextState)
|
|
2406 |
//
|
|
2407 |
// Moves the Ep0 state to aNextState.
|
|
2408 |
//
|
|
2409 |
{
|
|
2410 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0NextState"));
|
|
2411 |
iEp0State = aNextState;
|
|
2412 |
}
|
|
2413 |
|
|
2414 |
|
|
2415 |
void DOmap3530Usbcc::UdcIsr(TAny* aPtr)
|
|
2416 |
//
|
|
2417 |
// This is the static ASSP first-level UDC interrupt service routine. It dispatches the call to the
|
|
2418 |
// actual controller's ISR.
|
|
2419 |
//
|
|
2420 |
{
|
|
2421 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcIsr"));
|
|
2422 |
static_cast<DOmap3530Usbcc*>(aPtr)->UdcInterruptService();
|
|
2423 |
}
|
|
2424 |
|
|
2425 |
|
|
2426 |
TInt DOmap3530Usbcc::UsbClientConnectorCallback(TAny* aPtr)
|
|
2427 |
//
|
|
2428 |
// This function is called in ISR context by the Variant's UsbClientConnectorInterruptService.
|
|
2429 |
// (This function is static.)
|
|
2430 |
//
|
|
2431 |
{
|
|
2432 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UsbClientConnectorCallback"));
|
|
2433 |
|
|
2434 |
DOmap3530Usbcc* const ptr = static_cast<DOmap3530Usbcc*>(aPtr);
|
|
2435 |
ptr->iCableConnected = ptr->iAssp->UsbClientConnectorInserted();
|
|
2436 |
#ifdef _DEBUG
|
|
2437 |
_LIT(KIns, "inserted");
|
|
2438 |
_LIT(KRem, "removed");
|
|
2439 |
__KTRACE_OPT(KUSB, Kern::Printf(" > USB cable now %lS", ptr->iCableConnected ? &KIns : &KRem));
|
|
2440 |
#endif
|
|
2441 |
if (ptr->iCableConnected)
|
|
2442 |
{
|
|
2443 |
ptr->DeviceEventNotification(EUsbEventCableInserted);
|
|
2444 |
}
|
|
2445 |
else
|
|
2446 |
{
|
|
2447 |
ptr->DeviceEventNotification(EUsbEventCableRemoved);
|
|
2448 |
}
|
|
2449 |
|
|
2450 |
return KErrNone;
|
|
2451 |
}
|
|
2452 |
|
|
2453 |
|
|
2454 |
TInt DOmap3530Usbcc::SetupUdcInterrupt()
|
|
2455 |
//
|
|
2456 |
// Registers and enables the UDC interrupt (ASSP first level interrupt).
|
|
2457 |
//
|
|
2458 |
{
|
|
2459 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupUdcInterrupt"));
|
|
2460 |
|
|
2461 |
TInt error = Interrupt::Bind(EOmap3530_IRQ92_HSUSB_MC_NINT, UdcIsr, this);
|
|
2462 |
if (error != KErrNone)
|
|
2463 |
{
|
|
2464 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Binding UDC interrupt failed"));
|
|
2465 |
return error;
|
|
2466 |
}
|
|
2467 |
Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
2468 |
return KErrNone;
|
|
2469 |
}
|
|
2470 |
|
|
2471 |
|
|
2472 |
void DOmap3530Usbcc::ReleaseUdcInterrupt()
|
|
2473 |
//
|
|
2474 |
// Disables and unbinds the UDC interrupt.
|
|
2475 |
//
|
|
2476 |
{
|
|
2477 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ReleaseUdcInterrupt"));
|
|
2478 |
|
|
2479 |
Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
2480 |
Interrupt::Unbind(EOmap3530_IRQ92_HSUSB_MC_NINT);
|
|
2481 |
}
|
|
2482 |
|
|
2483 |
|
|
2484 |
void DOmap3530Usbcc::EnableSICLK()
|
|
2485 |
{
|
|
2486 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EnableSICLK"));
|
|
2487 |
if(iSICLKEnabled==0)
|
|
2488 |
{
|
|
2489 |
//TInt r = PowerResourceManager::ChangeResourceState( iPrmClientId, Omap3530Prm::EPrmClkHsUsbOtg_I, Prcm::EClkAuto );
|
|
2490 |
// What are we supposed to do with errors from PRM?
|
|
2491 |
|
|
2492 |
|
|
2493 |
AsspRegister::Modify32(KCM_ICLKEN1_CORE, KClearNone, KENHOSTOTGUSB_BIT);
|
|
2494 |
AsspRegister::Modify32(KCM_AUTOIDLE1_CORE, KClearNone, KAUTO_HOSTOTGUSB_BIT);
|
|
2495 |
|
|
2496 |
|
|
2497 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc: SICLK Enabled"));
|
|
2498 |
}
|
|
2499 |
iSICLKEnabled++;
|
|
2500 |
}
|
|
2501 |
|
|
2502 |
void DOmap3530Usbcc::DisableSICLK()
|
|
2503 |
{
|
|
2504 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DisableSICLK"));
|
|
2505 |
if(iSICLKEnabled==1)
|
|
2506 |
{
|
|
2507 |
//TInt r = PowerResourceManager::ChangeResourceState( iPrmClientId, Omap3530Prm::EPrmClkHsUsbOtg_I, Prcm::EClkOff );
|
|
2508 |
// What are we supposed to do with errors from PRM?
|
|
2509 |
|
|
2510 |
AsspRegister::Modify32(KCM_ICLKEN1_CORE, KENHOSTOTGUSB_BIT, KSetNone);
|
|
2511 |
AsspRegister::Modify32(KCM_AUTOIDLE1_CORE, KAUTO_HOSTOTGUSB_BIT, KSetNone);
|
|
2512 |
|
|
2513 |
|
|
2514 |
}
|
|
2515 |
if(iSICLKEnabled>0)
|
|
2516 |
{
|
|
2517 |
iSICLKEnabled--;
|
|
2518 |
}
|
|
2519 |
}
|
|
2520 |
|
|
2521 |
TBool DOmap3530Usbcc::CurrentlyUsingHighSpeed()
|
|
2522 |
{
|
|
2523 |
return ETrue;
|
|
2524 |
}
|
|
2525 |
|
|
2526 |
void DOmap3530Usbcc::SuspendDfcFn(TAny *aPtr)
|
|
2527 |
{
|
|
2528 |
|
|
2529 |
}
|
|
2530 |
|
|
2531 |
void DOmap3530Usbcc::ResumeDfcFn(TAny *aPtr)
|
|
2532 |
{
|
|
2533 |
|
|
2534 |
}
|
|
2535 |
|
|
2536 |
void DOmap3530Usbcc::ResetDfcFn(TAny *aPtr)
|
|
2537 |
{
|
|
2538 |
DOmap3530Usbcc* self = reinterpret_cast<DOmap3530Usbcc*>(aPtr);
|
|
2539 |
// Put the Transceiver into normal mode
|
|
2540 |
self->iPhy->EnablePHY();
|
|
2541 |
self->iPhy->SetPHYMode(ENormal);
|
|
2542 |
self->iPhy->DisablePHY();
|
|
2543 |
}
|
|
2544 |
|
|
2545 |
TBool DOmap3530Usbcc::DeviceHighSpeedCaps() const
|
|
2546 |
{
|
|
2547 |
__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceHighSpeedCaps()"));
|
|
2548 |
return ETrue;
|
|
2549 |
}
|
|
2550 |
|
|
2551 |
|
|
2552 |
//
|
|
2553 |
// --- DLL Exported Function --------------------------------------------------
|
|
2554 |
//
|
|
2555 |
|
|
2556 |
DECLARE_STANDARD_EXTENSION()
|
|
2557 |
{
|
|
2558 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support (Udcc)..."));
|
|
2559 |
|
|
2560 |
DOmap3530Usbcc* const usbcc = new DOmap3530Usbcc();
|
|
2561 |
if (!usbcc)
|
|
2562 |
{
|
|
2563 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Memory allocation for DOmap3530Usbcc failed"));
|
|
2564 |
return KErrNoMemory;
|
|
2565 |
}
|
|
2566 |
Kern::Printf( "$1" );
|
|
2567 |
TInt r;
|
|
2568 |
if ((r = usbcc->Construct()) != KErrNone)
|
|
2569 |
{
|
|
2570 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: Construction of DOmap3530Usbcc failed (%d)", r));
|
|
2571 |
delete usbcc;
|
|
2572 |
return r;
|
|
2573 |
}
|
|
2574 |
Kern::Printf( "$2" );
|
|
2575 |
|
|
2576 |
if (usbcc->RegisterUdc(0) == NULL)
|
|
2577 |
{
|
|
2578 |
__KTRACE_OPT(KPANIC, Kern::Printf(" Error: PIL registration of PSL failed"));
|
|
2579 |
delete usbcc;
|
|
2580 |
return KErrGeneral;
|
|
2581 |
}
|
|
2582 |
|
|
2583 |
__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support: Done"));
|
|
2584 |
|
|
2585 |
return KErrNone;
|
|
2586 |
}
|
|
2587 |
|
|
2588 |
|
|
2589 |
// --- EOF --------------------------------------------------------------------
|