omap3530/omap3530_drivers/usbcc/pa_usbc.cpp
changeset 0 6663340f3fc9
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/omap3530/omap3530_drivers/usbcc/pa_usbc.cpp	Thu Oct 15 12:59:54 2009 +0100
@@ -0,0 +1,2589 @@
+// Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
+// All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the License "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+//
+// Initial Contributors:
+// Nokia Corporation - initial contribution.
+//
+// Contributors:
+//
+// Description:
+// omap3530/omap3530_drivers/usbcc/pa_usbc.cpp
+//
+
+#include <usbc.h>
+//#include <resourceman.h>
+#include <assp/omap3530_assp/omap3530_assp_priv.h>
+#include <assp/omap3530_assp/omap3530_irqmap.h>
+#include <assp/omap3530_assp/omap3530_usbc.h>
+//#include <assp/omap3530_assp/omap3530_prm.h>
+#include <assp/omap3530_assp/omap3530_prcm.h>
+
+
+// Debug support
+#ifdef _DEBUG
+static const char KUsbPanicCat[] = "USB PSL";
+#endif
+
+_LIT(KDfcName, "USB_DFC");
+
+// Register definitions - move to a seperate header file at some point..
+
+const TUint KCM_ICLKEN1_CORE = Omap3530HwBase::TVirtual<0x48004A10>::Value;
+	const TUint KENHOSTOTGUSB_BIT = KBit4;
+const TUint KCM_AUTOIDLE1_CORE = Omap3530HwBase::TVirtual<0x48004A30>::Value;
+	const TUint KAUTO_HOSTOTGUSB_BIT = KBit4;
+
+
+const TInt KSetupPacketSize = 8;
+const TInt KMaxPayload = 0x400;
+const TInt KUsbDfcPriority = 45;
+const TUint KUSBBase = Omap3530HwBase::TVirtual<0x480AB000>::Value;
+
+// USB registers - need the slave clock enabled to access most of these
+const TUint KFADDR_REG = 0x0;
+	const TUint KADDRESS_MSK = 0x7F;
+const TUint KPOWER_REG  = 0x1;
+	const TUint KSOFTCONNECT_BIT = KBit6;
+	const TUint KSUSPENDM_BIT = KBit1;
+	const TUint KRESUME_BIT = KBit2;
+	const TUint KHSEN_BIT = KBit5;
+//	const TUint KRESET_BIT = KBit3;
+const TUint K_INTRTX_REG =0x2;
+const TUint K_INTRRX_REG =0x4;
+const TUint K_INTRTXE_REG =0x6;
+const TUint K_INTRRXE_REG =0x8;
+const TUint K_INTRUSB_REG = 0xA;
+const TUint K_INTRUSBE_REG = 0xB;
+	const TUint K_INT_RESET = KBit2;
+	const TUint K_INT_RESUME = KBit1;
+	const TUint K_INT_SUSPEND = KBit0;
+//const TUint K_DEVCTRL_REG = 0x60;
+const TUint K_FIFO0_REG = 0x20;
+const TUint K_FIFO_OFFSET = 0x4;
+const TUint K_COUNT0_REG = 0x18;
+const TUint K_RXCOUNT_REG = 0x18;
+const TUint K_CONFIGDATA_REG = 0x1F;
+	const TUint K_MPRXE = KBit7;
+	const TUint K_MPTXE = KBit6;
+	const TUint K_DYNFIFO = KBit2;
+	const TUint K_SOFTCONNECT = KBit1;
+const TUint K_INDEX_REG = 0xE;
+const TUint K_PERI_CSR0_REG = 0x12;
+	const TUint K_EP0_FLUSHFIFO = KBit8;
+	const TUint K_EP0_SERV_SETUPEND = KBit7;
+	const TUint K_EP0_SERV_RXPKTRDY = KBit6;
+	const TUint K_EP0_SETUPEND = KBit4;
+	const TUint K_EP0_SENDSTALL = KBit5;
+	const TUint K_EP0_DATAEND = KBit3;
+	const TUint K_EP0_SENTSTALL = KBit2;
+	const TUint K_EP0_TXPKTRDY = KBit1;
+	const TUint K_EP0_RXPKTRDY = KBit0;
+const TUint K_TXMAXP_REG = 0x10;
+const TUint K_RXMAXP_REG = 0x14;
+const TUint K_PERI_TXCSR_REG =  0x12;
+	const TUint K_TX_ISO = KBit14;
+	const TUint K_TX_DMAEN = KBit12;
+	const TUint K_TX_DMAMODE = KBit10;
+	const TUint K_TX_CLRDATATOG = KBit6;
+	const TUint K_TX_SENTSTALL = KBit5;
+	const TUint K_TX_SENDSTALL = KBit4;
+	const TUint K_TX_FLUSHFIFO = KBit3;
+	const TUint K_TX_UNDERRUN = KBit2;
+//	const TUint K_TX_FIFONOTEMPTY = KBit1;
+	const TUint K_TX_TXPKTRDY = KBit0;
+const TUint K_PERI_RXCSR_REG =  0x16;
+	const TUint K_RX_ISO = KBit14;
+	const TUint K_RX_DMAEN = KBit13;
+	const TUint K_RX_DISNYET = KBit12;
+	const TUint K_RX_CLRDATATOG = KBit7;
+	const TUint K_RX_SENTSTALL = KBit6;
+	const TUint K_RX_SENDSTALL = KBit5;
+	const TUint K_RX_FLUSHFIFO = KBit4;
+	const TUint K_RX_OVERRUN = KBit2;
+	const TUint K_RX_RXPKTRDY = KBit0;	
+const TUint K_TXFIFOSZ_REG = 0x62;
+const TUint K_RXFIFOSZ_REG = 0x63;
+const TUint K_TXFIFOADDR_REG = 0x64;
+const TUint K_RXFIFOADDR_REG = 0x66;
+const TUint K_OTG_SYSCONFIG_REG = 0x404;
+	const TUint K_ENABLEWAKEUP = KBit2;
+//const TUint K_OTG_SYSSTATUS_REG = 0x408;
+
+// End of Register definitions
+
+// Define USB_SUPPORTS_PREMATURE_STATUS_IN to enable proper handling of a premature STATUS_IN stage, i.e. a
+// situation where the host sends less data than first announced and instead of more data (OUT) will send an
+// IN token to start the status stage. What we do in order to implement this here is to prime the TX fifo with
+// a ZLP immediately when we find out that we're dealing with a DATA_OUT request. This way, as soon as the
+// premature IN token is received, we complete the transaction by sending off the ZLP. If we don't prime the
+// TX fifo then there is no way for us to recognise a premature status because the IN token itself doesn't
+// raise an interrupt. We would simply wait forever for more data, or rather we would time out and the host
+// would move on and send the next Setup packet.
+// The reason why we would not want to implement the proper behaviour is this: After having primed the TX fifo
+// with a ZLP, it is impossible for a user to reject such a (class/vendor specific) Setup request, basically
+// because the successful status stage happens automatically. At the time the user has received and decoded
+// the Setup request there's for her no way to stall Ep0 in order to show to the host that this Setup packet
+// is invalid or inappropriate or whatever, because she cannot prevent the status stage from happening.
+// (All this is strictly true only if the amount of data in the data stage is less than or equal to Ep0's max
+//	packet size. However this is almost always the case.)
+//#define USB_SUPPORTS_PREMATURE_STATUS_IN
+
+
+static const TUsbcEndpointCaps DeviceEndpoints[KUsbTotalEndpoints] =
+	{
+	//                                                      Hardware #    iEndpoints index
+	{KEp0MaxPktSzMask,	(KUsbEpTypeControl	   | KUsbEpDirOut)}, //	 0 -  0
+	{KEp0MaxPktSzMask,	(KUsbEpTypeControl	   | KUsbEpDirIn )}, //	 0 -  1
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 1 -  2
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 2 -  3
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 3 -  4
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 4 -  5
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 5 -  6
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 6 -  7
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 7 -  8
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 8 -  9
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 9 -  10
+	{KEp0MaxPktSzMask,	(KUsbEpTypeBulk	   	   | KUsbEpDirIn )}, //	 10 -  11
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 11 -  12
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 12 -  13
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 13 -  14
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 14 -  15
+	// Disabled due to limited FIFO space
+	/*{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 15 -  16
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 16 -  17
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 17 -  18
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 18 -  19
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 19 -  20
+	{KEp0MaxPktSzMask,	(KUsbEpTypeBulk	   	   | KUsbEpDirIn )}, //	 20 -  21
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 21 -  22
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 22 -  23
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 23 -  24
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 24 -  25
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 25 -  26
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 26 -  27
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 27 -  28
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 28 -  29
+	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 29 -  30
+	{KIntMaxPktSzMask,	(KUsbEpTypeInterrupt   | KUsbEpDirIn )}  //	 30-   31*/
+	};
+
+
+// --- TEndpoint --------------------------------------------------------------
+
+TEndpoint::TEndpoint()
+//
+// Constructor
+//
+	: iRxBuf(NULL), iReceived(0), iLength(0), iZlpReqd(EFalse), iNoBuffer(EFalse), iDisabled(EFalse),
+	  iPackets(0), iLastError(KErrNone), iRequest(NULL), iRxTimer(RxTimerCallback, this),
+	  iRxTimerSet(EFalse), iRxMoreDataRcvd(EFalse), iPacketIndex(NULL), iPacketSize(NULL)
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("TEndpoint::TEndpoint"));
+	}
+
+
+void TEndpoint::RxTimerCallback(TAny* aPtr)
+//
+// (This function is static.)
+//
+	{
+	TEndpoint* const ep = static_cast<TEndpoint*>(aPtr);
+	if (!ep)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: !ep"));
+		}
+	else if (!ep->iRxTimerSet)
+		{
+		// Timer 'stop' substitute (instead of stopping it,
+		// we just let it expire after clearing iRxTimerSet)
+		__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxTimerSet - returning"));
+		}
+	else if (!ep->iRxBuf)
+		{
+		// Request already completed
+		__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxBuf - returning"));
+		}
+	else if (ep->iRxMoreDataRcvd)
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: not yet completing..."));
+		ep->iRxMoreDataRcvd = EFalse;
+		ep->iRxTimer.Again(KRxTimerTimeout);
+		}
+	else
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: completing now..."));
+		*ep->iPacketSize = ep->iReceived;
+		ep->iController->RxComplete(ep);
+		}
+	}
+
+
+// --- DOmap3530Usbcc public ---------------------------------------------------
+
+DOmap3530Usbcc::DOmap3530Usbcc()
+//
+// Constructor.
+//
+	: iCableConnected(ETrue), iBusIsPowered(EFalse),
+	  iInitialized(EFalse), iUsbClientConnectorCallback(UsbClientConnectorCallback),
+	  iAssp( static_cast<Omap3530Assp*>( Arch::TheAsic() ) ),
+	  iEp0Configured(EFalse), iSuspendDfc(SuspendDfcFn, this, 7),
+	  iResumeDfc(ResumeDfcFn, this, 7), iResetDfc(ResetDfcFn, this, 7)
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DOmap3530Usbcc"));
+	
+	TInt r = Kern::DfcQCreate(iDfcQueue, KUsbDfcPriority, &KDfcName);
+	
+	iSuspendDfc.SetDfcQ(iDfcQueue);	
+	iResetDfc.SetDfcQ(iDfcQueue);
+	iResumeDfc.SetDfcQ(iDfcQueue);
+	
+	iSoftwareConnectable = iAssp->UsbSoftwareConnectable();
+
+	iCableDetectable = iAssp->UsbClientConnectorDetectable();
+
+	if (iCableDetectable)
+		{
+		// Register our callback for detecting USB cable insertion/removal.
+		// We ignore the error code: if the registration fails, we just won't get any events.
+		// (Which of course is bad enough...)
+		(void) iAssp->RegisterUsbClientConnectorCallback(iUsbClientConnectorCallback, this);
+		// Call the callback straight away so we get the proper PIL state from the beginning.
+		(void) UsbClientConnectorCallback(this);
+		}
+
+	for (TInt i = 0; i < KUsbTotalEndpoints; i++)
+		{
+		iEndpoints[i].iController = this;
+		}
+	
+	__KTRACE_OPT(KUSB, Kern::Printf("-DOmap3530Usbcc::DOmap3530Usbcc"));
+	}
+
+
+TInt DOmap3530Usbcc::Construct()
+//
+// Construct.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Construct"));
+
+	iPhy = MOmap3530UsbPhy::New();
+	if( !iPhy )
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Failed to get pointer to USB PHY"));
+		return KErrNoMemory;
+		}
+
+	//TInt r = PowerResourceManager::RegisterClient( iPrmClientId, KDfcName );
+	//if( r != KErrNone )
+	//	{
+	//	__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Failed to connect to PRM"));
+	//	return r;
+	//	}
+
+
+	TUsbcDeviceDescriptor* DeviceDesc = TUsbcDeviceDescriptor::New(
+		0x00,												// aDeviceClass
+		0x00,												// aDeviceSubClass
+		0x00,												// aDeviceProtocol
+		KEp0MaxPktSz,										// aMaxPacketSize0
+		KUsbVendorId,										// aVendorId
+		KUsbProductId,										// aProductId
+		KUsbDevRelease,										// aDeviceRelease
+		1);													// aNumConfigurations
+	if (!DeviceDesc)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for dev desc failed."));
+		return KErrGeneral;
+		}
+
+	TUsbcConfigDescriptor* ConfigDesc = TUsbcConfigDescriptor::New(
+		1,													// aConfigurationValue
+		ETrue,												// aSelfPowered (see 12.4.2 "Bus-Powered Devices")
+		ETrue,												// aRemoteWakeup
+		0);													// aMaxPower (mA)
+	if (!ConfigDesc)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for config desc failed."));
+		return KErrGeneral;
+		}
+
+	TUsbcLangIdDescriptor* StringDescLang = TUsbcLangIdDescriptor::New(KUsbLangId);
+	if (!StringDescLang)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for lang id $ desc failed."));
+		return KErrGeneral;
+		}
+
+	// ('sizeof(x) - 2' because 'wchar_t KStringXyz' created a wide string that ends in '\0\0'.)
+
+	TUsbcStringDescriptor* StringDescManu =
+		TUsbcStringDescriptor::New(TPtr8(
+									   const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringManufacturer)),
+									   sizeof(KStringManufacturer) - 2, sizeof(KStringManufacturer) - 2));
+	if (!StringDescManu)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for manufacturer $ desc failed."));
+		return KErrGeneral;
+		}
+
+	TUsbcStringDescriptor* StringDescProd =
+		TUsbcStringDescriptor::New(TPtr8(
+									   const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringProduct)),
+									   sizeof(KStringProduct) - 2, sizeof(KStringProduct) - 2));
+	if (!StringDescProd)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for product $ desc failed."));
+		return KErrGeneral;
+		}
+
+	TUsbcStringDescriptor* StringDescSer =
+		TUsbcStringDescriptor::New(TPtr8(
+									   const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringSerialNo)),
+									   sizeof(KStringSerialNo) - 2, sizeof(KStringSerialNo) - 2));
+	if (!StringDescSer)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for serial no $ desc failed."));
+		return KErrGeneral;
+		}
+
+	TUsbcStringDescriptor* StringDescConf =
+		TUsbcStringDescriptor::New(TPtr8(
+									   const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringConfig)),
+									   sizeof(KStringConfig) - 2, sizeof(KStringConfig) - 2));
+	if (!StringDescConf)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for config $ desc failed."));
+		return KErrGeneral;
+		}
+
+	const TBool b =	InitialiseBaseClass(DeviceDesc,
+										ConfigDesc,
+										StringDescLang,
+										StringDescManu,
+										StringDescProd,
+										StringDescSer,
+										StringDescConf);
+	if (!b)
+		{ 
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: UsbClientController::InitialiseBaseClass failed."));
+		return KErrGeneral;
+		}
+	
+	return KErrNone;
+	}
+
+
+DOmap3530Usbcc::~DOmap3530Usbcc()
+//
+// Destructor.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::~DOmap3530Usbcc"));
+
+	// Unregister our callback for detecting USB cable insertion/removal
+	if (iCableDetectable)
+		{
+		iAssp->UnregisterUsbClientConnectorCallback();
+		}
+	if (iInitialized)
+		{
+		// (The explicit scope operator is used against Lint warning #1506.)
+		DOmap3530Usbcc::StopUdc();
+		}
+	}
+
+
+TBool DOmap3530Usbcc::DeviceStateChangeCaps() const
+//
+// Returns capability of hardware to accurately track the device state (Chapter 9 state).
+//
+	{
+	return EFalse;
+	}
+
+
+TInt DOmap3530Usbcc::SignalRemoteWakeup()
+//
+// Forces the UDC into a non-idle state to perform a remote wakeup operation.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SignalRemoteWakeup"));
+	Kern::Printf("DOmap3530Usbcc::SignalRemoteWakeup");
+	// Resume signal
+	
+	TInt sysconfig = AsspRegister::Read32(KUSBBase+K_OTG_SYSCONFIG_REG );
+	if(sysconfig&K_ENABLEWAKEUP && iRmWakeupStatus_Enabled)
+		{
+		AsspRegister::Modify8(KUSBBase+KPOWER_REG, KClearNone , KRESUME_BIT);
+		Kern::NanoWait(10000000); // Wait 10ms - Use a callback instead!
+		AsspRegister::Modify8(KUSBBase+KPOWER_REG, KRESUME_BIT, KSetNone);
+		}
+	return KErrNone;
+	}
+
+
+void DOmap3530Usbcc::DumpRegisters()
+//
+// Dumps the contents of a number of UDC registers to the screen (using Kern::Printf()).
+// Rarely used, but might prove helpful when needed.
+//
+	{
+	Kern::Printf("DOmap3530Usbcc::DumpRegisters:");
+	}
+
+
+TDfcQue* DOmap3530Usbcc::DfcQ(TInt /* aUnit */)
+//
+// Returns a pointer to the kernel DFC queue to be used buy the USB LDD.
+//
+	{
+	return iDfcQueue;
+	}
+
+
+// --- DOmap3530Usbcc private virtual ------------------------------------------
+
+TInt DOmap3530Usbcc::SetDeviceAddress(TInt aAddress)
+//
+// Sets the PIL-provided device address manually (if possible - otherwise do nothing).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetDeviceAddress: %d", aAddress));
+
+	AsspRegister::Write8(KUSBBase+KFADDR_REG, aAddress & KADDRESS_MSK);
+		
+	if (aAddress || GetDeviceStatus()==EUsbcDeviceStateAddress)
+		{
+		// Address can be zero.
+		MoveToAddressState();
+		}
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::ConfigureEndpoint(TInt aRealEndpoint, const TUsbcEndpointInfo& aEndpointInfo)
+//
+// Prepares (enables) an endpoint (incl. Ep0) for data transmission or reception.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ConfigureEndpoint(%d)", aRealEndpoint));
+	
+	const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
+	if (n < 0)
+		return KErrArgument;
+
+	TEndpoint* const ep = &iEndpoints[aRealEndpoint];
+	if (ep->iDisabled == EFalse)
+		{
+		EnableEndpointInterrupt(aRealEndpoint);
+		if(n!=0)
+			{
+			AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+			if(aRealEndpoint%2==0)
+				{
+
+				AsspRegister::Write16(KUSBBase+K_PERI_RXCSR_REG, K_RX_CLRDATATOG | K_RX_DISNYET);
+				}
+			else
+				{			
+				AsspRegister::Write16(KUSBBase+K_PERI_TXCSR_REG, K_TX_CLRDATATOG);
+				}
+			}
+		else
+			{
+			AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
+			AsspRegister::Write16(KUSBBase+K_PERI_CSR0_REG, K_EP0_FLUSHFIFO); // FlushFifo;
+			}
+		}
+	ep->iNoBuffer = EFalse;
+	if (n == 0)
+		iEp0Configured = ETrue;
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::DeConfigureEndpoint(TInt aRealEndpoint)
+//
+// Disables an endpoint (incl. Ep0).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeConfigureEndpoint(%d)", aRealEndpoint));
+
+	const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
+	if (n < 0)
+		return KErrArgument;
+
+	DisableEndpointInterrupt(aRealEndpoint);
+	if (n == 0)
+		{
+		iEp0Configured = EFalse;
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
+		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO);
+		}
+	else
+		{
+		if(aRealEndpoint%2==0)
+			{
+			AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+			AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_FLUSHFIFO);
+			}
+		else
+			{		
+			AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+			AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_FLUSHFIFO);
+			}
+		}
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::AllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource)
+//
+// Puts the requested endpoint resource to use, if possible.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::AllocateEndpointResource(%d): %d",
+									aRealEndpoint, aResource));
+
+	// TO DO: Allocate endpoint resource here.
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::DeAllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource)
+//
+// Stops the use of the indicated endpoint resource, if beneficial.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeAllocateEndpointResource(%d): %d",
+									aRealEndpoint, aResource));
+
+	// TO DO: Deallocate endpoint resource here.
+
+	return KErrNone;
+	}
+
+
+TBool DOmap3530Usbcc::QueryEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) const
+//
+// Returns the status of the indicated resource and endpoint.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::QueryEndpointResource(%d): %d",
+									aRealEndpoint, aResource));
+
+	// TO DO: Query endpoint resource here. The return value should reflect the actual state.
+	return ETrue;
+	}
+
+
+TInt DOmap3530Usbcc::OpenDmaChannel(TInt aRealEndpoint)
+//
+// Opens a DMA channel for this endpoint. This function is always called during the creation of an endpoint
+// in the PIL. If DMA channels are a scarce resource, it's possible to do nothing here and wait for an
+// AllocateEndpointResource call instead.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::OpenDmaChannel(%d)", aRealEndpoint));
+
+	// TO DO (optional): Open DMA channel here.
+
+	// An error should only  be returned in case of an actual DMA problem.
+	return KErrNone;
+	}
+
+
+void DOmap3530Usbcc::CloseDmaChannel(TInt aRealEndpoint)
+//
+// Closes a DMA channel for this endpoint. This function is always called during the destruction of an
+// endpoint in the PIL.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::CloseDmaChannel(%d)", aRealEndpoint));
+
+	// TO DO (optional): Close DMA channel here (only if it was opened via OpenDmaChannel).
+	}
+
+
+TInt DOmap3530Usbcc::SetupEndpointRead(TInt aRealEndpoint, TUsbcRequestCallback& aCallback)
+//
+// Sets up a read request for an endpoint on behalf of the LDD.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointRead(%d)", aRealEndpoint));
+	if (!IS_OUT_ENDPOINT(aRealEndpoint))
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint));
+		return KErrArgument;
+		}
+	TEndpoint* const ep = &iEndpoints[aRealEndpoint];
+	if (ep->iRxBuf != NULL)
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", aRealEndpoint));
+		return KErrGeneral;
+		}
+	ep->iRxBuf = aCallback.iBufferStart;
+	ep->iReceived = 0;
+	ep->iLength = aCallback.iLength;
+
+	// For Bulk reads we start out with the assumption of 1 packet (see BulkReceive for why):
+	ep->iPackets = IS_BULK_OUT_ENDPOINT(aRealEndpoint) ? 1 : 0;
+	ep->iRequest = &aCallback;
+	ep->iPacketIndex = aCallback.iPacketIndex;
+	if (IS_BULK_OUT_ENDPOINT(aRealEndpoint))
+		*ep->iPacketIndex = 0;								// a one-off optimization
+	ep->iPacketSize = aCallback.iPacketSize;
+
+	if (ep->iDisabled)
+		{
+		ep->iDisabled = EFalse;
+		EnableEndpointInterrupt(aRealEndpoint);
+		}
+	else if (ep->iNoBuffer)
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > There had been no Rx buffer available: reading Rx FIFO now"));
+		ep->iNoBuffer = EFalse;
+		if (IS_BULK_OUT_ENDPOINT(aRealEndpoint))
+			{
+			BulkReadRxFifo(aRealEndpoint);
+			}
+		else if (IS_ISO_OUT_ENDPOINT(aRealEndpoint))
+			{
+			IsoReadRxFifo(aRealEndpoint);
+			}
+		else
+			{
+			__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Endpoint not found"));
+			}
+		}
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::SetupEndpointWrite(TInt aRealEndpoint, TUsbcRequestCallback& aCallback)
+//
+// Sets up a write request for an endpoint on behalf of the LDD.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointWrite(%d)", aRealEndpoint));
+	
+	if (!IS_IN_ENDPOINT(aRealEndpoint))
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint));
+		return KErrArgument;
+		}
+	TEndpoint* const ep = &iEndpoints[aRealEndpoint];
+	if (ep->iTxBuf != NULL)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: iEndpoints[%d].iTxBuf != NULL", aRealEndpoint));
+		return KErrGeneral;
+		}
+	ep->iTxBuf = aCallback.iBufferStart;
+	ep->iTransmitted = 0;
+	ep->iLength = aCallback.iLength;
+	ep->iPackets = 0;
+	ep->iZlpReqd = aCallback.iZlpReqd;
+	ep->iRequest = &aCallback;
+
+	if (IS_BULK_IN_ENDPOINT(aRealEndpoint))
+		{
+		if (ep->iDisabled)
+			{
+			ep->iDisabled = EFalse;
+			EnableEndpointInterrupt(aRealEndpoint);
+			}
+		BulkTransmit(aRealEndpoint);
+		}
+	else if (IS_ISO_IN_ENDPOINT(aRealEndpoint))
+		{
+		IsoTransmit(aRealEndpoint);
+		}
+	else if (IS_INT_IN_ENDPOINT(aRealEndpoint))
+		{
+		IntTransmit(aRealEndpoint);
+		}
+	else
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Endpoint not found"));
+		}
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::CancelEndpointRead(TInt aRealEndpoint)
+//
+// Cancels a read request for an endpoint on behalf of the LDD.
+// No completion to the PIL occurs.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::CancelEndpointRead(%d)", aRealEndpoint));
+
+	if (!IS_OUT_ENDPOINT(aRealEndpoint))
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint));
+		return KErrArgument;
+		}
+	TEndpoint* const ep = &iEndpoints[aRealEndpoint];
+	if (ep->iRxBuf == NULL)
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf == NULL", aRealEndpoint));
+		return KErrNone;
+		}
+		
+	// : Flush the Ep's Rx FIFO here
+	if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
+		{
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
+		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO );
+		}
+	else
+		{
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_FLUSHFIFO );
+		}
+		
+	ep->iRxBuf = NULL;
+	ep->iReceived = 0;
+	ep->iNoBuffer = EFalse;
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::CancelEndpointWrite(TInt aRealEndpoint)
+//
+// Cancels a write request for an endpoint on behalf of the LDD.
+// No completion to the PIL occurs.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::CancelEndpointWrite(%d)", aRealEndpoint));
+
+	if (!IS_IN_ENDPOINT(aRealEndpoint))
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint));
+		return KErrArgument;
+		}
+	TEndpoint* const ep = &iEndpoints[aRealEndpoint];
+	if (ep->iTxBuf == NULL)
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iTxBuf == NULL", aRealEndpoint));
+		return KErrNone;
+		}
+
+	// TO DO (optional): Flush the Ep's Tx FIFO here, if possible.	
+	if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
+		{
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
+		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO );
+		}
+	else
+		{
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_FLUSHFIFO );
+		}
+			
+	ep->iTxBuf = NULL;
+	ep->iTransmitted = 0;
+	ep->iNoBuffer = EFalse;
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::SetupEndpointZeroRead()
+//
+// Sets up an Ep0 read request (own function due to Ep0's special status).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointZeroRead"));
+
+	TEndpoint* const ep = &iEndpoints[KEp0_Out];
+	if (ep->iRxBuf != NULL)
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", KEp0_Out));
+		return KErrGeneral;
+		}
+	ep->iRxBuf = iEp0_RxBuf;
+	ep->iReceived = 0;
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::SetupEndpointZeroWrite(const TUint8* aBuffer, TInt aLength, TBool aZlpReqd)
+//
+// Sets up an Ep0 write request (own function due to Ep0's special status).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointZeroWrite"));
+
+	TEndpoint* const ep = &iEndpoints[KEp0_In];
+	if (ep->iTxBuf != NULL)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: iEndpoints[%d].iTxBuf != NULL", KEp0_In));
+		return KErrGeneral;
+		}
+	ep->iTxBuf = aBuffer;
+	ep->iTransmitted = 0;
+	ep->iLength = aLength;
+	ep->iZlpReqd = aZlpReqd;
+	ep->iRequest = NULL;
+	Ep0Transmit();
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::SendEp0ZeroByteStatusPacket()
+//
+// Sets up an Ep0 write request for zero bytes.
+// This is a separate function because no data transfer is involved here.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SendEp0ZeroByteStatusPacket"));
+
+	// This is possibly a bit tricky. When this function is called it just means that the higher layer wants a
+	// ZLP to be sent. Whether we actually send one manually here depends on a number of factors, as the
+	// current Ep0 state (i.e. the stage of the Ep0 Control transfer), and, in case the hardware handles some
+	// ZLPs itself, whether it might already handle this one.
+
+	// Here is an example of what the checking of the conditions might look like:
+
+#ifndef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
+	if ((!iEp0ReceivedNonStdRequest && iEp0State == EP0_IN_DATA_PHASE) ||
+#else
+	if ((!iEp0ReceivedNonStdRequest && iEp0State != EP0_IDLE) ||
+#endif
+#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
+		(iEp0ReceivedNonStdRequest && iEp0State != EP0_OUT_DATA_PHASE))
+#else
+		(iEp0ReceivedNonStdRequest))
+#endif
+
+		{
+		// TO DO: Arrange for the sending of a ZLP here.
+		Kern::Printf("ZLP!");
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
+		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND );
+		}
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::StallEndpoint(TInt aRealEndpoint)
+//
+// Stalls an endpoint.
+//
+	{
+	__KTRACE_OPT(KPANIC, Kern::Printf("DOmap3530Usbcc::StallEndpoint(%d)", aRealEndpoint));
+
+	if (IS_ISO_ENDPOINT(aRealEndpoint))
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Iso endpoint cannot be stalled"));
+		return KErrArgument;
+		}
+
+	// Stall the endpoint here.
+	if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
+		{
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
+		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SENDSTALL);
+		}
+	else
+	if(aRealEndpoint%2==0)
+		{
+		// RX stall
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_SENDSTALL);
+		}
+	else
+		{
+		// TX stall
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_SENDSTALL );
+		}
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::ClearStallEndpoint(TInt aRealEndpoint)
+//
+// Clears the stall condition of an endpoint.
+//
+	{
+	__KTRACE_OPT(KPANIC, Kern::Printf("DOmap3530Usbcc::ClearStallEndpoint(%d)", aRealEndpoint));
+
+	if (IS_ISO_ENDPOINT(aRealEndpoint))
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Iso endpoint cannot be unstalled"));
+		return KErrArgument;
+		}
+
+	// De-stall the endpoint here.
+		
+	if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
+		{
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
+		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, K_EP0_SENTSTALL, KSetNone );
+		}
+	else
+	if(aRealEndpoint%2==0)
+		{
+		//Clear RX stall
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_SENDSTALL, KSetNone );
+		}
+	else
+		{
+		//Clear TX stall
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_SENDSTALL, KSetNone );
+		}
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::EndpointStallStatus(TInt aRealEndpoint) const
+//
+// Reports the stall status of an endpoint.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EndpointStallStatus(%d)", aRealEndpoint));
+	if (IS_ISO_ENDPOINT(aRealEndpoint))
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Iso endpoint has no stall status"));
+		return KErrArgument;
+		}		
+
+	// Query endpoint stall status here. The return value should reflect the actual state.
+	if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
+		{
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
+		TInt status = AsspRegister::Read16(KUSBBase+K_PERI_CSR0_REG);
+		return status & K_EP0_SENTSTALL;
+		}
+	else
+	if(aRealEndpoint%2==0)
+		{
+		//Clear RX stall
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+		TInt status = AsspRegister::Read16(KUSBBase+K_PERI_RXCSR_REG);
+		return status & K_RX_SENDSTALL;
+		}
+	else
+		{
+		//Clear TX stall
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+		TInt status = AsspRegister::Read16(KUSBBase+K_PERI_TXCSR_REG);
+		return status & K_TX_SENDSTALL;
+		
+		}
+	}
+
+
+TInt DOmap3530Usbcc::EndpointErrorStatus(TInt aRealEndpoint) const
+//
+// Reports the error status of an endpoint.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EndpointErrorStatus(%d)", aRealEndpoint));
+
+	if (!IS_VALID_ENDPOINT(aRealEndpoint))
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: !IS_VALID_ENDPOINT(%d)", aRealEndpoint));
+		return KErrArgument;
+		}
+
+	// TO DO: Query endpoint error status here. The return value should reflect the actual state.
+	// With some UDCs there is no way of inquiring the endpoint error status; say 'ETrue' in that case.
+
+	// Bulk EP's don't have an error status
+	return ETrue;
+	}
+
+
+TInt DOmap3530Usbcc::ResetDataToggle(TInt aRealEndpoint)
+//
+// Resets to zero the data toggle bit of an endpoint.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ResetDataToggle(%d)", aRealEndpoint));
+
+	// Reset the endpoint's data toggle bit here.
+	// With some UDCs there is no way to individually reset the endpoint's toggle bits; just return KErrNone
+	// in that case.
+	
+	if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
+		{
+		// No way of setting data toggle for EP0
+		}
+	else
+	if(aRealEndpoint%2==0)
+		{
+		//Clear RX stall
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_CLRDATATOG);
+		}
+	else
+		{
+		//Clear TX stall
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
+		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_CLRDATATOG);	
+		}
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::SynchFrameNumber() const
+//
+// For use with isochronous endpoints only. Causes the SOF frame number to be returned.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SynchFrameNumber"));
+
+	// TO DO: Query and return the SOF frame number here.
+	return 0;
+	}
+
+void DOmap3530Usbcc::SetSynchFrameNumber(TInt aFrameNumber)
+//
+// For use with isochronous endpoints only. Causes the SOF frame number to be stored.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetSynchFrameNumber(%d)", aFrameNumber));
+
+	// We should actually store this number somewhere. But the PIL always sends '0x00'
+	// in response to a SYNCH_FRAME request...
+	// TO DO: Store the frame number. Alternatively (until SYNCH_FRAME request specification changes): Do
+	// nothing.
+	}
+
+TInt DOmap3530Usbcc::StartUdc()
+//
+// Called to initialize the device controller hardware before any operation can be performed.
+//
+	{
+	__KTRACE_OPT(KUSB,Kern::Printf("DOmap3530Usbcc::StartUdc"));
+
+	if (iInitialized)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: UDC already initialised"));
+		return KErrNone;
+		}
+
+	// Disable UDC (might also reset the entire design):
+	UdcDisable();
+
+	// Bind & enable the UDC interrupt
+	if (SetupUdcInterrupt() != KErrNone)
+		{
+		return KErrGeneral;
+		}
+	// Enable the slave clock
+	EnableSICLK();
+
+	// Write meaningful values to some registers:
+	InitialiseUdcRegisters();
+
+	// Finally, turn on the UDC:
+	UdcEnable();
+
+	// and enable the PHY
+	iPhy->StartPHY();
+	iPhy->SetPHYMode(ENormal);
+
+	// Even if only one USB feature has been enabled, we later need to undo it:
+	iInitialized = ETrue;
+
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc: UDC Enabled"));
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::StopUdc()
+//
+// Basically, makes undone what happened in StartUdc.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::StopUdc"));
+
+	if (!iInitialized)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: UDC not initialized"));
+		return KErrNone;
+		}
+
+	// Disable UDC:
+	UdcDisable();
+	// Disable & unbind the UDC interrupt:
+	ReleaseUdcInterrupt();
+	iPhy->SetPHYMode(EUART);
+
+	// Finally turn off slave clock
+	DisableSICLK();
+	
+	// Only when all USB features have been disabled we'll call it a day:
+	iInitialized = EFalse;
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::UdcConnect()
+//
+// Connects the UDC to the bus under software control. How this is achieved depends on the UDC; the
+// functionality might also be part of the Variant component (instead of the ASSP).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcConnect"));
+
+	//AsspRegister::Modify8(KUSBBase+KPOWER_REG , KClearNone, KSOFTCONNECT_BIT);
+	AsspRegister::Write8(KUSBBase+KPOWER_REG , KSOFTCONNECT_BIT  | KHSEN_BIT);
+	iPhy->EnablePHY();
+	
+	// Here: A call into the Variant-provided function.
+	return iAssp->UsbConnect();
+	}
+
+
+TInt DOmap3530Usbcc::UdcDisconnect()
+//
+// Disconnects the UDC from the bus under software control. How this is achieved depends on the UDC; the
+// functionality might also be part of the Variant component (instead of the ASSP).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcDisconnect"));
+
+	// Here: A call into the Variant-provided function.
+	return iAssp->UsbDisconnect();
+	}
+
+
+TBool DOmap3530Usbcc::UsbConnectionStatus() const
+//
+// Returns a value showing the USB cable connection status of the device.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UsbConnectionStatus"));
+
+	return iCableConnected;
+	}
+
+
+TBool DOmap3530Usbcc::UsbPowerStatus() const
+//
+// Returns a truth value showing whether VBUS is currently powered or not.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UsbPowerStatus"));
+
+	return iBusIsPowered;
+	}
+
+
+TBool DOmap3530Usbcc::DeviceSelfPowered() const
+//
+// Returns a truth value showing whether the device is currently self-powered or not.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceSelfPowered"));
+
+	// TO DO: Query and return self powered status here. The return value should reflect the actual state.
+	// (This can be always 'ETrue' if the UDC does not support bus-powered devices.)
+	return ETrue;
+	}
+
+const TUsbcEndpointCaps* DOmap3530Usbcc::DeviceEndpointCaps() const
+//
+// Returns a pointer to an array of elements, each of which describes the capabilities of one endpoint.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceEndpointCaps"));
+	__KTRACE_OPT(KUSB, Kern::Printf(" > Ep: Sizes Mask, Types Mask"));
+	__KTRACE_OPT(KUSB, Kern::Printf(" > --------------------------"));
+	for (TInt i = 0; i < KUsbTotalEndpoints; ++i)
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > %02d: 0x%08x, 0x%08x",
+										i, DeviceEndpoints[i].iSizes, DeviceEndpoints[i].iTypesAndDir));
+		}
+	return DeviceEndpoints;
+	}
+
+
+TInt DOmap3530Usbcc::DeviceTotalEndpoints() const
+//
+// Returns the element number of the endpoints array a pointer to which is returned by DeviceEndpointCaps.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceTotalEndpoints"));
+
+	return KUsbTotalEndpoints;
+	}
+
+
+TBool DOmap3530Usbcc::SoftConnectCaps() const
+//
+// Returns a truth value showing whether or not there is the capability to disconnect and re-connect the D+
+// line under software control.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SoftConnectCaps"));
+
+	return iSoftwareConnectable;
+	}
+
+
+void DOmap3530Usbcc::Suspend()
+//
+// Called by the PIL after a Suspend event has been reported (by us).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Suspend"));
+
+	if (NKern::CurrentContext() == EThread)
+		{
+		iSuspendDfc.Enque();
+		}
+	else
+		{
+		iSuspendDfc.Add();
+		}
+	// TO DO (optional): Implement here anything the device might require after bus SUSPEND signalling.
+	// Need to put the transceiver into suspend too. Can't do it here as it requries I2C and we are in an interrupt context.
+	AsspRegister::Modify8(KUSBBase+KPOWER_REG , KClearNone, KSUSPENDM_BIT);
+	}
+
+
+void DOmap3530Usbcc::Resume()
+//
+// Called by the PIL after a Resume event has been reported (by us).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Resume"));
+	if (NKern::CurrentContext() == EThread)
+		{
+		iResumeDfc.Enque();
+		}
+	else
+		{
+		iResumeDfc.Add();
+		}
+
+	// TO DO (optional): Implement here anything the device might require after bus RESUME signalling.
+	// Need to put the transceiver into resume too. Can't do it here as it requries I2C and we are in an interrupt context.
+	AsspRegister::Modify8(KUSBBase+KPOWER_REG, KClearNone , KRESUME_BIT);
+	Kern::NanoWait(10000000); // Wait 10ms - Use a callback instead!
+	AsspRegister::Modify8(KUSBBase+KPOWER_REG, KRESUME_BIT, KSetNone);
+	}
+
+
+void DOmap3530Usbcc::Reset()
+//
+// Called by the PIL after a Reset event has been reported (by us).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Reset"));
+
+	// This does not really belong here, but has to do with the way the PIL sets
+	// up Ep0 reads and writes.
+	TEndpoint* ep = &iEndpoints[0];
+	ep->iRxBuf = NULL;
+	++ep;
+	ep->iTxBuf = NULL;
+	// Idle
+	Ep0NextState(EP0_IDLE);
+	// TO DO (optional): Implement here anything the device might require after bus RESET signalling.
+	// Need to put the transceiver into reset too. Can't do it here as it requries I2C and we are in an interrupt context.
+	if (NKern::CurrentContext() == EThread)
+		{
+		iResetDfc.Enque();
+		}
+	else
+		{
+		iResetDfc.Add();
+		}
+	
+	// Write meaningful values to some registers
+	InitialiseUdcRegisters();
+	UdcEnable();
+	if (iEp0Configured)
+		EnableEndpointInterrupt(0);
+	}
+
+
+// --- DOmap3530Usbcc private --------------------------------------------------
+
+void DOmap3530Usbcc::InitialiseUdcRegisters()
+//
+// Called after every USB Reset etc.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::InitialiseUdcRegisters"));
+
+	AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
+	AsspRegister::Write8(KUSBBase+K_CONFIGDATA_REG, K_SOFTCONNECT | K_DYNFIFO | K_MPTXE | K_MPRXE);// Dynamic FIFO
+	
+	// Configure FIFO's
+	for(TUint n=1; n<KUsbTotalEndpoints; n++) // Fifo for EP 0 is fixed. Size 0x200 (512) for the ISO ep is wrong! FIXME!!!!!!!!!!!! Hacked to make all FIFO's 1024 bytes (ignore ep>16!)
+		{
+		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)((n+1)/2));
+		if(n%2==0)
+			{
+			AsspRegister::Write16(KUSBBase+K_TXMAXP_REG, KMaxPayload | 0x1<<11); // Not sure how many packets we want to split into. Use 2 because it is OK for Bulk and INT
+			AsspRegister::Write8(KUSBBase+K_TXFIFOSZ_REG, 0x7); // No double buffering, FIFO size == 2^(7+3) = 1024
+			AsspRegister::Write16(KUSBBase+K_TXFIFOADDR_REG, 128*((TInt)n/2)); // We have 16kb of memory and 16 endpoints. Start each fifo on a 1kb boundary	
+			AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_DMAMODE | K_TX_ISO | K_TX_DMAEN, K_TX_CLRDATATOG | K_TX_FLUSHFIFO);
+			}
+		else
+			{
+			AsspRegister::Write16(KUSBBase+K_RXMAXP_REG, KMaxPayload | 0x1<<11); // Not sure how many packets we want to split into. Use 2 because it is OK for Bulk and INT
+			AsspRegister::Write8(KUSBBase+K_RXFIFOSZ_REG, 0x7); // No double buffering, FIFO size == 2^(7+3) = 1024
+			AsspRegister::Write16(KUSBBase+K_RXFIFOADDR_REG, 128*((TInt)(n/2)+8)); // We have 16kb of memory and 16 endpoints. Start each fifo on a 1kb boundary			
+			AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_ISO | K_RX_DMAEN, K_RX_CLRDATATOG | K_RX_FLUSHFIFO | K_RX_DISNYET);
+			}
+		}	
+
+	// Disable interrupt requests for all endpoints
+	AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG, 0xFFFF, KSetNone);
+	AsspRegister::Modify16(KUSBBase+K_INTRRXE_REG, 0XFFFE, KSetNone);
+	
+	AsspRegister::Modify32(KUSBBase+K_OTG_SYSCONFIG_REG, KClearNone, K_ENABLEWAKEUP);
+	}
+
+
+void DOmap3530Usbcc::UdcEnable()
+//
+// Enables the UDC for USB transmission or reception.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcEnable"));
+	EnableSICLK();
+	// TO DO: Do whatever is necessary to enable the UDC here. This might include enabling (unmasking)
+	// the USB Reset interrupt, setting a UDC enable bit, etc.
+	AsspRegister::Read8(KUSBBase+K_INTRUSB_REG);	 // Reading this register clears it
+	AsspRegister::Write8(KUSBBase+K_INTRUSBE_REG, K_INT_SUSPEND | K_INT_RESUME | K_INT_RESET);
+	DisableSICLK();
+	}
+
+
+void DOmap3530Usbcc::UdcDisable()
+//
+// Disables the UDC.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcDisable"));
+	EnableSICLK();
+	// TO DO: Do whatever is necessary to disable the UDC here. This might include disabling (masking)
+	// the USB Reset interrupt, clearing a UDC enable bit, etc.
+	AsspRegister::Write8(KUSBBase+K_INTRUSBE_REG, 0x0);
+	AsspRegister::Read8(KUSBBase+K_INTRUSB_REG);	 // Reading this register clears it
+	DisableSICLK();
+	}
+
+
+void DOmap3530Usbcc::EnableEndpointInterrupt(TInt aEndpoint)
+//
+// Enables interrupt requests for an endpoint.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EnableEndpointInterrupt(%d)", aEndpoint));
+
+	// Enable (unmask) interrupt requests for this endpoint:
+	if(aEndpoint==0)
+		{
+		AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG , KClearNone, 1<<(int)(aEndpoint/2));
+		}
+	else
+		{
+		if(aEndpoint%2==0)
+			{
+			AsspRegister::Modify16(KUSBBase+K_INTRRXE_REG  , KClearNone, 1<<(int)((aEndpoint)/2));
+			}
+		else
+			{
+			AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG, KClearNone, 1<<(int)((aEndpoint)/2));
+			}
+		}
+	}
+
+
+void DOmap3530Usbcc::DisableEndpointInterrupt(TInt aEndpoint)
+//
+// Disables interrupt requests for an endpoint.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DisableEndpointInterrupt(%d)", aEndpoint));
+
+	// Disable (mask) interrupt requests for this endpoint:
+	if(aEndpoint==0)
+		{
+		AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG , 1<<(int)(aEndpoint/2), KSetNone);
+		}
+	else
+		{
+		if(aEndpoint%2==0)
+			{
+			AsspRegister::Modify16(KUSBBase+K_INTRRXE_REG , 1<<(int)((aEndpoint)/2), KSetNone);
+			}
+		else
+			{
+			AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG, 1<<(int)((aEndpoint)/2), KSetNone);
+			}
+		}
+	}
+
+
+void DOmap3530Usbcc::ClearEndpointInterrupt(TInt aEndpoint)
+//
+// Clears a pending interrupt request for an endpoint.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ClearEndpointInterrupt(%d)", aEndpoint));
+
+	// Clear (reset) pending interrupt request for this endpoint:
+	if(aEndpoint==0)
+		{
+		AsspRegister::Modify16(KUSBBase+K_INTRTX_REG , 1<<(int)(aEndpoint/2), KSetNone);
+		}
+	else
+		{
+		if(aEndpoint%2==0)
+			{
+			AsspRegister::Modify16(KUSBBase+K_INTRRX_REG , 1<<(int)((aEndpoint)/2), KSetNone);
+			}
+		else
+			{
+			AsspRegister::Modify16(KUSBBase+K_INTRTX_REG, 1<<(int)((aEndpoint)/2), KSetNone);
+			}
+		}
+	}
+
+
+void DOmap3530Usbcc::Ep0IntService()
+//
+// ISR for endpoint zero interrupt.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0IntService"));
+	Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
+	
+	//  Enquire about Ep0 status & the interrupt cause here. Depending on the event and the Ep0 state,
+
+	AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
+	TUint ep0 = AsspRegister::Read16(KUSBBase+K_PERI_CSR0_REG);
+	
+	if(ep0 & K_EP0_SETUPEND)
+		{
+		 // Setupend is set - A setup transaction ended unexpectedly
+		Ep0Cancel();
+		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_SETUPEND);
+		Ep0NextState(EP0_IDLE);
+		}
+	if(ep0&K_EP0_SENTSTALL)
+		{
+		// Stalled! Complete the stall handshake
+		ClearStallEndpoint(0);
+		}
+	
+	switch(iEp0State)
+		{
+			case EP0_END_XFER:
+				Ep0EndXfer(); 
+				break;
+			case EP0_IDLE: 
+				if(ep0&K_EP0_RXPKTRDY)
+					{
+					Ep0ReadSetupPkt();
+					}
+				else
+					{
+					Ep0StatusIn();
+					} 
+				break;
+			case EP0_OUT_DATA_PHASE:
+				Ep0Receive();
+				break;
+			case EP0_IN_DATA_PHASE:
+				Ep0Transmit();
+				break;
+			default:
+				break; // Do nothing
+			}
+
+	ClearEndpointInterrupt(0);
+	Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+	}
+
+
+void DOmap3530Usbcc::Ep0ReadSetupPkt()
+//
+// Called from the Ep0 ISR when a new Setup packet has been received.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0ReadSetupPkt"));
+
+	TEndpoint* const ep = &iEndpoints[KEp0_Out];
+	TUint8* buf = ep->iRxBuf;
+	if (!buf)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: No Ep0 Rx buffer available (1)"));
+		StallEndpoint(KEp0_Out);
+		return;
+		}
+
+	// Read Setup packet data from Rx FIFO into 'buf' here.
+	// (In this function we don't need to use "ep->iReceived" since Setup packets
+	// are always 8 bytes long.)
+	for(TInt x=0; x<KSetupPacketSize; x++)
+		{
+		// Should try and check we aren't running out of FIFO!
+		buf[x] = AsspRegister::Read8(KUSBBase+K_FIFO0_REG);
+		}
+	AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone,  K_EP0_SERV_RXPKTRDY); // The packet has been retrieved from the FIFO
+	
+	// Upcall into PIL to determine next Ep0 state:
+	TUsbcEp0State state = EnquireEp0NextState(ep->iRxBuf);
+
+	if (state == EEp0StateStatusIn)
+		{
+		Ep0NextState(EP0_IDLE);								// Ep0 No Data
+		}
+	else if (state == EEp0StateDataIn)
+		{
+		Ep0NextState(EP0_IN_DATA_PHASE);					// Ep0 Control Read
+		}
+	else
+		{
+		Ep0NextState(EP0_OUT_DATA_PHASE);					// Ep0 Control Write
+		}
+
+	ep->iRxBuf = NULL;
+	const TInt r = Ep0RequestComplete(KEp0_Out, KSetupPacketSize, KErrNone);
+
+	// Don't finish (proceed) if request completion returned 'KErrNotFound'!
+	if (!(r == KErrNone || r == KErrGeneral))
+		{
+		DisableEndpointInterrupt(0);
+		}
+		
+#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
+	if (iEp0State == EP0_OUT_DATA_PHASE)
+		{
+		// Allow for a premature STATUS IN
+		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND); // TXPKTRDY, DATAEND
+		}
+#endif	
+	}
+
+
+void DOmap3530Usbcc::Ep0ReadSetupPktProceed()
+//
+// Called by the PIL to signal that it has finished processing a received Setup packet and that the PSL can
+// now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 interrupt).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0ReadSetupPktProceed"));
+
+	EnableEndpointInterrupt(0);
+	}
+
+
+void DOmap3530Usbcc::Ep0Receive()
+//
+// Called from the Ep0 ISR when a data packet has been received.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0Receive"));
+	AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
+	TEndpoint* const ep = &iEndpoints[KEp0_Out];
+	TUint8* buf = ep->iRxBuf;
+	if (!buf)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: No Ep0 Rx buffer available (2)"));
+		StallEndpoint(KEp0_Out);
+		return;
+		}
+
+	TInt n = 0;
+	// Read packet data from Rx FIFO into 'buf' and update 'n' (# of received bytes) here.
+	TInt FIFOCount = AsspRegister::Read8(KUSBBase+K_COUNT0_REG);
+	for(; n<FIFOCount; n++)
+		{
+		// Should try and check we aren't running out of FIFO!
+		buf[n] = AsspRegister::Read8(KUSBBase+K_FIFO0_REG);
+		}
+	AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY); // The packet has been retrieved from the FIFO
+	
+	ep->iReceived = n;
+	ep->iRxBuf = NULL;
+	const TInt r = Ep0RequestComplete(KEp0_Out, n, KErrNone);
+
+	// Don't finish (proceed) if request was 'KErrNotFound'!
+	if (!(r == KErrNone || r == KErrGeneral))
+		{
+		DisableEndpointInterrupt(0);
+		}
+	
+#ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
+	// Allow for a premature STATUS IN
+	AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND); // TXPKTRDY, DATAEND
+#endif
+	}
+
+
+void DOmap3530Usbcc::Ep0ReceiveProceed()
+//
+// Called by the PIL to signal that it has finished processing a received Ep0 data packet and that the PSL can
+// now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 Ep0ReadSetupPkt).
+//
+	{
+	Ep0ReadSetupPktProceed();
+	}
+
+
+void DOmap3530Usbcc::Ep0Transmit()
+//
+// Called from either the Ep0 ISR or the PIL when a data packet has been or is to be transmitted.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0Transmit"));
+	AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
+	if (iEp0State != EP0_IN_DATA_PHASE)
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: Invalid Ep0 state when trying to handle EP0 IN (0x%x)", iEp0State));
+		// TO DO (optional): Do something about this warning.
+		}
+	
+	TEndpoint* const ep = &iEndpoints[KEp0_In];
+	const TUint8* buf = ep->iTxBuf;
+	if (!buf)
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > No Tx buffer available: returning"));
+		return;
+		}
+	const TInt t = ep->iTransmitted;						// already transmitted
+	buf += t;
+	TInt n = 0;												// now transmitted
+
+	// Write packet data (if any) into Tx FIFO from 'buf' and update 'n' (# of tx'ed bytes) here.
+	for(; n<ep->iLength-ep->iTransmitted && n<KEp0MaxPktSz; n++)
+		{
+		// Should try and check we aren't running out of FIFO!
+		AsspRegister::Write8(KUSBBase+K_FIFO0_REG, buf[n]);
+		}
+
+	ep->iTransmitted += n;
+	if (n == KEp0MaxPktSz)
+		{
+		if (ep->iTransmitted == ep->iLength && !(ep->iZlpReqd))
+			{
+			Ep0NextState(EP0_END_XFER);
+			}
+		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY); // TXPKTY,
+		}
+	else if (n && n != KEp0MaxPktSz)
+		{
+		// Send off the data
+		__ASSERT_DEBUG((ep->iTransmitted == ep->iLength),
+					   Kern::Printf(" > ERROR: Short packet in mid-transfer"));
+		Ep0NextState(EP0_END_XFER);
+		//  Send off the data here.
+		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY); // TXPKTRDY,
+		}
+	else // if (n == 0)
+		{
+		__ASSERT_DEBUG((ep->iTransmitted == ep->iLength),
+					   Kern::Printf(" > ERROR: Nothing transmitted but still not finished"));
+		if (ep->iZlpReqd)
+			{
+			// Send a zero length packet
+			ep->iZlpReqd = EFalse;
+			Ep0NextState(EP0_END_XFER);
+			// Arrange for the sending of a ZLP here.
+			AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND); // TXPKTRDY, DATAEND
+			}
+		else
+			{
+			__KTRACE_OPT(KPANIC, Kern::Printf("  Error: nothing transmitted & no ZLP req'd"));
+			}
+		}	
+	}
+
+
+void DOmap3530Usbcc::Ep0EndXfer()
+//
+// Called at the end of a Ep0 Control transfer.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0EndXfer"));
+	// Clear Ep0 Rx condition flags here.
+	AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY | K_EP0_DATAEND); //  DATAEND
+		
+	Ep0NextState(EP0_IDLE);
+	TEndpoint* const ep = &iEndpoints[KEp0_In];
+	ep->iTxBuf = NULL;
+	(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrNone);
+	}
+
+
+void DOmap3530Usbcc::Ep0Cancel()
+//
+// Called when an ongoing Ep0 Control transfer has to be aborted prematurely (for instance when receiving a
+// new Setup packet before the processing of the old one has completed).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0Cancel"));
+
+	Ep0NextState(EP0_IDLE);
+	TEndpoint* const ep = &iEndpoints[KEp0_In];
+	if (ep->iTxBuf)
+		{
+		ep->iTxBuf = NULL;
+		const TInt err = (ep->iTransmitted == ep->iLength) ? KErrNone : KErrCancel;
+		(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, err);
+		}
+	}
+
+
+void DOmap3530Usbcc::Ep0PrematureStatusOut()
+//
+// Called when an ongoing Ep0 Control transfer encounters a premature Status OUT condition.
+//
+	{
+	__KTRACE_OPT(KPANIC, Kern::Printf("DOmap3530Usbcc::Ep0PrematureStatusOut"));
+
+	// Clear Ep0 Rx condition flags here.
+	AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY | K_EP0_DATAEND); //  DATAEND
+	Ep0NextState(EP0_IDLE);
+
+	// Flush the Ep0 Tx FIFO here, if possible.
+	AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO);
+		
+	TEndpoint* const ep = &iEndpoints[KEp0_In];
+	if (ep->iTxBuf)
+		{
+		ep->iTxBuf = NULL;
+		(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrPrematureEnd);
+		}
+	}
+
+
+void DOmap3530Usbcc::Ep0StatusIn()
+//
+// Called when an ongoing Ep0 Control transfer moves to a Status IN stage.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0StatusIn"));
+
+	Ep0NextState(EP0_IDLE);
+	}
+
+
+void DOmap3530Usbcc::BulkTransmit(TInt aEndpoint)
+//
+// Endpoint 1 (BULK IN).
+// Called from either the Ep ISR or the PIL when a data packet has been or is to be transmitted.
+//
+	{
+	Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::BulkTransmit(%d)", aEndpoint));
+	
+	AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aEndpoint/2));
+	
+	TInt status = AsspRegister::Read16(KUSBBase+K_PERI_TXCSR_REG); 
+	
+	if(status & K_TX_UNDERRUN)
+		{
+		// TX UNDERRUN
+		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_UNDERRUN, KSetNone); 
+		}
+	if(status & K_TX_SENTSTALL)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Stall Handshake"));
+		// Complete stall handshake
+		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_SENTSTALL, KSetNone); 
+		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+		return;
+		}
+	if(status & K_TX_SENDSTALL)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Stalled"));
+		// We are stalled
+		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+		return;
+		}
+	
+	TBool calledFromISR=AsspRegister::Read16(KUSBBase+K_INTRTX_REG) & 1<<(aEndpoint/2)==1;
+	
+	const TInt idx = aEndpoint;										// only in our special case of course!
+	TEndpoint* const ep = &iEndpoints[idx];
+	const TUint8* buf = ep->iTxBuf;
+	
+	if (!buf)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: No Tx buffer has been set up"));
+		DisableEndpointInterrupt(aEndpoint);
+		ep->iDisabled = ETrue;
+		ClearEndpointInterrupt(aEndpoint);
+		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+		return;
+		}
+	const TInt t = ep->iTransmitted;						// already transmitted
+	const TInt len = ep->iLength;							// to be sent in total
+	// (len || ep->iPackets): Don't complete for a zero bytes request straight away.
+	if (t >= len && (len || ep->iPackets))
+		{
+		if (ep->iZlpReqd)
+			{
+			__KTRACE_OPT(KPANIC, Kern::Printf(" > 'Transmit Short Packet' explicitly"));
+			//  Arrange for the sending of a ZLP here.
+			AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_TXPKTRDY); //  FIFO_NOT_EMPTY, TXPKTRDY
+			ep->iZlpReqd = EFalse;
+			}
+		else
+			{
+			__KTRACE_OPT(KUSB, Kern::Printf(" > All data sent: %d --> completing", len));
+			ep->iTxBuf = NULL;
+			ep->iRequest->iTxBytes = ep->iTransmitted;
+			ep->iRequest->iError = KErrNone;
+			EndpointRequestComplete(ep->iRequest);
+			ep->iRequest = NULL;
+			}
+		}
+	else
+		{
+		buf += t;
+		TInt left = len - t;								// left in total
+		TInt n = (left >= KBlkMaxPktSz) ? KBlkMaxPktSz : left; // now to be transmitted
+		__KTRACE_OPT(KUSB, Kern::Printf(" > About to send %d bytes (%d bytes left in total)", n, left));
+
+		// Write data into Tx FIFO from 'buf' here...
+		TInt x=0;
+		TInt FIFOAddr = K_FIFO0_REG+K_FIFO_OFFSET*(TInt)((aEndpoint)/2);
+		for(; x<n; x++) // While FIFO is not full...
+			{
+			// Should try and check we aren't running out of FIFO!
+			AsspRegister::Write8(KUSBBase+FIFOAddr, buf[x]);
+			}
+		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, /*K_TX_FIFONOTEMPTY | */K_TX_TXPKTRDY); //  TXPKTRDY	
+		ep->iTransmitted += x;
+		ep->iPackets++;										// only used for (len == 0) case
+		left -= n;											// (still) left in total
+
+		// If double-buffering is available, it might be possible to stick a second packet
+		// into the FIFO here.
+
+		// TO DO (optional): Send another packet if possible (& available) here.
+			
+		}
+	if(calledFromISR)
+		{
+		ClearEndpointInterrupt(aEndpoint);
+		}
+	Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+	}
+
+
+
+void DOmap3530Usbcc::BulkReceive(TInt aEndpoint)
+//
+// Endpoint 2 (BULK OUT) (This one is called in an ISR.)
+//
+	{
+	Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::BulkReceive(%d)", aEndpoint));
+	
+	AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aEndpoint/2));
+	
+	// Start NYETTING packets..
+	AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_DISNYET,  KSetNone);
+
+	TInt status = AsspRegister::Read16(KUSBBase+K_PERI_RXCSR_REG); 
+	
+	if(status & K_RX_OVERRUN)
+		{
+		// RX OVERRUN
+		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_OVERRUN, KSetNone); 
+		}
+	if(status & K_RX_SENTSTALL)
+		{
+		// Complete stall handshake
+		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_SENTSTALL,  K_RX_DISNYET); 
+		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+		return;
+		}
+
+	if(status & K_RX_SENDSTALL)
+		{
+		// We are stalled
+		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone,  K_RX_DISNYET); 
+		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+		return;
+		}
+
+	TBool calledFromISR=AsspRegister::Read16(KUSBBase+K_INTRRX_REG) & 1<<(aEndpoint/2)==1;
+	
+	const TInt idx = aEndpoint;			// only in our special case of course!
+	TEndpoint* const ep = &iEndpoints[idx];
+	TUint8* buf = ep->iRxBuf;
+	if (!buf)
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > No Rx buffer available: setting iNoBuffer"));
+		ep->iNoBuffer = ETrue;
+		DisableEndpointInterrupt(aEndpoint);
+		ep->iDisabled = ETrue;
+		ClearEndpointInterrupt(aEndpoint);
+		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone,  K_RX_DISNYET); 
+		return;
+		}
+	TInt bytes = AsspRegister::Read16(KUSBBase+K_RXCOUNT_REG);
+	const TInt r = ep->iReceived;							// already received
+	// Check whether a ZLP was received here:
+	if (bytes==0)
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet"));
+		}
+	else// if (status & 2)									// some other condition
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes));
+		if (r + bytes > ep->iLength)
+			{
+			__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer"));
+			ep->iNoBuffer = ETrue;
+			StopRxTimer(ep);
+			*ep->iPacketSize = ep->iReceived;
+			RxComplete(ep);
+
+			if(calledFromISR)
+				{
+				ClearEndpointInterrupt(aEndpoint);
+				}
+			AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone,  K_RX_DISNYET); 
+			Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+			return;
+			}
+		buf += r;											// set buffer pointer
+
+		// Read 'bytes' bytes from Rx FIFO into 'buf' here.
+		TInt FIFOAddr = K_FIFO0_REG+K_FIFO_OFFSET*(TInt)((aEndpoint)/2);
+		for(TInt n=0; n<bytes; n++)
+			{
+			// Should try and check we aren't running out of FIFO!
+			buf[n] = AsspRegister::Read8(KUSBBase+FIFOAddr);
+			}
+		
+		ep->iReceived += bytes;
+		}
+
+	if (bytes == 0)
+		{
+		// ZLPs must be recorded separately
+		const TInt i = ep->iReceived ? 1 : 0;
+		ep->iPacketIndex[i] = r;
+		ep->iPacketSize[i] = 0;
+		// If there were data packets before: total packets reported 1 -> 2
+		ep->iPackets += i;
+		}
+
+	if ((bytes < KBlkMaxPktSz) ||
+		(ep->iReceived == ep->iLength))
+		{
+		StopRxTimer(ep);
+		*ep->iPacketSize = ep->iReceived;
+		RxComplete(ep);
+		// since we have no buffer any longer we disable interrupts:
+		DisableEndpointInterrupt(aEndpoint);
+		ep->iDisabled = ETrue;
+		}
+	else
+		{
+		if (!ep->iRxTimerSet)
+			{
+			__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer"));
+			ep->iRxTimerSet = ETrue;
+			ep->iRxTimer.OneShot(KRxTimerTimeout);
+			}
+		else
+			{
+			ep->iRxMoreDataRcvd = ETrue;
+			}
+		}
+	if(calledFromISR)
+		{
+		ClearEndpointInterrupt(aEndpoint);
+		}
+	// Clear Ep Rx condition flags here.
+	AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_RXPKTRDY,  K_RX_DISNYET); 
+	Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+	}
+
+
+void DOmap3530Usbcc::BulkReadRxFifo(TInt aEndpoint)
+//
+// Endpoint 2 (BULK OUT) (This one is called w/o interrupt to be served.)
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::BulkReadRxFifo(%d)", aEndpoint));
+	Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+
+	AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aEndpoint/2));
+	
+	// Start NYETTING packets..
+	AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_DISNYET,  KSetNone);
+	
+	TInt status = AsspRegister::Read16(KUSBBase+K_PERI_RXCSR_REG); 
+	if(status & K_RX_OVERRUN)
+		{
+		// RX OVERRUN
+		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_OVERRUN, KSetNone); 
+		}
+	if(status & K_RX_SENTSTALL)
+		{
+		// Complete stall handshake
+		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_SENTSTALL, K_RX_DISNYET); 		
+		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+		return;
+		}
+	if(status & K_RX_SENTSTALL)
+		{
+		// We are stalled
+		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone,  K_RX_DISNYET); 
+		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+		return;
+		}
+	
+	TBool calledFromISR=AsspRegister::Read16(KUSBBase+K_INTRRX_REG) & 1<<(aEndpoint/2)==1;
+
+	const TInt idx = aEndpoint;				// only in our special case of course!
+	TEndpoint* const ep = &iEndpoints[idx];
+	TUint8* buf = ep->iRxBuf;
+	if (!buf)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: No Rx buffer has been set up"));
+		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+		return;
+		}
+	TInt bytes =  AsspRegister::Read16(KUSBBase+K_RXCOUNT_REG);
+	const TInt r = ep->iReceived;							// already received
+	// Check whether a ZLP was received here:
+	if (bytes==0)											// some condition
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet"));
+		}
+	else //if (status & 2)									// some other condition
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes));
+		if (r + bytes > ep->iLength)
+			{
+			__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer"));
+			ep->iNoBuffer = ETrue;
+			*ep->iPacketSize = ep->iReceived;
+			RxComplete(ep);
+			
+			// Stop NYETting packets
+			AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone,  K_RX_DISNYET); 
+			Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+			return;
+			}
+		buf += r;											// set buffer pointer
+
+		// TO DO: Read 'bytes' bytes from Rx FIFO into 'buf' here.
+		TInt FIFOAddr = K_FIFO0_REG+K_FIFO_OFFSET*(TInt)((aEndpoint)/2);
+		for(TInt n=0; n<bytes; n++)
+			{
+			// Should try and check we aren't running out of FIFO!
+			buf[n] = AsspRegister::Read8(KUSBBase+FIFOAddr);
+			}
+		ep->iReceived += bytes;
+		}
+	if (bytes == 0)
+		{
+		// ZLPs must be recorded separately
+		const TInt i = ep->iReceived ? 1 : 0;
+		ep->iPacketIndex[i] = r;
+		ep->iPacketSize[i] = 0;
+		// If there were data packets before: total packets reported 1 -> 2
+		ep->iPackets += i;
+		}
+
+	if ((bytes < KBlkMaxPktSz) ||
+		(ep->iReceived == ep->iLength))
+		{
+		*ep->iPacketSize = ep->iReceived;
+		RxComplete(ep);
+		}
+	else
+		{
+		if (!ep->iRxTimerSet)
+			{
+			__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer"));
+			ep->iRxTimerSet = ETrue;
+			ep->iRxTimer.OneShot(KRxTimerTimeout);
+			}
+		else
+			{
+			ep->iRxMoreDataRcvd = ETrue;
+			}
+		}
+
+	if(calledFromISR)
+		{
+		ClearEndpointInterrupt(aEndpoint);
+		}
+
+	// Stop NYETting packets and Clear Ep Rx condition flags here.
+	AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_RXPKTRDY, K_RX_DISNYET); 
+	Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+	}
+
+
+void DOmap3530Usbcc::IsoTransmit(TInt aEndpoint)
+//
+// Endpoint 3 (ISOCHRONOUS IN).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IsoTransmit(%d)", aEndpoint));
+
+	// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit.
+
+	}
+
+
+void DOmap3530Usbcc::IsoReceive(TInt aEndpoint)
+//
+// Endpoint 4 (ISOCHRONOUS OUT) (This one is called in an ISR.)
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IsoReceive(%d)", aEndpoint));
+
+	// TO DO: Read data from endpoint FIFO. Might be similar to BulkReceive.
+	}
+
+
+void DOmap3530Usbcc::IsoReadRxFifo(TInt aEndpoint)
+//
+// Endpoint 4 (ISOCHRONOUS OUT) (This one is called w/o interrupt to be served.)
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IsoReadRxFifo(%d)", aEndpoint));
+
+	// TO DO: Read data from endpoint FIFO. Might be similar to BulkReadRxFifo.
+	}
+
+
+void DOmap3530Usbcc::IntTransmit(TInt aEndpoint)
+//
+// Endpoint 5 (INTERRUPT IN).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IntTransmit(%d)", aEndpoint));
+
+	// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit.
+	}
+
+
+void DOmap3530Usbcc::RxComplete(TEndpoint* aEndpoint)
+//
+// Called at the end of an Rx (OUT) transfer to complete to the PIL.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::RxComplete"));
+	TUsbcRequestCallback* const req = aEndpoint->iRequest;	
+
+	__ASSERT_DEBUG((req != NULL), Kern::Fault(KUsbPanicCat, __LINE__));
+
+	aEndpoint->iRxBuf = NULL;
+	aEndpoint->iRxTimerSet = EFalse;
+	aEndpoint->iRxMoreDataRcvd = EFalse;
+	req->iRxPackets = aEndpoint->iPackets;
+	req->iError = aEndpoint->iLastError;
+	EndpointRequestComplete(req);
+	aEndpoint->iRequest = NULL;
+	}
+
+
+void DOmap3530Usbcc::StopRxTimer(TEndpoint* aEndpoint)
+//
+// Stops (cancels) the Rx timer for an endpoint.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::StopRxTimer"));
+
+	if (aEndpoint->iRxTimerSet)
+		{
+		__KTRACE_OPT(KUSB, Kern::Printf(" > stopping rx timer"));
+		aEndpoint->iRxTimer.Cancel();
+		aEndpoint->iRxTimerSet = EFalse;
+		}
+	}
+
+
+void DOmap3530Usbcc::EndpointIntService(TInt aEndpoint)
+//
+// ISR for endpoint interrupts.
+// Note: the aEndpoint here is a "hardware endpoint", not a aRealEndpoint.
+//
+	{
+	switch (aEndpoint)
+		{
+	case 0:
+		Ep0IntService();
+		break;
+	case 3:
+	case 5:
+	case 7:
+	case 9:
+	case 11:
+	case 13:
+	case 15:
+	case 17:
+	case 19:
+	case 21:
+	case 23:
+	case 25:
+	case 27:
+	case 29:
+		BulkTransmit(aEndpoint);	
+		break;
+	case 2:
+	case 4:
+	case 6:
+	case 8:
+	case 10:
+	case 12:
+	case 14:
+	case 16:
+	case 18:
+	case 20:
+	case 22:
+	case 24:
+	case 26:
+	case 28:
+		BulkReceive(aEndpoint);			
+		break;
+	case 30:
+		IntTransmit(aEndpoint);
+		break;
+	default:
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Endpoint not found"));
+		break;
+		}
+	}
+
+
+TInt DOmap3530Usbcc::ResetIntService()
+//
+// ISR for a USB Reset event interrupt.
+// This function returns a value which can be used on the calling end to decide how to proceed.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ResetIntService"));
+
+	// Clear an interrupt:
+	// TO DO: Clear reset interrupt flag here.
+
+	// TO DO (optional): Enquire about special conditions and possibly return here.
+	
+	DeviceEventNotification(EUsbEventReset);
+
+	return KErrNone;
+	}
+
+
+void DOmap3530Usbcc::SuspendIntService()
+//
+// ISR for a USB Suspend event interrupt.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SuspendIntService"));
+
+	// Clear an interrupt:
+	// TO DO: Clear suspend interrupt flag here.
+
+	DeviceEventNotification(EUsbEventSuspend);
+	}
+
+
+void DOmap3530Usbcc::ResumeIntService()
+//
+// ISR for a USB Resume event interrupt.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ResumeIntService"));
+
+	// Clear an interrupt:
+	// TO DO: Clear resume interrupt flag here.
+
+	DeviceEventNotification(EUsbEventResume);
+	}
+
+
+void DOmap3530Usbcc::SofIntService()
+//
+// ISR for a USB Start-of-Frame event interrupt.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SofIntService"));
+
+	// Clear an interrupt:
+	// TO DO: Clear SOF interrupt flag here.
+	
+	// TO DO (optional): Do something about the SOF condition.
+	}
+
+
+void DOmap3530Usbcc::UdcInterruptService()
+//
+// Main UDC ISR - determines the cause of the interrupt, clears the condition, dispatches further for service.
+//
+	{
+	Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
+	TUint status = AsspRegister::Read8(KUSBBase+K_INTRUSB_REG);	
+
+	// Reset interrupt
+	if (status &  K_INT_RESET)
+		{
+		ResetIntService();
+		}
+
+	// Resume interrupt
+	if (status & K_INT_RESUME)
+		{
+		ResumeIntService();
+		}
+
+	// Endpoint interrupt
+	TUint TxEpInt = AsspRegister::Read16(KUSBBase+K_INTRTX_REG);	
+
+	TInt ep=0;
+	for(TInt x=0; TxEpInt!=0 && x<16 ; x++)
+		{
+		if(TxEpInt&(1<<x))
+			{
+			EndpointIntService(ep);
+			}
+		if(ep==0) { ep++; } // TX EP's are odd numbered - numbers are array indicies so we start from 2
+		ep+=2;
+		}	
+	TUint RxEpInt = AsspRegister::Read16(KUSBBase+K_INTRRX_REG);
+	ep=2;
+	for(TInt x=1; RxEpInt!=0 && x<16; x++)
+		{
+		if(RxEpInt&(1<<x))
+			{
+			EndpointIntService(ep);
+			}
+		ep+=2;
+		}
+		
+	// Suspend interrupt should be serviced last
+	if (status & K_INT_SUSPEND)
+		{
+		SuspendIntService();
+		}
+	
+	Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
+	}
+
+
+void DOmap3530Usbcc::Ep0NextState(TEp0State aNextState)
+//
+// Moves the Ep0 state to aNextState.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0NextState"));
+	iEp0State = aNextState;
+	}
+
+
+void DOmap3530Usbcc::UdcIsr(TAny* aPtr)
+//
+// This is the static ASSP first-level UDC interrupt service routine. It dispatches the call to the
+// actual controller's ISR.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcIsr"));
+	static_cast<DOmap3530Usbcc*>(aPtr)->UdcInterruptService();
+	}
+
+
+TInt DOmap3530Usbcc::UsbClientConnectorCallback(TAny* aPtr)
+//
+// This function is called in ISR context by the Variant's UsbClientConnectorInterruptService.
+// (This function is static.)
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UsbClientConnectorCallback"));
+
+	DOmap3530Usbcc* const ptr = static_cast<DOmap3530Usbcc*>(aPtr);
+	ptr->iCableConnected = ptr->iAssp->UsbClientConnectorInserted();
+#ifdef _DEBUG
+	_LIT(KIns, "inserted");
+	_LIT(KRem, "removed");
+	__KTRACE_OPT(KUSB, Kern::Printf(" > USB cable now %lS", ptr->iCableConnected ? &KIns : &KRem));
+#endif
+	if (ptr->iCableConnected)
+		{
+		ptr->DeviceEventNotification(EUsbEventCableInserted);
+		}
+	else
+		{
+		ptr->DeviceEventNotification(EUsbEventCableRemoved);
+		}
+
+	return KErrNone;
+	}
+
+
+TInt DOmap3530Usbcc::SetupUdcInterrupt()
+//
+// Registers and enables the UDC interrupt (ASSP first level interrupt).
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupUdcInterrupt"));
+
+	TInt error = Interrupt::Bind(EOmap3530_IRQ92_HSUSB_MC_NINT, UdcIsr, this);
+	if (error != KErrNone)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Binding UDC interrupt failed"));
+		return error;
+		}
+	Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
+	return KErrNone;
+	}
+
+
+void DOmap3530Usbcc::ReleaseUdcInterrupt()
+//
+// Disables and unbinds the UDC interrupt.
+//
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ReleaseUdcInterrupt"));
+
+	Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
+	Interrupt::Unbind(EOmap3530_IRQ92_HSUSB_MC_NINT);
+	}
+
+	
+void DOmap3530Usbcc::EnableSICLK()
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EnableSICLK"));
+	if(iSICLKEnabled==0)
+		{
+		//TInt r = PowerResourceManager::ChangeResourceState( iPrmClientId, Omap3530Prm::EPrmClkHsUsbOtg_I, Prcm::EClkAuto );
+		// What are we supposed to do with errors from PRM?
+		
+		
+		AsspRegister::Modify32(KCM_ICLKEN1_CORE, KClearNone, KENHOSTOTGUSB_BIT);
+		AsspRegister::Modify32(KCM_AUTOIDLE1_CORE, KClearNone, KAUTO_HOSTOTGUSB_BIT);
+
+		
+		__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc: SICLK Enabled"));
+		}
+	iSICLKEnabled++;
+	}
+
+void DOmap3530Usbcc::DisableSICLK()
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DisableSICLK"));
+	if(iSICLKEnabled==1)
+		{
+		//TInt r = PowerResourceManager::ChangeResourceState( iPrmClientId, Omap3530Prm::EPrmClkHsUsbOtg_I, Prcm::EClkOff );
+		// What are we supposed to do with errors from PRM?
+		
+		AsspRegister::Modify32(KCM_ICLKEN1_CORE, KENHOSTOTGUSB_BIT, KSetNone);
+		AsspRegister::Modify32(KCM_AUTOIDLE1_CORE, KAUTO_HOSTOTGUSB_BIT, KSetNone);
+
+		
+		}
+	if(iSICLKEnabled>0)
+		{
+		iSICLKEnabled--;
+		}
+	}
+
+TBool DOmap3530Usbcc::CurrentlyUsingHighSpeed()
+	{
+	return ETrue;
+	}
+
+void DOmap3530Usbcc::SuspendDfcFn(TAny *aPtr)
+	{
+
+	}
+	
+void DOmap3530Usbcc::ResumeDfcFn(TAny *aPtr)
+	{
+
+	}
+	
+void DOmap3530Usbcc::ResetDfcFn(TAny *aPtr)
+	{
+	DOmap3530Usbcc* self = reinterpret_cast<DOmap3530Usbcc*>(aPtr);
+	// Put the Transceiver into normal mode
+	self->iPhy->EnablePHY();
+	self->iPhy->SetPHYMode(ENormal);
+	self->iPhy->DisablePHY();
+	}
+	
+TBool DOmap3530Usbcc::DeviceHighSpeedCaps() const
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceHighSpeedCaps()"));
+	return ETrue;
+	}
+
+	
+//
+// --- DLL Exported Function --------------------------------------------------
+//
+
+DECLARE_STANDARD_EXTENSION()
+	{
+	__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support (Udcc)..."));
+
+	DOmap3530Usbcc* const usbcc = new DOmap3530Usbcc();
+	if (!usbcc)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for DOmap3530Usbcc failed"));
+		return KErrNoMemory;
+		}
+Kern::Printf( "$1" );
+	TInt r;
+	if ((r = usbcc->Construct()) != KErrNone)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Construction of DOmap3530Usbcc failed (%d)", r));
+		delete usbcc;
+		return r;
+		}
+Kern::Printf( "$2" );
+
+	if (usbcc->RegisterUdc(0) == NULL)
+		{
+		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: PIL registration of PSL failed"));
+		delete usbcc;
+		return KErrGeneral;
+		}
+	
+	__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support: Done"));
+
+	return KErrNone;
+	}
+
+
+// --- EOF --------------------------------------------------------------------