omap3530/omap3530_drivers/usbcc/pa_usbc.cpp
changeset 0 6663340f3fc9
equal deleted inserted replaced
-1:000000000000 0:6663340f3fc9
       
     1 // Copyright (c) 2004-2009 Nokia Corporation and/or its subsidiary(-ies).
       
     2 // All rights reserved.
       
     3 // This component and the accompanying materials are made available
       
     4 // under the terms of the License "Eclipse Public License v1.0"
       
     5 // which accompanies this distribution, and is available
       
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     7 //
       
     8 // Initial Contributors:
       
     9 // Nokia Corporation - initial contribution.
       
    10 //
       
    11 // Contributors:
       
    12 //
       
    13 // Description:
       
    14 // omap3530/omap3530_drivers/usbcc/pa_usbc.cpp
       
    15 //
       
    16 
       
    17 #include <usbc.h>
       
    18 //#include <resourceman.h>
       
    19 #include <assp/omap3530_assp/omap3530_assp_priv.h>
       
    20 #include <assp/omap3530_assp/omap3530_irqmap.h>
       
    21 #include <assp/omap3530_assp/omap3530_usbc.h>
       
    22 //#include <assp/omap3530_assp/omap3530_prm.h>
       
    23 #include <assp/omap3530_assp/omap3530_prcm.h>
       
    24 
       
    25 
       
    26 // Debug support
       
    27 #ifdef _DEBUG
       
    28 static const char KUsbPanicCat[] = "USB PSL";
       
    29 #endif
       
    30 
       
    31 _LIT(KDfcName, "USB_DFC");
       
    32 
       
    33 // Register definitions - move to a seperate header file at some point..
       
    34 
       
    35 const TUint KCM_ICLKEN1_CORE = Omap3530HwBase::TVirtual<0x48004A10>::Value;
       
    36 	const TUint KENHOSTOTGUSB_BIT = KBit4;
       
    37 const TUint KCM_AUTOIDLE1_CORE = Omap3530HwBase::TVirtual<0x48004A30>::Value;
       
    38 	const TUint KAUTO_HOSTOTGUSB_BIT = KBit4;
       
    39 
       
    40 
       
    41 const TInt KSetupPacketSize = 8;
       
    42 const TInt KMaxPayload = 0x400;
       
    43 const TInt KUsbDfcPriority = 45;
       
    44 const TUint KUSBBase = Omap3530HwBase::TVirtual<0x480AB000>::Value;
       
    45 
       
    46 // USB registers - need the slave clock enabled to access most of these
       
    47 const TUint KFADDR_REG = 0x0;
       
    48 	const TUint KADDRESS_MSK = 0x7F;
       
    49 const TUint KPOWER_REG  = 0x1;
       
    50 	const TUint KSOFTCONNECT_BIT = KBit6;
       
    51 	const TUint KSUSPENDM_BIT = KBit1;
       
    52 	const TUint KRESUME_BIT = KBit2;
       
    53 	const TUint KHSEN_BIT = KBit5;
       
    54 //	const TUint KRESET_BIT = KBit3;
       
    55 const TUint K_INTRTX_REG =0x2;
       
    56 const TUint K_INTRRX_REG =0x4;
       
    57 const TUint K_INTRTXE_REG =0x6;
       
    58 const TUint K_INTRRXE_REG =0x8;
       
    59 const TUint K_INTRUSB_REG = 0xA;
       
    60 const TUint K_INTRUSBE_REG = 0xB;
       
    61 	const TUint K_INT_RESET = KBit2;
       
    62 	const TUint K_INT_RESUME = KBit1;
       
    63 	const TUint K_INT_SUSPEND = KBit0;
       
    64 //const TUint K_DEVCTRL_REG = 0x60;
       
    65 const TUint K_FIFO0_REG = 0x20;
       
    66 const TUint K_FIFO_OFFSET = 0x4;
       
    67 const TUint K_COUNT0_REG = 0x18;
       
    68 const TUint K_RXCOUNT_REG = 0x18;
       
    69 const TUint K_CONFIGDATA_REG = 0x1F;
       
    70 	const TUint K_MPRXE = KBit7;
       
    71 	const TUint K_MPTXE = KBit6;
       
    72 	const TUint K_DYNFIFO = KBit2;
       
    73 	const TUint K_SOFTCONNECT = KBit1;
       
    74 const TUint K_INDEX_REG = 0xE;
       
    75 const TUint K_PERI_CSR0_REG = 0x12;
       
    76 	const TUint K_EP0_FLUSHFIFO = KBit8;
       
    77 	const TUint K_EP0_SERV_SETUPEND = KBit7;
       
    78 	const TUint K_EP0_SERV_RXPKTRDY = KBit6;
       
    79 	const TUint K_EP0_SETUPEND = KBit4;
       
    80 	const TUint K_EP0_SENDSTALL = KBit5;
       
    81 	const TUint K_EP0_DATAEND = KBit3;
       
    82 	const TUint K_EP0_SENTSTALL = KBit2;
       
    83 	const TUint K_EP0_TXPKTRDY = KBit1;
       
    84 	const TUint K_EP0_RXPKTRDY = KBit0;
       
    85 const TUint K_TXMAXP_REG = 0x10;
       
    86 const TUint K_RXMAXP_REG = 0x14;
       
    87 const TUint K_PERI_TXCSR_REG =  0x12;
       
    88 	const TUint K_TX_ISO = KBit14;
       
    89 	const TUint K_TX_DMAEN = KBit12;
       
    90 	const TUint K_TX_DMAMODE = KBit10;
       
    91 	const TUint K_TX_CLRDATATOG = KBit6;
       
    92 	const TUint K_TX_SENTSTALL = KBit5;
       
    93 	const TUint K_TX_SENDSTALL = KBit4;
       
    94 	const TUint K_TX_FLUSHFIFO = KBit3;
       
    95 	const TUint K_TX_UNDERRUN = KBit2;
       
    96 //	const TUint K_TX_FIFONOTEMPTY = KBit1;
       
    97 	const TUint K_TX_TXPKTRDY = KBit0;
       
    98 const TUint K_PERI_RXCSR_REG =  0x16;
       
    99 	const TUint K_RX_ISO = KBit14;
       
   100 	const TUint K_RX_DMAEN = KBit13;
       
   101 	const TUint K_RX_DISNYET = KBit12;
       
   102 	const TUint K_RX_CLRDATATOG = KBit7;
       
   103 	const TUint K_RX_SENTSTALL = KBit6;
       
   104 	const TUint K_RX_SENDSTALL = KBit5;
       
   105 	const TUint K_RX_FLUSHFIFO = KBit4;
       
   106 	const TUint K_RX_OVERRUN = KBit2;
       
   107 	const TUint K_RX_RXPKTRDY = KBit0;	
       
   108 const TUint K_TXFIFOSZ_REG = 0x62;
       
   109 const TUint K_RXFIFOSZ_REG = 0x63;
       
   110 const TUint K_TXFIFOADDR_REG = 0x64;
       
   111 const TUint K_RXFIFOADDR_REG = 0x66;
       
   112 const TUint K_OTG_SYSCONFIG_REG = 0x404;
       
   113 	const TUint K_ENABLEWAKEUP = KBit2;
       
   114 //const TUint K_OTG_SYSSTATUS_REG = 0x408;
       
   115 
       
   116 // End of Register definitions
       
   117 
       
   118 // Define USB_SUPPORTS_PREMATURE_STATUS_IN to enable proper handling of a premature STATUS_IN stage, i.e. a
       
   119 // situation where the host sends less data than first announced and instead of more data (OUT) will send an
       
   120 // IN token to start the status stage. What we do in order to implement this here is to prime the TX fifo with
       
   121 // a ZLP immediately when we find out that we're dealing with a DATA_OUT request. This way, as soon as the
       
   122 // premature IN token is received, we complete the transaction by sending off the ZLP. If we don't prime the
       
   123 // TX fifo then there is no way for us to recognise a premature status because the IN token itself doesn't
       
   124 // raise an interrupt. We would simply wait forever for more data, or rather we would time out and the host
       
   125 // would move on and send the next Setup packet.
       
   126 // The reason why we would not want to implement the proper behaviour is this: After having primed the TX fifo
       
   127 // with a ZLP, it is impossible for a user to reject such a (class/vendor specific) Setup request, basically
       
   128 // because the successful status stage happens automatically. At the time the user has received and decoded
       
   129 // the Setup request there's for her no way to stall Ep0 in order to show to the host that this Setup packet
       
   130 // is invalid or inappropriate or whatever, because she cannot prevent the status stage from happening.
       
   131 // (All this is strictly true only if the amount of data in the data stage is less than or equal to Ep0's max
       
   132 //	packet size. However this is almost always the case.)
       
   133 //#define USB_SUPPORTS_PREMATURE_STATUS_IN
       
   134 
       
   135 
       
   136 static const TUsbcEndpointCaps DeviceEndpoints[KUsbTotalEndpoints] =
       
   137 	{
       
   138 	//                                                      Hardware #    iEndpoints index
       
   139 	{KEp0MaxPktSzMask,	(KUsbEpTypeControl	   | KUsbEpDirOut)}, //	 0 -  0
       
   140 	{KEp0MaxPktSzMask,	(KUsbEpTypeControl	   | KUsbEpDirIn )}, //	 0 -  1
       
   141 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 1 -  2
       
   142 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 2 -  3
       
   143 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 3 -  4
       
   144 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 4 -  5
       
   145 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 5 -  6
       
   146 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 6 -  7
       
   147 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 7 -  8
       
   148 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 8 -  9
       
   149 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 9 -  10
       
   150 	{KEp0MaxPktSzMask,	(KUsbEpTypeBulk	   	   | KUsbEpDirIn )}, //	 10 -  11
       
   151 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 11 -  12
       
   152 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 12 -  13
       
   153 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 13 -  14
       
   154 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 14 -  15
       
   155 	// Disabled due to limited FIFO space
       
   156 	/*{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 15 -  16
       
   157 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 16 -  17
       
   158 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 17 -  18
       
   159 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 18 -  19
       
   160 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 19 -  20
       
   161 	{KEp0MaxPktSzMask,	(KUsbEpTypeBulk	   	   | KUsbEpDirIn )}, //	 20 -  21
       
   162 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 21 -  22
       
   163 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 22 -  23
       
   164 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 23 -  24
       
   165 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 24 -  25
       
   166 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 25 -  26
       
   167 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 26 -  27
       
   168 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 27 -  28
       
   169 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirIn )}, //	 28 -  29
       
   170 	{KBlkMaxPktSzMask,	(KUsbEpTypeBulk		   | KUsbEpDirOut)}, //	 29 -  30
       
   171 	{KIntMaxPktSzMask,	(KUsbEpTypeInterrupt   | KUsbEpDirIn )}  //	 30-   31*/
       
   172 	};
       
   173 
       
   174 
       
   175 // --- TEndpoint --------------------------------------------------------------
       
   176 
       
   177 TEndpoint::TEndpoint()
       
   178 //
       
   179 // Constructor
       
   180 //
       
   181 	: iRxBuf(NULL), iReceived(0), iLength(0), iZlpReqd(EFalse), iNoBuffer(EFalse), iDisabled(EFalse),
       
   182 	  iPackets(0), iLastError(KErrNone), iRequest(NULL), iRxTimer(RxTimerCallback, this),
       
   183 	  iRxTimerSet(EFalse), iRxMoreDataRcvd(EFalse), iPacketIndex(NULL), iPacketSize(NULL)
       
   184 	{
       
   185 	__KTRACE_OPT(KUSB, Kern::Printf("TEndpoint::TEndpoint"));
       
   186 	}
       
   187 
       
   188 
       
   189 void TEndpoint::RxTimerCallback(TAny* aPtr)
       
   190 //
       
   191 // (This function is static.)
       
   192 //
       
   193 	{
       
   194 	TEndpoint* const ep = static_cast<TEndpoint*>(aPtr);
       
   195 	if (!ep)
       
   196 		{
       
   197 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: !ep"));
       
   198 		}
       
   199 	else if (!ep->iRxTimerSet)
       
   200 		{
       
   201 		// Timer 'stop' substitute (instead of stopping it,
       
   202 		// we just let it expire after clearing iRxTimerSet)
       
   203 		__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxTimerSet - returning"));
       
   204 		}
       
   205 	else if (!ep->iRxBuf)
       
   206 		{
       
   207 		// Request already completed
       
   208 		__KTRACE_OPT(KUSB, Kern::Printf("!ep->iRxBuf - returning"));
       
   209 		}
       
   210 	else if (ep->iRxMoreDataRcvd)
       
   211 		{
       
   212 		__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: not yet completing..."));
       
   213 		ep->iRxMoreDataRcvd = EFalse;
       
   214 		ep->iRxTimer.Again(KRxTimerTimeout);
       
   215 		}
       
   216 	else
       
   217 		{
       
   218 		__KTRACE_OPT(KUSB, Kern::Printf(" > rx timer cb: completing now..."));
       
   219 		*ep->iPacketSize = ep->iReceived;
       
   220 		ep->iController->RxComplete(ep);
       
   221 		}
       
   222 	}
       
   223 
       
   224 
       
   225 // --- DOmap3530Usbcc public ---------------------------------------------------
       
   226 
       
   227 DOmap3530Usbcc::DOmap3530Usbcc()
       
   228 //
       
   229 // Constructor.
       
   230 //
       
   231 	: iCableConnected(ETrue), iBusIsPowered(EFalse),
       
   232 	  iInitialized(EFalse), iUsbClientConnectorCallback(UsbClientConnectorCallback),
       
   233 	  iAssp( static_cast<Omap3530Assp*>( Arch::TheAsic() ) ),
       
   234 	  iEp0Configured(EFalse), iSuspendDfc(SuspendDfcFn, this, 7),
       
   235 	  iResumeDfc(ResumeDfcFn, this, 7), iResetDfc(ResetDfcFn, this, 7)
       
   236 	{
       
   237 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DOmap3530Usbcc"));
       
   238 	
       
   239 	TInt r = Kern::DfcQCreate(iDfcQueue, KUsbDfcPriority, &KDfcName);
       
   240 	
       
   241 	iSuspendDfc.SetDfcQ(iDfcQueue);	
       
   242 	iResetDfc.SetDfcQ(iDfcQueue);
       
   243 	iResumeDfc.SetDfcQ(iDfcQueue);
       
   244 	
       
   245 	iSoftwareConnectable = iAssp->UsbSoftwareConnectable();
       
   246 
       
   247 	iCableDetectable = iAssp->UsbClientConnectorDetectable();
       
   248 
       
   249 	if (iCableDetectable)
       
   250 		{
       
   251 		// Register our callback for detecting USB cable insertion/removal.
       
   252 		// We ignore the error code: if the registration fails, we just won't get any events.
       
   253 		// (Which of course is bad enough...)
       
   254 		(void) iAssp->RegisterUsbClientConnectorCallback(iUsbClientConnectorCallback, this);
       
   255 		// Call the callback straight away so we get the proper PIL state from the beginning.
       
   256 		(void) UsbClientConnectorCallback(this);
       
   257 		}
       
   258 
       
   259 	for (TInt i = 0; i < KUsbTotalEndpoints; i++)
       
   260 		{
       
   261 		iEndpoints[i].iController = this;
       
   262 		}
       
   263 	
       
   264 	__KTRACE_OPT(KUSB, Kern::Printf("-DOmap3530Usbcc::DOmap3530Usbcc"));
       
   265 	}
       
   266 
       
   267 
       
   268 TInt DOmap3530Usbcc::Construct()
       
   269 //
       
   270 // Construct.
       
   271 //
       
   272 	{
       
   273 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Construct"));
       
   274 
       
   275 	iPhy = MOmap3530UsbPhy::New();
       
   276 	if( !iPhy )
       
   277 		{
       
   278 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Failed to get pointer to USB PHY"));
       
   279 		return KErrNoMemory;
       
   280 		}
       
   281 
       
   282 	//TInt r = PowerResourceManager::RegisterClient( iPrmClientId, KDfcName );
       
   283 	//if( r != KErrNone )
       
   284 	//	{
       
   285 	//	__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Failed to connect to PRM"));
       
   286 	//	return r;
       
   287 	//	}
       
   288 
       
   289 
       
   290 	TUsbcDeviceDescriptor* DeviceDesc = TUsbcDeviceDescriptor::New(
       
   291 		0x00,												// aDeviceClass
       
   292 		0x00,												// aDeviceSubClass
       
   293 		0x00,												// aDeviceProtocol
       
   294 		KEp0MaxPktSz,										// aMaxPacketSize0
       
   295 		KUsbVendorId,										// aVendorId
       
   296 		KUsbProductId,										// aProductId
       
   297 		KUsbDevRelease,										// aDeviceRelease
       
   298 		1);													// aNumConfigurations
       
   299 	if (!DeviceDesc)
       
   300 		{
       
   301 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for dev desc failed."));
       
   302 		return KErrGeneral;
       
   303 		}
       
   304 
       
   305 	TUsbcConfigDescriptor* ConfigDesc = TUsbcConfigDescriptor::New(
       
   306 		1,													// aConfigurationValue
       
   307 		ETrue,												// aSelfPowered (see 12.4.2 "Bus-Powered Devices")
       
   308 		ETrue,												// aRemoteWakeup
       
   309 		0);													// aMaxPower (mA)
       
   310 	if (!ConfigDesc)
       
   311 		{
       
   312 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for config desc failed."));
       
   313 		return KErrGeneral;
       
   314 		}
       
   315 
       
   316 	TUsbcLangIdDescriptor* StringDescLang = TUsbcLangIdDescriptor::New(KUsbLangId);
       
   317 	if (!StringDescLang)
       
   318 		{
       
   319 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for lang id $ desc failed."));
       
   320 		return KErrGeneral;
       
   321 		}
       
   322 
       
   323 	// ('sizeof(x) - 2' because 'wchar_t KStringXyz' created a wide string that ends in '\0\0'.)
       
   324 
       
   325 	TUsbcStringDescriptor* StringDescManu =
       
   326 		TUsbcStringDescriptor::New(TPtr8(
       
   327 									   const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringManufacturer)),
       
   328 									   sizeof(KStringManufacturer) - 2, sizeof(KStringManufacturer) - 2));
       
   329 	if (!StringDescManu)
       
   330 		{
       
   331 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for manufacturer $ desc failed."));
       
   332 		return KErrGeneral;
       
   333 		}
       
   334 
       
   335 	TUsbcStringDescriptor* StringDescProd =
       
   336 		TUsbcStringDescriptor::New(TPtr8(
       
   337 									   const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringProduct)),
       
   338 									   sizeof(KStringProduct) - 2, sizeof(KStringProduct) - 2));
       
   339 	if (!StringDescProd)
       
   340 		{
       
   341 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for product $ desc failed."));
       
   342 		return KErrGeneral;
       
   343 		}
       
   344 
       
   345 	TUsbcStringDescriptor* StringDescSer =
       
   346 		TUsbcStringDescriptor::New(TPtr8(
       
   347 									   const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringSerialNo)),
       
   348 									   sizeof(KStringSerialNo) - 2, sizeof(KStringSerialNo) - 2));
       
   349 	if (!StringDescSer)
       
   350 		{
       
   351 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for serial no $ desc failed."));
       
   352 		return KErrGeneral;
       
   353 		}
       
   354 
       
   355 	TUsbcStringDescriptor* StringDescConf =
       
   356 		TUsbcStringDescriptor::New(TPtr8(
       
   357 									   const_cast<TUint8*>(reinterpret_cast<const TUint8*>(KStringConfig)),
       
   358 									   sizeof(KStringConfig) - 2, sizeof(KStringConfig) - 2));
       
   359 	if (!StringDescConf)
       
   360 		{
       
   361 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for config $ desc failed."));
       
   362 		return KErrGeneral;
       
   363 		}
       
   364 
       
   365 	const TBool b =	InitialiseBaseClass(DeviceDesc,
       
   366 										ConfigDesc,
       
   367 										StringDescLang,
       
   368 										StringDescManu,
       
   369 										StringDescProd,
       
   370 										StringDescSer,
       
   371 										StringDescConf);
       
   372 	if (!b)
       
   373 		{ 
       
   374 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: UsbClientController::InitialiseBaseClass failed."));
       
   375 		return KErrGeneral;
       
   376 		}
       
   377 	
       
   378 	return KErrNone;
       
   379 	}
       
   380 
       
   381 
       
   382 DOmap3530Usbcc::~DOmap3530Usbcc()
       
   383 //
       
   384 // Destructor.
       
   385 //
       
   386 	{
       
   387 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::~DOmap3530Usbcc"));
       
   388 
       
   389 	// Unregister our callback for detecting USB cable insertion/removal
       
   390 	if (iCableDetectable)
       
   391 		{
       
   392 		iAssp->UnregisterUsbClientConnectorCallback();
       
   393 		}
       
   394 	if (iInitialized)
       
   395 		{
       
   396 		// (The explicit scope operator is used against Lint warning #1506.)
       
   397 		DOmap3530Usbcc::StopUdc();
       
   398 		}
       
   399 	}
       
   400 
       
   401 
       
   402 TBool DOmap3530Usbcc::DeviceStateChangeCaps() const
       
   403 //
       
   404 // Returns capability of hardware to accurately track the device state (Chapter 9 state).
       
   405 //
       
   406 	{
       
   407 	return EFalse;
       
   408 	}
       
   409 
       
   410 
       
   411 TInt DOmap3530Usbcc::SignalRemoteWakeup()
       
   412 //
       
   413 // Forces the UDC into a non-idle state to perform a remote wakeup operation.
       
   414 //
       
   415 	{
       
   416 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SignalRemoteWakeup"));
       
   417 	Kern::Printf("DOmap3530Usbcc::SignalRemoteWakeup");
       
   418 	// Resume signal
       
   419 	
       
   420 	TInt sysconfig = AsspRegister::Read32(KUSBBase+K_OTG_SYSCONFIG_REG );
       
   421 	if(sysconfig&K_ENABLEWAKEUP && iRmWakeupStatus_Enabled)
       
   422 		{
       
   423 		AsspRegister::Modify8(KUSBBase+KPOWER_REG, KClearNone , KRESUME_BIT);
       
   424 		Kern::NanoWait(10000000); // Wait 10ms - Use a callback instead!
       
   425 		AsspRegister::Modify8(KUSBBase+KPOWER_REG, KRESUME_BIT, KSetNone);
       
   426 		}
       
   427 	return KErrNone;
       
   428 	}
       
   429 
       
   430 
       
   431 void DOmap3530Usbcc::DumpRegisters()
       
   432 //
       
   433 // Dumps the contents of a number of UDC registers to the screen (using Kern::Printf()).
       
   434 // Rarely used, but might prove helpful when needed.
       
   435 //
       
   436 	{
       
   437 	Kern::Printf("DOmap3530Usbcc::DumpRegisters:");
       
   438 	}
       
   439 
       
   440 
       
   441 TDfcQue* DOmap3530Usbcc::DfcQ(TInt /* aUnit */)
       
   442 //
       
   443 // Returns a pointer to the kernel DFC queue to be used buy the USB LDD.
       
   444 //
       
   445 	{
       
   446 	return iDfcQueue;
       
   447 	}
       
   448 
       
   449 
       
   450 // --- DOmap3530Usbcc private virtual ------------------------------------------
       
   451 
       
   452 TInt DOmap3530Usbcc::SetDeviceAddress(TInt aAddress)
       
   453 //
       
   454 // Sets the PIL-provided device address manually (if possible - otherwise do nothing).
       
   455 //
       
   456 	{
       
   457 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetDeviceAddress: %d", aAddress));
       
   458 
       
   459 	AsspRegister::Write8(KUSBBase+KFADDR_REG, aAddress & KADDRESS_MSK);
       
   460 		
       
   461 	if (aAddress || GetDeviceStatus()==EUsbcDeviceStateAddress)
       
   462 		{
       
   463 		// Address can be zero.
       
   464 		MoveToAddressState();
       
   465 		}
       
   466 
       
   467 	return KErrNone;
       
   468 	}
       
   469 
       
   470 
       
   471 TInt DOmap3530Usbcc::ConfigureEndpoint(TInt aRealEndpoint, const TUsbcEndpointInfo& aEndpointInfo)
       
   472 //
       
   473 // Prepares (enables) an endpoint (incl. Ep0) for data transmission or reception.
       
   474 //
       
   475 	{
       
   476 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ConfigureEndpoint(%d)", aRealEndpoint));
       
   477 	
       
   478 	const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
       
   479 	if (n < 0)
       
   480 		return KErrArgument;
       
   481 
       
   482 	TEndpoint* const ep = &iEndpoints[aRealEndpoint];
       
   483 	if (ep->iDisabled == EFalse)
       
   484 		{
       
   485 		EnableEndpointInterrupt(aRealEndpoint);
       
   486 		if(n!=0)
       
   487 			{
       
   488 			AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
   489 			if(aRealEndpoint%2==0)
       
   490 				{
       
   491 
       
   492 				AsspRegister::Write16(KUSBBase+K_PERI_RXCSR_REG, K_RX_CLRDATATOG | K_RX_DISNYET);
       
   493 				}
       
   494 			else
       
   495 				{			
       
   496 				AsspRegister::Write16(KUSBBase+K_PERI_TXCSR_REG, K_TX_CLRDATATOG);
       
   497 				}
       
   498 			}
       
   499 		else
       
   500 			{
       
   501 			AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
       
   502 			AsspRegister::Write16(KUSBBase+K_PERI_CSR0_REG, K_EP0_FLUSHFIFO); // FlushFifo;
       
   503 			}
       
   504 		}
       
   505 	ep->iNoBuffer = EFalse;
       
   506 	if (n == 0)
       
   507 		iEp0Configured = ETrue;
       
   508 
       
   509 	return KErrNone;
       
   510 	}
       
   511 
       
   512 
       
   513 TInt DOmap3530Usbcc::DeConfigureEndpoint(TInt aRealEndpoint)
       
   514 //
       
   515 // Disables an endpoint (incl. Ep0).
       
   516 //
       
   517 	{
       
   518 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeConfigureEndpoint(%d)", aRealEndpoint));
       
   519 
       
   520 	const TInt n = ArrayIdx2TemplateEp(aRealEndpoint);
       
   521 	if (n < 0)
       
   522 		return KErrArgument;
       
   523 
       
   524 	DisableEndpointInterrupt(aRealEndpoint);
       
   525 	if (n == 0)
       
   526 		{
       
   527 		iEp0Configured = EFalse;
       
   528 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
       
   529 		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO);
       
   530 		}
       
   531 	else
       
   532 		{
       
   533 		if(aRealEndpoint%2==0)
       
   534 			{
       
   535 			AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
   536 			AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_FLUSHFIFO);
       
   537 			}
       
   538 		else
       
   539 			{		
       
   540 			AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
   541 			AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_FLUSHFIFO);
       
   542 			}
       
   543 		}
       
   544 	return KErrNone;
       
   545 	}
       
   546 
       
   547 
       
   548 TInt DOmap3530Usbcc::AllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource)
       
   549 //
       
   550 // Puts the requested endpoint resource to use, if possible.
       
   551 //
       
   552 	{
       
   553 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::AllocateEndpointResource(%d): %d",
       
   554 									aRealEndpoint, aResource));
       
   555 
       
   556 	// TO DO: Allocate endpoint resource here.
       
   557 
       
   558 	return KErrNone;
       
   559 	}
       
   560 
       
   561 
       
   562 TInt DOmap3530Usbcc::DeAllocateEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource)
       
   563 //
       
   564 // Stops the use of the indicated endpoint resource, if beneficial.
       
   565 //
       
   566 	{
       
   567 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeAllocateEndpointResource(%d): %d",
       
   568 									aRealEndpoint, aResource));
       
   569 
       
   570 	// TO DO: Deallocate endpoint resource here.
       
   571 
       
   572 	return KErrNone;
       
   573 	}
       
   574 
       
   575 
       
   576 TBool DOmap3530Usbcc::QueryEndpointResource(TInt aRealEndpoint, TUsbcEndpointResource aResource) const
       
   577 //
       
   578 // Returns the status of the indicated resource and endpoint.
       
   579 //
       
   580 	{
       
   581 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::QueryEndpointResource(%d): %d",
       
   582 									aRealEndpoint, aResource));
       
   583 
       
   584 	// TO DO: Query endpoint resource here. The return value should reflect the actual state.
       
   585 	return ETrue;
       
   586 	}
       
   587 
       
   588 
       
   589 TInt DOmap3530Usbcc::OpenDmaChannel(TInt aRealEndpoint)
       
   590 //
       
   591 // Opens a DMA channel for this endpoint. This function is always called during the creation of an endpoint
       
   592 // in the PIL. If DMA channels are a scarce resource, it's possible to do nothing here and wait for an
       
   593 // AllocateEndpointResource call instead.
       
   594 //
       
   595 	{
       
   596 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::OpenDmaChannel(%d)", aRealEndpoint));
       
   597 
       
   598 	// TO DO (optional): Open DMA channel here.
       
   599 
       
   600 	// An error should only  be returned in case of an actual DMA problem.
       
   601 	return KErrNone;
       
   602 	}
       
   603 
       
   604 
       
   605 void DOmap3530Usbcc::CloseDmaChannel(TInt aRealEndpoint)
       
   606 //
       
   607 // Closes a DMA channel for this endpoint. This function is always called during the destruction of an
       
   608 // endpoint in the PIL.
       
   609 //
       
   610 	{
       
   611 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::CloseDmaChannel(%d)", aRealEndpoint));
       
   612 
       
   613 	// TO DO (optional): Close DMA channel here (only if it was opened via OpenDmaChannel).
       
   614 	}
       
   615 
       
   616 
       
   617 TInt DOmap3530Usbcc::SetupEndpointRead(TInt aRealEndpoint, TUsbcRequestCallback& aCallback)
       
   618 //
       
   619 // Sets up a read request for an endpoint on behalf of the LDD.
       
   620 //
       
   621 	{
       
   622 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointRead(%d)", aRealEndpoint));
       
   623 	if (!IS_OUT_ENDPOINT(aRealEndpoint))
       
   624 		{
       
   625 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint));
       
   626 		return KErrArgument;
       
   627 		}
       
   628 	TEndpoint* const ep = &iEndpoints[aRealEndpoint];
       
   629 	if (ep->iRxBuf != NULL)
       
   630 		{
       
   631 		__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", aRealEndpoint));
       
   632 		return KErrGeneral;
       
   633 		}
       
   634 	ep->iRxBuf = aCallback.iBufferStart;
       
   635 	ep->iReceived = 0;
       
   636 	ep->iLength = aCallback.iLength;
       
   637 
       
   638 	// For Bulk reads we start out with the assumption of 1 packet (see BulkReceive for why):
       
   639 	ep->iPackets = IS_BULK_OUT_ENDPOINT(aRealEndpoint) ? 1 : 0;
       
   640 	ep->iRequest = &aCallback;
       
   641 	ep->iPacketIndex = aCallback.iPacketIndex;
       
   642 	if (IS_BULK_OUT_ENDPOINT(aRealEndpoint))
       
   643 		*ep->iPacketIndex = 0;								// a one-off optimization
       
   644 	ep->iPacketSize = aCallback.iPacketSize;
       
   645 
       
   646 	if (ep->iDisabled)
       
   647 		{
       
   648 		ep->iDisabled = EFalse;
       
   649 		EnableEndpointInterrupt(aRealEndpoint);
       
   650 		}
       
   651 	else if (ep->iNoBuffer)
       
   652 		{
       
   653 		__KTRACE_OPT(KUSB, Kern::Printf(" > There had been no Rx buffer available: reading Rx FIFO now"));
       
   654 		ep->iNoBuffer = EFalse;
       
   655 		if (IS_BULK_OUT_ENDPOINT(aRealEndpoint))
       
   656 			{
       
   657 			BulkReadRxFifo(aRealEndpoint);
       
   658 			}
       
   659 		else if (IS_ISO_OUT_ENDPOINT(aRealEndpoint))
       
   660 			{
       
   661 			IsoReadRxFifo(aRealEndpoint);
       
   662 			}
       
   663 		else
       
   664 			{
       
   665 			__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Endpoint not found"));
       
   666 			}
       
   667 		}
       
   668 
       
   669 	return KErrNone;
       
   670 	}
       
   671 
       
   672 
       
   673 TInt DOmap3530Usbcc::SetupEndpointWrite(TInt aRealEndpoint, TUsbcRequestCallback& aCallback)
       
   674 //
       
   675 // Sets up a write request for an endpoint on behalf of the LDD.
       
   676 //
       
   677 	{
       
   678 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointWrite(%d)", aRealEndpoint));
       
   679 	
       
   680 	if (!IS_IN_ENDPOINT(aRealEndpoint))
       
   681 		{
       
   682 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint));
       
   683 		return KErrArgument;
       
   684 		}
       
   685 	TEndpoint* const ep = &iEndpoints[aRealEndpoint];
       
   686 	if (ep->iTxBuf != NULL)
       
   687 		{
       
   688 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: iEndpoints[%d].iTxBuf != NULL", aRealEndpoint));
       
   689 		return KErrGeneral;
       
   690 		}
       
   691 	ep->iTxBuf = aCallback.iBufferStart;
       
   692 	ep->iTransmitted = 0;
       
   693 	ep->iLength = aCallback.iLength;
       
   694 	ep->iPackets = 0;
       
   695 	ep->iZlpReqd = aCallback.iZlpReqd;
       
   696 	ep->iRequest = &aCallback;
       
   697 
       
   698 	if (IS_BULK_IN_ENDPOINT(aRealEndpoint))
       
   699 		{
       
   700 		if (ep->iDisabled)
       
   701 			{
       
   702 			ep->iDisabled = EFalse;
       
   703 			EnableEndpointInterrupt(aRealEndpoint);
       
   704 			}
       
   705 		BulkTransmit(aRealEndpoint);
       
   706 		}
       
   707 	else if (IS_ISO_IN_ENDPOINT(aRealEndpoint))
       
   708 		{
       
   709 		IsoTransmit(aRealEndpoint);
       
   710 		}
       
   711 	else if (IS_INT_IN_ENDPOINT(aRealEndpoint))
       
   712 		{
       
   713 		IntTransmit(aRealEndpoint);
       
   714 		}
       
   715 	else
       
   716 		{
       
   717 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Endpoint not found"));
       
   718 		}
       
   719 
       
   720 	return KErrNone;
       
   721 	}
       
   722 
       
   723 
       
   724 TInt DOmap3530Usbcc::CancelEndpointRead(TInt aRealEndpoint)
       
   725 //
       
   726 // Cancels a read request for an endpoint on behalf of the LDD.
       
   727 // No completion to the PIL occurs.
       
   728 //
       
   729 	{
       
   730 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::CancelEndpointRead(%d)", aRealEndpoint));
       
   731 
       
   732 	if (!IS_OUT_ENDPOINT(aRealEndpoint))
       
   733 		{
       
   734 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: !IS_OUT_ENDPOINT(%d)", aRealEndpoint));
       
   735 		return KErrArgument;
       
   736 		}
       
   737 	TEndpoint* const ep = &iEndpoints[aRealEndpoint];
       
   738 	if (ep->iRxBuf == NULL)
       
   739 		{
       
   740 		__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf == NULL", aRealEndpoint));
       
   741 		return KErrNone;
       
   742 		}
       
   743 		
       
   744 	// : Flush the Ep's Rx FIFO here
       
   745 	if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
       
   746 		{
       
   747 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
       
   748 		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO );
       
   749 		}
       
   750 	else
       
   751 		{
       
   752 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
   753 		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_FLUSHFIFO );
       
   754 		}
       
   755 		
       
   756 	ep->iRxBuf = NULL;
       
   757 	ep->iReceived = 0;
       
   758 	ep->iNoBuffer = EFalse;
       
   759 
       
   760 	return KErrNone;
       
   761 	}
       
   762 
       
   763 
       
   764 TInt DOmap3530Usbcc::CancelEndpointWrite(TInt aRealEndpoint)
       
   765 //
       
   766 // Cancels a write request for an endpoint on behalf of the LDD.
       
   767 // No completion to the PIL occurs.
       
   768 //
       
   769 	{
       
   770 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::CancelEndpointWrite(%d)", aRealEndpoint));
       
   771 
       
   772 	if (!IS_IN_ENDPOINT(aRealEndpoint))
       
   773 		{
       
   774 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: !IS_IN_ENDPOINT(%d)", aRealEndpoint));
       
   775 		return KErrArgument;
       
   776 		}
       
   777 	TEndpoint* const ep = &iEndpoints[aRealEndpoint];
       
   778 	if (ep->iTxBuf == NULL)
       
   779 		{
       
   780 		__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iTxBuf == NULL", aRealEndpoint));
       
   781 		return KErrNone;
       
   782 		}
       
   783 
       
   784 	// TO DO (optional): Flush the Ep's Tx FIFO here, if possible.	
       
   785 	if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
       
   786 		{
       
   787 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
       
   788 		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO );
       
   789 		}
       
   790 	else
       
   791 		{
       
   792 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
   793 		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_FLUSHFIFO );
       
   794 		}
       
   795 			
       
   796 	ep->iTxBuf = NULL;
       
   797 	ep->iTransmitted = 0;
       
   798 	ep->iNoBuffer = EFalse;
       
   799 
       
   800 	return KErrNone;
       
   801 	}
       
   802 
       
   803 
       
   804 TInt DOmap3530Usbcc::SetupEndpointZeroRead()
       
   805 //
       
   806 // Sets up an Ep0 read request (own function due to Ep0's special status).
       
   807 //
       
   808 	{
       
   809 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointZeroRead"));
       
   810 
       
   811 	TEndpoint* const ep = &iEndpoints[KEp0_Out];
       
   812 	if (ep->iRxBuf != NULL)
       
   813 		{
       
   814 		__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: iEndpoints[%d].iRxBuf != NULL", KEp0_Out));
       
   815 		return KErrGeneral;
       
   816 		}
       
   817 	ep->iRxBuf = iEp0_RxBuf;
       
   818 	ep->iReceived = 0;
       
   819 
       
   820 	return KErrNone;
       
   821 	}
       
   822 
       
   823 
       
   824 TInt DOmap3530Usbcc::SetupEndpointZeroWrite(const TUint8* aBuffer, TInt aLength, TBool aZlpReqd)
       
   825 //
       
   826 // Sets up an Ep0 write request (own function due to Ep0's special status).
       
   827 //
       
   828 	{
       
   829 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupEndpointZeroWrite"));
       
   830 
       
   831 	TEndpoint* const ep = &iEndpoints[KEp0_In];
       
   832 	if (ep->iTxBuf != NULL)
       
   833 		{
       
   834 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: iEndpoints[%d].iTxBuf != NULL", KEp0_In));
       
   835 		return KErrGeneral;
       
   836 		}
       
   837 	ep->iTxBuf = aBuffer;
       
   838 	ep->iTransmitted = 0;
       
   839 	ep->iLength = aLength;
       
   840 	ep->iZlpReqd = aZlpReqd;
       
   841 	ep->iRequest = NULL;
       
   842 	Ep0Transmit();
       
   843 
       
   844 	return KErrNone;
       
   845 	}
       
   846 
       
   847 
       
   848 TInt DOmap3530Usbcc::SendEp0ZeroByteStatusPacket()
       
   849 //
       
   850 // Sets up an Ep0 write request for zero bytes.
       
   851 // This is a separate function because no data transfer is involved here.
       
   852 //
       
   853 	{
       
   854 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SendEp0ZeroByteStatusPacket"));
       
   855 
       
   856 	// This is possibly a bit tricky. When this function is called it just means that the higher layer wants a
       
   857 	// ZLP to be sent. Whether we actually send one manually here depends on a number of factors, as the
       
   858 	// current Ep0 state (i.e. the stage of the Ep0 Control transfer), and, in case the hardware handles some
       
   859 	// ZLPs itself, whether it might already handle this one.
       
   860 
       
   861 	// Here is an example of what the checking of the conditions might look like:
       
   862 
       
   863 #ifndef USB_SUPPORTS_SET_DESCRIPTOR_REQUEST
       
   864 	if ((!iEp0ReceivedNonStdRequest && iEp0State == EP0_IN_DATA_PHASE) ||
       
   865 #else
       
   866 	if ((!iEp0ReceivedNonStdRequest && iEp0State != EP0_IDLE) ||
       
   867 #endif
       
   868 #ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
       
   869 		(iEp0ReceivedNonStdRequest && iEp0State != EP0_OUT_DATA_PHASE))
       
   870 #else
       
   871 		(iEp0ReceivedNonStdRequest))
       
   872 #endif
       
   873 
       
   874 		{
       
   875 		// TO DO: Arrange for the sending of a ZLP here.
       
   876 		Kern::Printf("ZLP!");
       
   877 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
       
   878 		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND );
       
   879 		}
       
   880 
       
   881 	return KErrNone;
       
   882 	}
       
   883 
       
   884 
       
   885 TInt DOmap3530Usbcc::StallEndpoint(TInt aRealEndpoint)
       
   886 //
       
   887 // Stalls an endpoint.
       
   888 //
       
   889 	{
       
   890 	__KTRACE_OPT(KPANIC, Kern::Printf("DOmap3530Usbcc::StallEndpoint(%d)", aRealEndpoint));
       
   891 
       
   892 	if (IS_ISO_ENDPOINT(aRealEndpoint))
       
   893 		{
       
   894 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Iso endpoint cannot be stalled"));
       
   895 		return KErrArgument;
       
   896 		}
       
   897 
       
   898 	// Stall the endpoint here.
       
   899 	if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
       
   900 		{
       
   901 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
       
   902 		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SENDSTALL);
       
   903 		}
       
   904 	else
       
   905 	if(aRealEndpoint%2==0)
       
   906 		{
       
   907 		// RX stall
       
   908 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
   909 		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_SENDSTALL);
       
   910 		}
       
   911 	else
       
   912 		{
       
   913 		// TX stall
       
   914 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
   915 		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_SENDSTALL );
       
   916 		}
       
   917 	return KErrNone;
       
   918 	}
       
   919 
       
   920 
       
   921 TInt DOmap3530Usbcc::ClearStallEndpoint(TInt aRealEndpoint)
       
   922 //
       
   923 // Clears the stall condition of an endpoint.
       
   924 //
       
   925 	{
       
   926 	__KTRACE_OPT(KPANIC, Kern::Printf("DOmap3530Usbcc::ClearStallEndpoint(%d)", aRealEndpoint));
       
   927 
       
   928 	if (IS_ISO_ENDPOINT(aRealEndpoint))
       
   929 		{
       
   930 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Iso endpoint cannot be unstalled"));
       
   931 		return KErrArgument;
       
   932 		}
       
   933 
       
   934 	// De-stall the endpoint here.
       
   935 		
       
   936 	if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
       
   937 		{
       
   938 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
       
   939 		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, K_EP0_SENTSTALL, KSetNone );
       
   940 		}
       
   941 	else
       
   942 	if(aRealEndpoint%2==0)
       
   943 		{
       
   944 		//Clear RX stall
       
   945 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
   946 		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_SENDSTALL, KSetNone );
       
   947 		}
       
   948 	else
       
   949 		{
       
   950 		//Clear TX stall
       
   951 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
   952 		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_SENDSTALL, KSetNone );
       
   953 		}
       
   954 
       
   955 	return KErrNone;
       
   956 	}
       
   957 
       
   958 
       
   959 TInt DOmap3530Usbcc::EndpointStallStatus(TInt aRealEndpoint) const
       
   960 //
       
   961 // Reports the stall status of an endpoint.
       
   962 //
       
   963 	{
       
   964 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EndpointStallStatus(%d)", aRealEndpoint));
       
   965 	if (IS_ISO_ENDPOINT(aRealEndpoint))
       
   966 		{
       
   967 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Iso endpoint has no stall status"));
       
   968 		return KErrArgument;
       
   969 		}		
       
   970 
       
   971 	// Query endpoint stall status here. The return value should reflect the actual state.
       
   972 	if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
       
   973 		{
       
   974 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
       
   975 		TInt status = AsspRegister::Read16(KUSBBase+K_PERI_CSR0_REG);
       
   976 		return status & K_EP0_SENTSTALL;
       
   977 		}
       
   978 	else
       
   979 	if(aRealEndpoint%2==0)
       
   980 		{
       
   981 		//Clear RX stall
       
   982 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
   983 		TInt status = AsspRegister::Read16(KUSBBase+K_PERI_RXCSR_REG);
       
   984 		return status & K_RX_SENDSTALL;
       
   985 		}
       
   986 	else
       
   987 		{
       
   988 		//Clear TX stall
       
   989 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
   990 		TInt status = AsspRegister::Read16(KUSBBase+K_PERI_TXCSR_REG);
       
   991 		return status & K_TX_SENDSTALL;
       
   992 		
       
   993 		}
       
   994 	}
       
   995 
       
   996 
       
   997 TInt DOmap3530Usbcc::EndpointErrorStatus(TInt aRealEndpoint) const
       
   998 //
       
   999 // Reports the error status of an endpoint.
       
  1000 //
       
  1001 	{
       
  1002 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EndpointErrorStatus(%d)", aRealEndpoint));
       
  1003 
       
  1004 	if (!IS_VALID_ENDPOINT(aRealEndpoint))
       
  1005 		{
       
  1006 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: !IS_VALID_ENDPOINT(%d)", aRealEndpoint));
       
  1007 		return KErrArgument;
       
  1008 		}
       
  1009 
       
  1010 	// TO DO: Query endpoint error status here. The return value should reflect the actual state.
       
  1011 	// With some UDCs there is no way of inquiring the endpoint error status; say 'ETrue' in that case.
       
  1012 
       
  1013 	// Bulk EP's don't have an error status
       
  1014 	return ETrue;
       
  1015 	}
       
  1016 
       
  1017 
       
  1018 TInt DOmap3530Usbcc::ResetDataToggle(TInt aRealEndpoint)
       
  1019 //
       
  1020 // Resets to zero the data toggle bit of an endpoint.
       
  1021 //
       
  1022 	{
       
  1023 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ResetDataToggle(%d)", aRealEndpoint));
       
  1024 
       
  1025 	// Reset the endpoint's data toggle bit here.
       
  1026 	// With some UDCs there is no way to individually reset the endpoint's toggle bits; just return KErrNone
       
  1027 	// in that case.
       
  1028 	
       
  1029 	if(aRealEndpoint==KEp0_Out || aRealEndpoint==KEp0_In)
       
  1030 		{
       
  1031 		// No way of setting data toggle for EP0
       
  1032 		}
       
  1033 	else
       
  1034 	if(aRealEndpoint%2==0)
       
  1035 		{
       
  1036 		//Clear RX stall
       
  1037 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
  1038 		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone, K_RX_CLRDATATOG);
       
  1039 		}
       
  1040 	else
       
  1041 		{
       
  1042 		//Clear TX stall
       
  1043 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aRealEndpoint/2));
       
  1044 		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_CLRDATATOG);	
       
  1045 		}
       
  1046 
       
  1047 	return KErrNone;
       
  1048 	}
       
  1049 
       
  1050 
       
  1051 TInt DOmap3530Usbcc::SynchFrameNumber() const
       
  1052 //
       
  1053 // For use with isochronous endpoints only. Causes the SOF frame number to be returned.
       
  1054 //
       
  1055 	{
       
  1056 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SynchFrameNumber"));
       
  1057 
       
  1058 	// TO DO: Query and return the SOF frame number here.
       
  1059 	return 0;
       
  1060 	}
       
  1061 
       
  1062 void DOmap3530Usbcc::SetSynchFrameNumber(TInt aFrameNumber)
       
  1063 //
       
  1064 // For use with isochronous endpoints only. Causes the SOF frame number to be stored.
       
  1065 //
       
  1066 	{
       
  1067 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetSynchFrameNumber(%d)", aFrameNumber));
       
  1068 
       
  1069 	// We should actually store this number somewhere. But the PIL always sends '0x00'
       
  1070 	// in response to a SYNCH_FRAME request...
       
  1071 	// TO DO: Store the frame number. Alternatively (until SYNCH_FRAME request specification changes): Do
       
  1072 	// nothing.
       
  1073 	}
       
  1074 
       
  1075 TInt DOmap3530Usbcc::StartUdc()
       
  1076 //
       
  1077 // Called to initialize the device controller hardware before any operation can be performed.
       
  1078 //
       
  1079 	{
       
  1080 	__KTRACE_OPT(KUSB,Kern::Printf("DOmap3530Usbcc::StartUdc"));
       
  1081 
       
  1082 	if (iInitialized)
       
  1083 		{
       
  1084 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: UDC already initialised"));
       
  1085 		return KErrNone;
       
  1086 		}
       
  1087 
       
  1088 	// Disable UDC (might also reset the entire design):
       
  1089 	UdcDisable();
       
  1090 
       
  1091 	// Bind & enable the UDC interrupt
       
  1092 	if (SetupUdcInterrupt() != KErrNone)
       
  1093 		{
       
  1094 		return KErrGeneral;
       
  1095 		}
       
  1096 	// Enable the slave clock
       
  1097 	EnableSICLK();
       
  1098 
       
  1099 	// Write meaningful values to some registers:
       
  1100 	InitialiseUdcRegisters();
       
  1101 
       
  1102 	// Finally, turn on the UDC:
       
  1103 	UdcEnable();
       
  1104 
       
  1105 	// and enable the PHY
       
  1106 	iPhy->StartPHY();
       
  1107 	iPhy->SetPHYMode(ENormal);
       
  1108 
       
  1109 	// Even if only one USB feature has been enabled, we later need to undo it:
       
  1110 	iInitialized = ETrue;
       
  1111 
       
  1112 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc: UDC Enabled"));
       
  1113 
       
  1114 	return KErrNone;
       
  1115 	}
       
  1116 
       
  1117 
       
  1118 TInt DOmap3530Usbcc::StopUdc()
       
  1119 //
       
  1120 // Basically, makes undone what happened in StartUdc.
       
  1121 //
       
  1122 	{
       
  1123 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::StopUdc"));
       
  1124 
       
  1125 	if (!iInitialized)
       
  1126 		{
       
  1127 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: UDC not initialized"));
       
  1128 		return KErrNone;
       
  1129 		}
       
  1130 
       
  1131 	// Disable UDC:
       
  1132 	UdcDisable();
       
  1133 	// Disable & unbind the UDC interrupt:
       
  1134 	ReleaseUdcInterrupt();
       
  1135 	iPhy->SetPHYMode(EUART);
       
  1136 
       
  1137 	// Finally turn off slave clock
       
  1138 	DisableSICLK();
       
  1139 	
       
  1140 	// Only when all USB features have been disabled we'll call it a day:
       
  1141 	iInitialized = EFalse;
       
  1142 
       
  1143 	return KErrNone;
       
  1144 	}
       
  1145 
       
  1146 
       
  1147 TInt DOmap3530Usbcc::UdcConnect()
       
  1148 //
       
  1149 // Connects the UDC to the bus under software control. How this is achieved depends on the UDC; the
       
  1150 // functionality might also be part of the Variant component (instead of the ASSP).
       
  1151 //
       
  1152 	{
       
  1153 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcConnect"));
       
  1154 
       
  1155 	//AsspRegister::Modify8(KUSBBase+KPOWER_REG , KClearNone, KSOFTCONNECT_BIT);
       
  1156 	AsspRegister::Write8(KUSBBase+KPOWER_REG , KSOFTCONNECT_BIT  | KHSEN_BIT);
       
  1157 	iPhy->EnablePHY();
       
  1158 	
       
  1159 	// Here: A call into the Variant-provided function.
       
  1160 	return iAssp->UsbConnect();
       
  1161 	}
       
  1162 
       
  1163 
       
  1164 TInt DOmap3530Usbcc::UdcDisconnect()
       
  1165 //
       
  1166 // Disconnects the UDC from the bus under software control. How this is achieved depends on the UDC; the
       
  1167 // functionality might also be part of the Variant component (instead of the ASSP).
       
  1168 //
       
  1169 	{
       
  1170 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcDisconnect"));
       
  1171 
       
  1172 	// Here: A call into the Variant-provided function.
       
  1173 	return iAssp->UsbDisconnect();
       
  1174 	}
       
  1175 
       
  1176 
       
  1177 TBool DOmap3530Usbcc::UsbConnectionStatus() const
       
  1178 //
       
  1179 // Returns a value showing the USB cable connection status of the device.
       
  1180 //
       
  1181 	{
       
  1182 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UsbConnectionStatus"));
       
  1183 
       
  1184 	return iCableConnected;
       
  1185 	}
       
  1186 
       
  1187 
       
  1188 TBool DOmap3530Usbcc::UsbPowerStatus() const
       
  1189 //
       
  1190 // Returns a truth value showing whether VBUS is currently powered or not.
       
  1191 //
       
  1192 	{
       
  1193 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UsbPowerStatus"));
       
  1194 
       
  1195 	return iBusIsPowered;
       
  1196 	}
       
  1197 
       
  1198 
       
  1199 TBool DOmap3530Usbcc::DeviceSelfPowered() const
       
  1200 //
       
  1201 // Returns a truth value showing whether the device is currently self-powered or not.
       
  1202 //
       
  1203 	{
       
  1204 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceSelfPowered"));
       
  1205 
       
  1206 	// TO DO: Query and return self powered status here. The return value should reflect the actual state.
       
  1207 	// (This can be always 'ETrue' if the UDC does not support bus-powered devices.)
       
  1208 	return ETrue;
       
  1209 	}
       
  1210 
       
  1211 const TUsbcEndpointCaps* DOmap3530Usbcc::DeviceEndpointCaps() const
       
  1212 //
       
  1213 // Returns a pointer to an array of elements, each of which describes the capabilities of one endpoint.
       
  1214 //
       
  1215 	{
       
  1216 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceEndpointCaps"));
       
  1217 	__KTRACE_OPT(KUSB, Kern::Printf(" > Ep: Sizes Mask, Types Mask"));
       
  1218 	__KTRACE_OPT(KUSB, Kern::Printf(" > --------------------------"));
       
  1219 	for (TInt i = 0; i < KUsbTotalEndpoints; ++i)
       
  1220 		{
       
  1221 		__KTRACE_OPT(KUSB, Kern::Printf(" > %02d: 0x%08x, 0x%08x",
       
  1222 										i, DeviceEndpoints[i].iSizes, DeviceEndpoints[i].iTypesAndDir));
       
  1223 		}
       
  1224 	return DeviceEndpoints;
       
  1225 	}
       
  1226 
       
  1227 
       
  1228 TInt DOmap3530Usbcc::DeviceTotalEndpoints() const
       
  1229 //
       
  1230 // Returns the element number of the endpoints array a pointer to which is returned by DeviceEndpointCaps.
       
  1231 //
       
  1232 	{
       
  1233 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceTotalEndpoints"));
       
  1234 
       
  1235 	return KUsbTotalEndpoints;
       
  1236 	}
       
  1237 
       
  1238 
       
  1239 TBool DOmap3530Usbcc::SoftConnectCaps() const
       
  1240 //
       
  1241 // Returns a truth value showing whether or not there is the capability to disconnect and re-connect the D+
       
  1242 // line under software control.
       
  1243 //
       
  1244 	{
       
  1245 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SoftConnectCaps"));
       
  1246 
       
  1247 	return iSoftwareConnectable;
       
  1248 	}
       
  1249 
       
  1250 
       
  1251 void DOmap3530Usbcc::Suspend()
       
  1252 //
       
  1253 // Called by the PIL after a Suspend event has been reported (by us).
       
  1254 //
       
  1255 	{
       
  1256 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Suspend"));
       
  1257 
       
  1258 	if (NKern::CurrentContext() == EThread)
       
  1259 		{
       
  1260 		iSuspendDfc.Enque();
       
  1261 		}
       
  1262 	else
       
  1263 		{
       
  1264 		iSuspendDfc.Add();
       
  1265 		}
       
  1266 	// TO DO (optional): Implement here anything the device might require after bus SUSPEND signalling.
       
  1267 	// Need to put the transceiver into suspend too. Can't do it here as it requries I2C and we are in an interrupt context.
       
  1268 	AsspRegister::Modify8(KUSBBase+KPOWER_REG , KClearNone, KSUSPENDM_BIT);
       
  1269 	}
       
  1270 
       
  1271 
       
  1272 void DOmap3530Usbcc::Resume()
       
  1273 //
       
  1274 // Called by the PIL after a Resume event has been reported (by us).
       
  1275 //
       
  1276 	{
       
  1277 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Resume"));
       
  1278 	if (NKern::CurrentContext() == EThread)
       
  1279 		{
       
  1280 		iResumeDfc.Enque();
       
  1281 		}
       
  1282 	else
       
  1283 		{
       
  1284 		iResumeDfc.Add();
       
  1285 		}
       
  1286 
       
  1287 	// TO DO (optional): Implement here anything the device might require after bus RESUME signalling.
       
  1288 	// Need to put the transceiver into resume too. Can't do it here as it requries I2C and we are in an interrupt context.
       
  1289 	AsspRegister::Modify8(KUSBBase+KPOWER_REG, KClearNone , KRESUME_BIT);
       
  1290 	Kern::NanoWait(10000000); // Wait 10ms - Use a callback instead!
       
  1291 	AsspRegister::Modify8(KUSBBase+KPOWER_REG, KRESUME_BIT, KSetNone);
       
  1292 	}
       
  1293 
       
  1294 
       
  1295 void DOmap3530Usbcc::Reset()
       
  1296 //
       
  1297 // Called by the PIL after a Reset event has been reported (by us).
       
  1298 //
       
  1299 	{
       
  1300 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Reset"));
       
  1301 
       
  1302 	// This does not really belong here, but has to do with the way the PIL sets
       
  1303 	// up Ep0 reads and writes.
       
  1304 	TEndpoint* ep = &iEndpoints[0];
       
  1305 	ep->iRxBuf = NULL;
       
  1306 	++ep;
       
  1307 	ep->iTxBuf = NULL;
       
  1308 	// Idle
       
  1309 	Ep0NextState(EP0_IDLE);
       
  1310 	// TO DO (optional): Implement here anything the device might require after bus RESET signalling.
       
  1311 	// Need to put the transceiver into reset too. Can't do it here as it requries I2C and we are in an interrupt context.
       
  1312 	if (NKern::CurrentContext() == EThread)
       
  1313 		{
       
  1314 		iResetDfc.Enque();
       
  1315 		}
       
  1316 	else
       
  1317 		{
       
  1318 		iResetDfc.Add();
       
  1319 		}
       
  1320 	
       
  1321 	// Write meaningful values to some registers
       
  1322 	InitialiseUdcRegisters();
       
  1323 	UdcEnable();
       
  1324 	if (iEp0Configured)
       
  1325 		EnableEndpointInterrupt(0);
       
  1326 	}
       
  1327 
       
  1328 
       
  1329 // --- DOmap3530Usbcc private --------------------------------------------------
       
  1330 
       
  1331 void DOmap3530Usbcc::InitialiseUdcRegisters()
       
  1332 //
       
  1333 // Called after every USB Reset etc.
       
  1334 //
       
  1335 	{
       
  1336 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::InitialiseUdcRegisters"));
       
  1337 
       
  1338 	AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
       
  1339 	AsspRegister::Write8(KUSBBase+K_CONFIGDATA_REG, K_SOFTCONNECT | K_DYNFIFO | K_MPTXE | K_MPRXE);// Dynamic FIFO
       
  1340 	
       
  1341 	// Configure FIFO's
       
  1342 	for(TUint n=1; n<KUsbTotalEndpoints; n++) // Fifo for EP 0 is fixed. Size 0x200 (512) for the ISO ep is wrong! FIXME!!!!!!!!!!!! Hacked to make all FIFO's 1024 bytes (ignore ep>16!)
       
  1343 		{
       
  1344 		AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)((n+1)/2));
       
  1345 		if(n%2==0)
       
  1346 			{
       
  1347 			AsspRegister::Write16(KUSBBase+K_TXMAXP_REG, KMaxPayload | 0x1<<11); // Not sure how many packets we want to split into. Use 2 because it is OK for Bulk and INT
       
  1348 			AsspRegister::Write8(KUSBBase+K_TXFIFOSZ_REG, 0x7); // No double buffering, FIFO size == 2^(7+3) = 1024
       
  1349 			AsspRegister::Write16(KUSBBase+K_TXFIFOADDR_REG, 128*((TInt)n/2)); // We have 16kb of memory and 16 endpoints. Start each fifo on a 1kb boundary	
       
  1350 			AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_DMAMODE | K_TX_ISO | K_TX_DMAEN, K_TX_CLRDATATOG | K_TX_FLUSHFIFO);
       
  1351 			}
       
  1352 		else
       
  1353 			{
       
  1354 			AsspRegister::Write16(KUSBBase+K_RXMAXP_REG, KMaxPayload | 0x1<<11); // Not sure how many packets we want to split into. Use 2 because it is OK for Bulk and INT
       
  1355 			AsspRegister::Write8(KUSBBase+K_RXFIFOSZ_REG, 0x7); // No double buffering, FIFO size == 2^(7+3) = 1024
       
  1356 			AsspRegister::Write16(KUSBBase+K_RXFIFOADDR_REG, 128*((TInt)(n/2)+8)); // We have 16kb of memory and 16 endpoints. Start each fifo on a 1kb boundary			
       
  1357 			AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_ISO | K_RX_DMAEN, K_RX_CLRDATATOG | K_RX_FLUSHFIFO | K_RX_DISNYET);
       
  1358 			}
       
  1359 		}	
       
  1360 
       
  1361 	// Disable interrupt requests for all endpoints
       
  1362 	AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG, 0xFFFF, KSetNone);
       
  1363 	AsspRegister::Modify16(KUSBBase+K_INTRRXE_REG, 0XFFFE, KSetNone);
       
  1364 	
       
  1365 	AsspRegister::Modify32(KUSBBase+K_OTG_SYSCONFIG_REG, KClearNone, K_ENABLEWAKEUP);
       
  1366 	}
       
  1367 
       
  1368 
       
  1369 void DOmap3530Usbcc::UdcEnable()
       
  1370 //
       
  1371 // Enables the UDC for USB transmission or reception.
       
  1372 //
       
  1373 	{
       
  1374 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcEnable"));
       
  1375 	EnableSICLK();
       
  1376 	// TO DO: Do whatever is necessary to enable the UDC here. This might include enabling (unmasking)
       
  1377 	// the USB Reset interrupt, setting a UDC enable bit, etc.
       
  1378 	AsspRegister::Read8(KUSBBase+K_INTRUSB_REG);	 // Reading this register clears it
       
  1379 	AsspRegister::Write8(KUSBBase+K_INTRUSBE_REG, K_INT_SUSPEND | K_INT_RESUME | K_INT_RESET);
       
  1380 	DisableSICLK();
       
  1381 	}
       
  1382 
       
  1383 
       
  1384 void DOmap3530Usbcc::UdcDisable()
       
  1385 //
       
  1386 // Disables the UDC.
       
  1387 //
       
  1388 	{
       
  1389 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcDisable"));
       
  1390 	EnableSICLK();
       
  1391 	// TO DO: Do whatever is necessary to disable the UDC here. This might include disabling (masking)
       
  1392 	// the USB Reset interrupt, clearing a UDC enable bit, etc.
       
  1393 	AsspRegister::Write8(KUSBBase+K_INTRUSBE_REG, 0x0);
       
  1394 	AsspRegister::Read8(KUSBBase+K_INTRUSB_REG);	 // Reading this register clears it
       
  1395 	DisableSICLK();
       
  1396 	}
       
  1397 
       
  1398 
       
  1399 void DOmap3530Usbcc::EnableEndpointInterrupt(TInt aEndpoint)
       
  1400 //
       
  1401 // Enables interrupt requests for an endpoint.
       
  1402 //
       
  1403 	{
       
  1404 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EnableEndpointInterrupt(%d)", aEndpoint));
       
  1405 
       
  1406 	// Enable (unmask) interrupt requests for this endpoint:
       
  1407 	if(aEndpoint==0)
       
  1408 		{
       
  1409 		AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG , KClearNone, 1<<(int)(aEndpoint/2));
       
  1410 		}
       
  1411 	else
       
  1412 		{
       
  1413 		if(aEndpoint%2==0)
       
  1414 			{
       
  1415 			AsspRegister::Modify16(KUSBBase+K_INTRRXE_REG  , KClearNone, 1<<(int)((aEndpoint)/2));
       
  1416 			}
       
  1417 		else
       
  1418 			{
       
  1419 			AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG, KClearNone, 1<<(int)((aEndpoint)/2));
       
  1420 			}
       
  1421 		}
       
  1422 	}
       
  1423 
       
  1424 
       
  1425 void DOmap3530Usbcc::DisableEndpointInterrupt(TInt aEndpoint)
       
  1426 //
       
  1427 // Disables interrupt requests for an endpoint.
       
  1428 //
       
  1429 	{
       
  1430 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DisableEndpointInterrupt(%d)", aEndpoint));
       
  1431 
       
  1432 	// Disable (mask) interrupt requests for this endpoint:
       
  1433 	if(aEndpoint==0)
       
  1434 		{
       
  1435 		AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG , 1<<(int)(aEndpoint/2), KSetNone);
       
  1436 		}
       
  1437 	else
       
  1438 		{
       
  1439 		if(aEndpoint%2==0)
       
  1440 			{
       
  1441 			AsspRegister::Modify16(KUSBBase+K_INTRRXE_REG , 1<<(int)((aEndpoint)/2), KSetNone);
       
  1442 			}
       
  1443 		else
       
  1444 			{
       
  1445 			AsspRegister::Modify16(KUSBBase+K_INTRTXE_REG, 1<<(int)((aEndpoint)/2), KSetNone);
       
  1446 			}
       
  1447 		}
       
  1448 	}
       
  1449 
       
  1450 
       
  1451 void DOmap3530Usbcc::ClearEndpointInterrupt(TInt aEndpoint)
       
  1452 //
       
  1453 // Clears a pending interrupt request for an endpoint.
       
  1454 //
       
  1455 	{
       
  1456 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ClearEndpointInterrupt(%d)", aEndpoint));
       
  1457 
       
  1458 	// Clear (reset) pending interrupt request for this endpoint:
       
  1459 	if(aEndpoint==0)
       
  1460 		{
       
  1461 		AsspRegister::Modify16(KUSBBase+K_INTRTX_REG , 1<<(int)(aEndpoint/2), KSetNone);
       
  1462 		}
       
  1463 	else
       
  1464 		{
       
  1465 		if(aEndpoint%2==0)
       
  1466 			{
       
  1467 			AsspRegister::Modify16(KUSBBase+K_INTRRX_REG , 1<<(int)((aEndpoint)/2), KSetNone);
       
  1468 			}
       
  1469 		else
       
  1470 			{
       
  1471 			AsspRegister::Modify16(KUSBBase+K_INTRTX_REG, 1<<(int)((aEndpoint)/2), KSetNone);
       
  1472 			}
       
  1473 		}
       
  1474 	}
       
  1475 
       
  1476 
       
  1477 void DOmap3530Usbcc::Ep0IntService()
       
  1478 //
       
  1479 // ISR for endpoint zero interrupt.
       
  1480 //
       
  1481 	{
       
  1482 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0IntService"));
       
  1483 	Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
       
  1484 	
       
  1485 	//  Enquire about Ep0 status & the interrupt cause here. Depending on the event and the Ep0 state,
       
  1486 
       
  1487 	AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0x0);
       
  1488 	TUint ep0 = AsspRegister::Read16(KUSBBase+K_PERI_CSR0_REG);
       
  1489 	
       
  1490 	if(ep0 & K_EP0_SETUPEND)
       
  1491 		{
       
  1492 		 // Setupend is set - A setup transaction ended unexpectedly
       
  1493 		Ep0Cancel();
       
  1494 		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_SETUPEND);
       
  1495 		Ep0NextState(EP0_IDLE);
       
  1496 		}
       
  1497 	if(ep0&K_EP0_SENTSTALL)
       
  1498 		{
       
  1499 		// Stalled! Complete the stall handshake
       
  1500 		ClearStallEndpoint(0);
       
  1501 		}
       
  1502 	
       
  1503 	switch(iEp0State)
       
  1504 		{
       
  1505 			case EP0_END_XFER:
       
  1506 				Ep0EndXfer(); 
       
  1507 				break;
       
  1508 			case EP0_IDLE: 
       
  1509 				if(ep0&K_EP0_RXPKTRDY)
       
  1510 					{
       
  1511 					Ep0ReadSetupPkt();
       
  1512 					}
       
  1513 				else
       
  1514 					{
       
  1515 					Ep0StatusIn();
       
  1516 					} 
       
  1517 				break;
       
  1518 			case EP0_OUT_DATA_PHASE:
       
  1519 				Ep0Receive();
       
  1520 				break;
       
  1521 			case EP0_IN_DATA_PHASE:
       
  1522 				Ep0Transmit();
       
  1523 				break;
       
  1524 			default:
       
  1525 				break; // Do nothing
       
  1526 			}
       
  1527 
       
  1528 	ClearEndpointInterrupt(0);
       
  1529 	Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  1530 	}
       
  1531 
       
  1532 
       
  1533 void DOmap3530Usbcc::Ep0ReadSetupPkt()
       
  1534 //
       
  1535 // Called from the Ep0 ISR when a new Setup packet has been received.
       
  1536 //
       
  1537 	{
       
  1538 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0ReadSetupPkt"));
       
  1539 
       
  1540 	TEndpoint* const ep = &iEndpoints[KEp0_Out];
       
  1541 	TUint8* buf = ep->iRxBuf;
       
  1542 	if (!buf)
       
  1543 		{
       
  1544 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: No Ep0 Rx buffer available (1)"));
       
  1545 		StallEndpoint(KEp0_Out);
       
  1546 		return;
       
  1547 		}
       
  1548 
       
  1549 	// Read Setup packet data from Rx FIFO into 'buf' here.
       
  1550 	// (In this function we don't need to use "ep->iReceived" since Setup packets
       
  1551 	// are always 8 bytes long.)
       
  1552 	for(TInt x=0; x<KSetupPacketSize; x++)
       
  1553 		{
       
  1554 		// Should try and check we aren't running out of FIFO!
       
  1555 		buf[x] = AsspRegister::Read8(KUSBBase+K_FIFO0_REG);
       
  1556 		}
       
  1557 	AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone,  K_EP0_SERV_RXPKTRDY); // The packet has been retrieved from the FIFO
       
  1558 	
       
  1559 	// Upcall into PIL to determine next Ep0 state:
       
  1560 	TUsbcEp0State state = EnquireEp0NextState(ep->iRxBuf);
       
  1561 
       
  1562 	if (state == EEp0StateStatusIn)
       
  1563 		{
       
  1564 		Ep0NextState(EP0_IDLE);								// Ep0 No Data
       
  1565 		}
       
  1566 	else if (state == EEp0StateDataIn)
       
  1567 		{
       
  1568 		Ep0NextState(EP0_IN_DATA_PHASE);					// Ep0 Control Read
       
  1569 		}
       
  1570 	else
       
  1571 		{
       
  1572 		Ep0NextState(EP0_OUT_DATA_PHASE);					// Ep0 Control Write
       
  1573 		}
       
  1574 
       
  1575 	ep->iRxBuf = NULL;
       
  1576 	const TInt r = Ep0RequestComplete(KEp0_Out, KSetupPacketSize, KErrNone);
       
  1577 
       
  1578 	// Don't finish (proceed) if request completion returned 'KErrNotFound'!
       
  1579 	if (!(r == KErrNone || r == KErrGeneral))
       
  1580 		{
       
  1581 		DisableEndpointInterrupt(0);
       
  1582 		}
       
  1583 		
       
  1584 #ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
       
  1585 	if (iEp0State == EP0_OUT_DATA_PHASE)
       
  1586 		{
       
  1587 		// Allow for a premature STATUS IN
       
  1588 		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND); // TXPKTRDY, DATAEND
       
  1589 		}
       
  1590 #endif	
       
  1591 	}
       
  1592 
       
  1593 
       
  1594 void DOmap3530Usbcc::Ep0ReadSetupPktProceed()
       
  1595 //
       
  1596 // Called by the PIL to signal that it has finished processing a received Setup packet and that the PSL can
       
  1597 // now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 interrupt).
       
  1598 //
       
  1599 	{
       
  1600 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0ReadSetupPktProceed"));
       
  1601 
       
  1602 	EnableEndpointInterrupt(0);
       
  1603 	}
       
  1604 
       
  1605 
       
  1606 void DOmap3530Usbcc::Ep0Receive()
       
  1607 //
       
  1608 // Called from the Ep0 ISR when a data packet has been received.
       
  1609 //
       
  1610 	{
       
  1611 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0Receive"));
       
  1612 	AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
       
  1613 	TEndpoint* const ep = &iEndpoints[KEp0_Out];
       
  1614 	TUint8* buf = ep->iRxBuf;
       
  1615 	if (!buf)
       
  1616 		{
       
  1617 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: No Ep0 Rx buffer available (2)"));
       
  1618 		StallEndpoint(KEp0_Out);
       
  1619 		return;
       
  1620 		}
       
  1621 
       
  1622 	TInt n = 0;
       
  1623 	// Read packet data from Rx FIFO into 'buf' and update 'n' (# of received bytes) here.
       
  1624 	TInt FIFOCount = AsspRegister::Read8(KUSBBase+K_COUNT0_REG);
       
  1625 	for(; n<FIFOCount; n++)
       
  1626 		{
       
  1627 		// Should try and check we aren't running out of FIFO!
       
  1628 		buf[n] = AsspRegister::Read8(KUSBBase+K_FIFO0_REG);
       
  1629 		}
       
  1630 	AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY); // The packet has been retrieved from the FIFO
       
  1631 	
       
  1632 	ep->iReceived = n;
       
  1633 	ep->iRxBuf = NULL;
       
  1634 	const TInt r = Ep0RequestComplete(KEp0_Out, n, KErrNone);
       
  1635 
       
  1636 	// Don't finish (proceed) if request was 'KErrNotFound'!
       
  1637 	if (!(r == KErrNone || r == KErrGeneral))
       
  1638 		{
       
  1639 		DisableEndpointInterrupt(0);
       
  1640 		}
       
  1641 	
       
  1642 #ifdef USB_SUPPORTS_PREMATURE_STATUS_IN
       
  1643 	// Allow for a premature STATUS IN
       
  1644 	AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND); // TXPKTRDY, DATAEND
       
  1645 #endif
       
  1646 	}
       
  1647 
       
  1648 
       
  1649 void DOmap3530Usbcc::Ep0ReceiveProceed()
       
  1650 //
       
  1651 // Called by the PIL to signal that it has finished processing a received Ep0 data packet and that the PSL can
       
  1652 // now prepare itself for the next Ep0 reception (for instance by re-enabling the Ep0 Ep0ReadSetupPkt).
       
  1653 //
       
  1654 	{
       
  1655 	Ep0ReadSetupPktProceed();
       
  1656 	}
       
  1657 
       
  1658 
       
  1659 void DOmap3530Usbcc::Ep0Transmit()
       
  1660 //
       
  1661 // Called from either the Ep0 ISR or the PIL when a data packet has been or is to be transmitted.
       
  1662 //
       
  1663 	{
       
  1664 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0Transmit"));
       
  1665 	AsspRegister::Write8(KUSBBase+K_INDEX_REG, 0);
       
  1666 	if (iEp0State != EP0_IN_DATA_PHASE)
       
  1667 		{
       
  1668 		__KTRACE_OPT(KUSB, Kern::Printf(" > WARNING: Invalid Ep0 state when trying to handle EP0 IN (0x%x)", iEp0State));
       
  1669 		// TO DO (optional): Do something about this warning.
       
  1670 		}
       
  1671 	
       
  1672 	TEndpoint* const ep = &iEndpoints[KEp0_In];
       
  1673 	const TUint8* buf = ep->iTxBuf;
       
  1674 	if (!buf)
       
  1675 		{
       
  1676 		__KTRACE_OPT(KUSB, Kern::Printf(" > No Tx buffer available: returning"));
       
  1677 		return;
       
  1678 		}
       
  1679 	const TInt t = ep->iTransmitted;						// already transmitted
       
  1680 	buf += t;
       
  1681 	TInt n = 0;												// now transmitted
       
  1682 
       
  1683 	// Write packet data (if any) into Tx FIFO from 'buf' and update 'n' (# of tx'ed bytes) here.
       
  1684 	for(; n<ep->iLength-ep->iTransmitted && n<KEp0MaxPktSz; n++)
       
  1685 		{
       
  1686 		// Should try and check we aren't running out of FIFO!
       
  1687 		AsspRegister::Write8(KUSBBase+K_FIFO0_REG, buf[n]);
       
  1688 		}
       
  1689 
       
  1690 	ep->iTransmitted += n;
       
  1691 	if (n == KEp0MaxPktSz)
       
  1692 		{
       
  1693 		if (ep->iTransmitted == ep->iLength && !(ep->iZlpReqd))
       
  1694 			{
       
  1695 			Ep0NextState(EP0_END_XFER);
       
  1696 			}
       
  1697 		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY); // TXPKTY,
       
  1698 		}
       
  1699 	else if (n && n != KEp0MaxPktSz)
       
  1700 		{
       
  1701 		// Send off the data
       
  1702 		__ASSERT_DEBUG((ep->iTransmitted == ep->iLength),
       
  1703 					   Kern::Printf(" > ERROR: Short packet in mid-transfer"));
       
  1704 		Ep0NextState(EP0_END_XFER);
       
  1705 		//  Send off the data here.
       
  1706 		AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY); // TXPKTRDY,
       
  1707 		}
       
  1708 	else // if (n == 0)
       
  1709 		{
       
  1710 		__ASSERT_DEBUG((ep->iTransmitted == ep->iLength),
       
  1711 					   Kern::Printf(" > ERROR: Nothing transmitted but still not finished"));
       
  1712 		if (ep->iZlpReqd)
       
  1713 			{
       
  1714 			// Send a zero length packet
       
  1715 			ep->iZlpReqd = EFalse;
       
  1716 			Ep0NextState(EP0_END_XFER);
       
  1717 			// Arrange for the sending of a ZLP here.
       
  1718 			AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_TXPKTRDY | K_EP0_DATAEND); // TXPKTRDY, DATAEND
       
  1719 			}
       
  1720 		else
       
  1721 			{
       
  1722 			__KTRACE_OPT(KPANIC, Kern::Printf("  Error: nothing transmitted & no ZLP req'd"));
       
  1723 			}
       
  1724 		}	
       
  1725 	}
       
  1726 
       
  1727 
       
  1728 void DOmap3530Usbcc::Ep0EndXfer()
       
  1729 //
       
  1730 // Called at the end of a Ep0 Control transfer.
       
  1731 //
       
  1732 	{
       
  1733 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0EndXfer"));
       
  1734 	// Clear Ep0 Rx condition flags here.
       
  1735 	AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY | K_EP0_DATAEND); //  DATAEND
       
  1736 		
       
  1737 	Ep0NextState(EP0_IDLE);
       
  1738 	TEndpoint* const ep = &iEndpoints[KEp0_In];
       
  1739 	ep->iTxBuf = NULL;
       
  1740 	(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrNone);
       
  1741 	}
       
  1742 
       
  1743 
       
  1744 void DOmap3530Usbcc::Ep0Cancel()
       
  1745 //
       
  1746 // Called when an ongoing Ep0 Control transfer has to be aborted prematurely (for instance when receiving a
       
  1747 // new Setup packet before the processing of the old one has completed).
       
  1748 //
       
  1749 	{
       
  1750 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0Cancel"));
       
  1751 
       
  1752 	Ep0NextState(EP0_IDLE);
       
  1753 	TEndpoint* const ep = &iEndpoints[KEp0_In];
       
  1754 	if (ep->iTxBuf)
       
  1755 		{
       
  1756 		ep->iTxBuf = NULL;
       
  1757 		const TInt err = (ep->iTransmitted == ep->iLength) ? KErrNone : KErrCancel;
       
  1758 		(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, err);
       
  1759 		}
       
  1760 	}
       
  1761 
       
  1762 
       
  1763 void DOmap3530Usbcc::Ep0PrematureStatusOut()
       
  1764 //
       
  1765 // Called when an ongoing Ep0 Control transfer encounters a premature Status OUT condition.
       
  1766 //
       
  1767 	{
       
  1768 	__KTRACE_OPT(KPANIC, Kern::Printf("DOmap3530Usbcc::Ep0PrematureStatusOut"));
       
  1769 
       
  1770 	// Clear Ep0 Rx condition flags here.
       
  1771 	AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_SERV_RXPKTRDY | K_EP0_DATAEND); //  DATAEND
       
  1772 	Ep0NextState(EP0_IDLE);
       
  1773 
       
  1774 	// Flush the Ep0 Tx FIFO here, if possible.
       
  1775 	AsspRegister::Modify16(KUSBBase+K_PERI_CSR0_REG, KClearNone, K_EP0_FLUSHFIFO);
       
  1776 		
       
  1777 	TEndpoint* const ep = &iEndpoints[KEp0_In];
       
  1778 	if (ep->iTxBuf)
       
  1779 		{
       
  1780 		ep->iTxBuf = NULL;
       
  1781 		(void) Ep0RequestComplete(KEp0_In, ep->iTransmitted, KErrPrematureEnd);
       
  1782 		}
       
  1783 	}
       
  1784 
       
  1785 
       
  1786 void DOmap3530Usbcc::Ep0StatusIn()
       
  1787 //
       
  1788 // Called when an ongoing Ep0 Control transfer moves to a Status IN stage.
       
  1789 //
       
  1790 	{
       
  1791 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0StatusIn"));
       
  1792 
       
  1793 	Ep0NextState(EP0_IDLE);
       
  1794 	}
       
  1795 
       
  1796 
       
  1797 void DOmap3530Usbcc::BulkTransmit(TInt aEndpoint)
       
  1798 //
       
  1799 // Endpoint 1 (BULK IN).
       
  1800 // Called from either the Ep ISR or the PIL when a data packet has been or is to be transmitted.
       
  1801 //
       
  1802 	{
       
  1803 	Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  1804 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::BulkTransmit(%d)", aEndpoint));
       
  1805 	
       
  1806 	AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aEndpoint/2));
       
  1807 	
       
  1808 	TInt status = AsspRegister::Read16(KUSBBase+K_PERI_TXCSR_REG); 
       
  1809 	
       
  1810 	if(status & K_TX_UNDERRUN)
       
  1811 		{
       
  1812 		// TX UNDERRUN
       
  1813 		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_UNDERRUN, KSetNone); 
       
  1814 		}
       
  1815 	if(status & K_TX_SENTSTALL)
       
  1816 		{
       
  1817 		__KTRACE_OPT(KPANIC, Kern::Printf("  Stall Handshake"));
       
  1818 		// Complete stall handshake
       
  1819 		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, K_TX_SENTSTALL, KSetNone); 
       
  1820 		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  1821 		return;
       
  1822 		}
       
  1823 	if(status & K_TX_SENDSTALL)
       
  1824 		{
       
  1825 		__KTRACE_OPT(KPANIC, Kern::Printf("  Stalled"));
       
  1826 		// We are stalled
       
  1827 		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  1828 		return;
       
  1829 		}
       
  1830 	
       
  1831 	TBool calledFromISR=AsspRegister::Read16(KUSBBase+K_INTRTX_REG) & 1<<(aEndpoint/2)==1;
       
  1832 	
       
  1833 	const TInt idx = aEndpoint;										// only in our special case of course!
       
  1834 	TEndpoint* const ep = &iEndpoints[idx];
       
  1835 	const TUint8* buf = ep->iTxBuf;
       
  1836 	
       
  1837 	if (!buf)
       
  1838 		{
       
  1839 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: No Tx buffer has been set up"));
       
  1840 		DisableEndpointInterrupt(aEndpoint);
       
  1841 		ep->iDisabled = ETrue;
       
  1842 		ClearEndpointInterrupt(aEndpoint);
       
  1843 		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  1844 		return;
       
  1845 		}
       
  1846 	const TInt t = ep->iTransmitted;						// already transmitted
       
  1847 	const TInt len = ep->iLength;							// to be sent in total
       
  1848 	// (len || ep->iPackets): Don't complete for a zero bytes request straight away.
       
  1849 	if (t >= len && (len || ep->iPackets))
       
  1850 		{
       
  1851 		if (ep->iZlpReqd)
       
  1852 			{
       
  1853 			__KTRACE_OPT(KPANIC, Kern::Printf(" > 'Transmit Short Packet' explicitly"));
       
  1854 			//  Arrange for the sending of a ZLP here.
       
  1855 			AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, K_TX_TXPKTRDY); //  FIFO_NOT_EMPTY, TXPKTRDY
       
  1856 			ep->iZlpReqd = EFalse;
       
  1857 			}
       
  1858 		else
       
  1859 			{
       
  1860 			__KTRACE_OPT(KUSB, Kern::Printf(" > All data sent: %d --> completing", len));
       
  1861 			ep->iTxBuf = NULL;
       
  1862 			ep->iRequest->iTxBytes = ep->iTransmitted;
       
  1863 			ep->iRequest->iError = KErrNone;
       
  1864 			EndpointRequestComplete(ep->iRequest);
       
  1865 			ep->iRequest = NULL;
       
  1866 			}
       
  1867 		}
       
  1868 	else
       
  1869 		{
       
  1870 		buf += t;
       
  1871 		TInt left = len - t;								// left in total
       
  1872 		TInt n = (left >= KBlkMaxPktSz) ? KBlkMaxPktSz : left; // now to be transmitted
       
  1873 		__KTRACE_OPT(KUSB, Kern::Printf(" > About to send %d bytes (%d bytes left in total)", n, left));
       
  1874 
       
  1875 		// Write data into Tx FIFO from 'buf' here...
       
  1876 		TInt x=0;
       
  1877 		TInt FIFOAddr = K_FIFO0_REG+K_FIFO_OFFSET*(TInt)((aEndpoint)/2);
       
  1878 		for(; x<n; x++) // While FIFO is not full...
       
  1879 			{
       
  1880 			// Should try and check we aren't running out of FIFO!
       
  1881 			AsspRegister::Write8(KUSBBase+FIFOAddr, buf[x]);
       
  1882 			}
       
  1883 		AsspRegister::Modify16(KUSBBase+K_PERI_TXCSR_REG, KClearNone, /*K_TX_FIFONOTEMPTY | */K_TX_TXPKTRDY); //  TXPKTRDY	
       
  1884 		ep->iTransmitted += x;
       
  1885 		ep->iPackets++;										// only used for (len == 0) case
       
  1886 		left -= n;											// (still) left in total
       
  1887 
       
  1888 		// If double-buffering is available, it might be possible to stick a second packet
       
  1889 		// into the FIFO here.
       
  1890 
       
  1891 		// TO DO (optional): Send another packet if possible (& available) here.
       
  1892 			
       
  1893 		}
       
  1894 	if(calledFromISR)
       
  1895 		{
       
  1896 		ClearEndpointInterrupt(aEndpoint);
       
  1897 		}
       
  1898 	Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  1899 	}
       
  1900 
       
  1901 
       
  1902 
       
  1903 void DOmap3530Usbcc::BulkReceive(TInt aEndpoint)
       
  1904 //
       
  1905 // Endpoint 2 (BULK OUT) (This one is called in an ISR.)
       
  1906 //
       
  1907 	{
       
  1908 	Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  1909 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::BulkReceive(%d)", aEndpoint));
       
  1910 	
       
  1911 	AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aEndpoint/2));
       
  1912 	
       
  1913 	// Start NYETTING packets..
       
  1914 	AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_DISNYET,  KSetNone);
       
  1915 
       
  1916 	TInt status = AsspRegister::Read16(KUSBBase+K_PERI_RXCSR_REG); 
       
  1917 	
       
  1918 	if(status & K_RX_OVERRUN)
       
  1919 		{
       
  1920 		// RX OVERRUN
       
  1921 		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_OVERRUN, KSetNone); 
       
  1922 		}
       
  1923 	if(status & K_RX_SENTSTALL)
       
  1924 		{
       
  1925 		// Complete stall handshake
       
  1926 		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_SENTSTALL,  K_RX_DISNYET); 
       
  1927 		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  1928 		return;
       
  1929 		}
       
  1930 
       
  1931 	if(status & K_RX_SENDSTALL)
       
  1932 		{
       
  1933 		// We are stalled
       
  1934 		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone,  K_RX_DISNYET); 
       
  1935 		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  1936 		return;
       
  1937 		}
       
  1938 
       
  1939 	TBool calledFromISR=AsspRegister::Read16(KUSBBase+K_INTRRX_REG) & 1<<(aEndpoint/2)==1;
       
  1940 	
       
  1941 	const TInt idx = aEndpoint;			// only in our special case of course!
       
  1942 	TEndpoint* const ep = &iEndpoints[idx];
       
  1943 	TUint8* buf = ep->iRxBuf;
       
  1944 	if (!buf)
       
  1945 		{
       
  1946 		__KTRACE_OPT(KUSB, Kern::Printf(" > No Rx buffer available: setting iNoBuffer"));
       
  1947 		ep->iNoBuffer = ETrue;
       
  1948 		DisableEndpointInterrupt(aEndpoint);
       
  1949 		ep->iDisabled = ETrue;
       
  1950 		ClearEndpointInterrupt(aEndpoint);
       
  1951 		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  1952 		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone,  K_RX_DISNYET); 
       
  1953 		return;
       
  1954 		}
       
  1955 	TInt bytes = AsspRegister::Read16(KUSBBase+K_RXCOUNT_REG);
       
  1956 	const TInt r = ep->iReceived;							// already received
       
  1957 	// Check whether a ZLP was received here:
       
  1958 	if (bytes==0)
       
  1959 		{
       
  1960 		__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet"));
       
  1961 		}
       
  1962 	else// if (status & 2)									// some other condition
       
  1963 		{
       
  1964 		__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes));
       
  1965 		if (r + bytes > ep->iLength)
       
  1966 			{
       
  1967 			__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer"));
       
  1968 			ep->iNoBuffer = ETrue;
       
  1969 			StopRxTimer(ep);
       
  1970 			*ep->iPacketSize = ep->iReceived;
       
  1971 			RxComplete(ep);
       
  1972 
       
  1973 			if(calledFromISR)
       
  1974 				{
       
  1975 				ClearEndpointInterrupt(aEndpoint);
       
  1976 				}
       
  1977 			AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone,  K_RX_DISNYET); 
       
  1978 			Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  1979 			return;
       
  1980 			}
       
  1981 		buf += r;											// set buffer pointer
       
  1982 
       
  1983 		// Read 'bytes' bytes from Rx FIFO into 'buf' here.
       
  1984 		TInt FIFOAddr = K_FIFO0_REG+K_FIFO_OFFSET*(TInt)((aEndpoint)/2);
       
  1985 		for(TInt n=0; n<bytes; n++)
       
  1986 			{
       
  1987 			// Should try and check we aren't running out of FIFO!
       
  1988 			buf[n] = AsspRegister::Read8(KUSBBase+FIFOAddr);
       
  1989 			}
       
  1990 		
       
  1991 		ep->iReceived += bytes;
       
  1992 		}
       
  1993 
       
  1994 	if (bytes == 0)
       
  1995 		{
       
  1996 		// ZLPs must be recorded separately
       
  1997 		const TInt i = ep->iReceived ? 1 : 0;
       
  1998 		ep->iPacketIndex[i] = r;
       
  1999 		ep->iPacketSize[i] = 0;
       
  2000 		// If there were data packets before: total packets reported 1 -> 2
       
  2001 		ep->iPackets += i;
       
  2002 		}
       
  2003 
       
  2004 	if ((bytes < KBlkMaxPktSz) ||
       
  2005 		(ep->iReceived == ep->iLength))
       
  2006 		{
       
  2007 		StopRxTimer(ep);
       
  2008 		*ep->iPacketSize = ep->iReceived;
       
  2009 		RxComplete(ep);
       
  2010 		// since we have no buffer any longer we disable interrupts:
       
  2011 		DisableEndpointInterrupt(aEndpoint);
       
  2012 		ep->iDisabled = ETrue;
       
  2013 		}
       
  2014 	else
       
  2015 		{
       
  2016 		if (!ep->iRxTimerSet)
       
  2017 			{
       
  2018 			__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer"));
       
  2019 			ep->iRxTimerSet = ETrue;
       
  2020 			ep->iRxTimer.OneShot(KRxTimerTimeout);
       
  2021 			}
       
  2022 		else
       
  2023 			{
       
  2024 			ep->iRxMoreDataRcvd = ETrue;
       
  2025 			}
       
  2026 		}
       
  2027 	if(calledFromISR)
       
  2028 		{
       
  2029 		ClearEndpointInterrupt(aEndpoint);
       
  2030 		}
       
  2031 	// Clear Ep Rx condition flags here.
       
  2032 	AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_RXPKTRDY,  K_RX_DISNYET); 
       
  2033 	Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  2034 	}
       
  2035 
       
  2036 
       
  2037 void DOmap3530Usbcc::BulkReadRxFifo(TInt aEndpoint)
       
  2038 //
       
  2039 // Endpoint 2 (BULK OUT) (This one is called w/o interrupt to be served.)
       
  2040 //
       
  2041 	{
       
  2042 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::BulkReadRxFifo(%d)", aEndpoint));
       
  2043 	Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  2044 
       
  2045 	AsspRegister::Write8(KUSBBase+K_INDEX_REG, (TInt)(aEndpoint/2));
       
  2046 	
       
  2047 	// Start NYETTING packets..
       
  2048 	AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_DISNYET,  KSetNone);
       
  2049 	
       
  2050 	TInt status = AsspRegister::Read16(KUSBBase+K_PERI_RXCSR_REG); 
       
  2051 	if(status & K_RX_OVERRUN)
       
  2052 		{
       
  2053 		// RX OVERRUN
       
  2054 		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_OVERRUN, KSetNone); 
       
  2055 		}
       
  2056 	if(status & K_RX_SENTSTALL)
       
  2057 		{
       
  2058 		// Complete stall handshake
       
  2059 		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_SENTSTALL, K_RX_DISNYET); 		
       
  2060 		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  2061 		return;
       
  2062 		}
       
  2063 	if(status & K_RX_SENTSTALL)
       
  2064 		{
       
  2065 		// We are stalled
       
  2066 		AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone,  K_RX_DISNYET); 
       
  2067 		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  2068 		return;
       
  2069 		}
       
  2070 	
       
  2071 	TBool calledFromISR=AsspRegister::Read16(KUSBBase+K_INTRRX_REG) & 1<<(aEndpoint/2)==1;
       
  2072 
       
  2073 	const TInt idx = aEndpoint;				// only in our special case of course!
       
  2074 	TEndpoint* const ep = &iEndpoints[idx];
       
  2075 	TUint8* buf = ep->iRxBuf;
       
  2076 	if (!buf)
       
  2077 		{
       
  2078 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: No Rx buffer has been set up"));
       
  2079 		Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  2080 		return;
       
  2081 		}
       
  2082 	TInt bytes =  AsspRegister::Read16(KUSBBase+K_RXCOUNT_REG);
       
  2083 	const TInt r = ep->iReceived;							// already received
       
  2084 	// Check whether a ZLP was received here:
       
  2085 	if (bytes==0)											// some condition
       
  2086 		{
       
  2087 		__KTRACE_OPT(KUSB, Kern::Printf(" > received zero-length packet"));
       
  2088 		}
       
  2089 	else //if (status & 2)									// some other condition
       
  2090 		{
       
  2091 		__KTRACE_OPT(KUSB, Kern::Printf(" > Bulk received: %d bytes", bytes));
       
  2092 		if (r + bytes > ep->iLength)
       
  2093 			{
       
  2094 			__KTRACE_OPT(KUSB, Kern::Printf(" > not enough space in rx buffer: setting iNoBuffer"));
       
  2095 			ep->iNoBuffer = ETrue;
       
  2096 			*ep->iPacketSize = ep->iReceived;
       
  2097 			RxComplete(ep);
       
  2098 			
       
  2099 			// Stop NYETting packets
       
  2100 			AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, KClearNone,  K_RX_DISNYET); 
       
  2101 			Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  2102 			return;
       
  2103 			}
       
  2104 		buf += r;											// set buffer pointer
       
  2105 
       
  2106 		// TO DO: Read 'bytes' bytes from Rx FIFO into 'buf' here.
       
  2107 		TInt FIFOAddr = K_FIFO0_REG+K_FIFO_OFFSET*(TInt)((aEndpoint)/2);
       
  2108 		for(TInt n=0; n<bytes; n++)
       
  2109 			{
       
  2110 			// Should try and check we aren't running out of FIFO!
       
  2111 			buf[n] = AsspRegister::Read8(KUSBBase+FIFOAddr);
       
  2112 			}
       
  2113 		ep->iReceived += bytes;
       
  2114 		}
       
  2115 	if (bytes == 0)
       
  2116 		{
       
  2117 		// ZLPs must be recorded separately
       
  2118 		const TInt i = ep->iReceived ? 1 : 0;
       
  2119 		ep->iPacketIndex[i] = r;
       
  2120 		ep->iPacketSize[i] = 0;
       
  2121 		// If there were data packets before: total packets reported 1 -> 2
       
  2122 		ep->iPackets += i;
       
  2123 		}
       
  2124 
       
  2125 	if ((bytes < KBlkMaxPktSz) ||
       
  2126 		(ep->iReceived == ep->iLength))
       
  2127 		{
       
  2128 		*ep->iPacketSize = ep->iReceived;
       
  2129 		RxComplete(ep);
       
  2130 		}
       
  2131 	else
       
  2132 		{
       
  2133 		if (!ep->iRxTimerSet)
       
  2134 			{
       
  2135 			__KTRACE_OPT(KUSB, Kern::Printf(" > setting rx timer"));
       
  2136 			ep->iRxTimerSet = ETrue;
       
  2137 			ep->iRxTimer.OneShot(KRxTimerTimeout);
       
  2138 			}
       
  2139 		else
       
  2140 			{
       
  2141 			ep->iRxMoreDataRcvd = ETrue;
       
  2142 			}
       
  2143 		}
       
  2144 
       
  2145 	if(calledFromISR)
       
  2146 		{
       
  2147 		ClearEndpointInterrupt(aEndpoint);
       
  2148 		}
       
  2149 
       
  2150 	// Stop NYETting packets and Clear Ep Rx condition flags here.
       
  2151 	AsspRegister::Modify16(KUSBBase+K_PERI_RXCSR_REG, K_RX_RXPKTRDY, K_RX_DISNYET); 
       
  2152 	Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  2153 	}
       
  2154 
       
  2155 
       
  2156 void DOmap3530Usbcc::IsoTransmit(TInt aEndpoint)
       
  2157 //
       
  2158 // Endpoint 3 (ISOCHRONOUS IN).
       
  2159 //
       
  2160 	{
       
  2161 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IsoTransmit(%d)", aEndpoint));
       
  2162 
       
  2163 	// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit.
       
  2164 
       
  2165 	}
       
  2166 
       
  2167 
       
  2168 void DOmap3530Usbcc::IsoReceive(TInt aEndpoint)
       
  2169 //
       
  2170 // Endpoint 4 (ISOCHRONOUS OUT) (This one is called in an ISR.)
       
  2171 //
       
  2172 	{
       
  2173 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IsoReceive(%d)", aEndpoint));
       
  2174 
       
  2175 	// TO DO: Read data from endpoint FIFO. Might be similar to BulkReceive.
       
  2176 	}
       
  2177 
       
  2178 
       
  2179 void DOmap3530Usbcc::IsoReadRxFifo(TInt aEndpoint)
       
  2180 //
       
  2181 // Endpoint 4 (ISOCHRONOUS OUT) (This one is called w/o interrupt to be served.)
       
  2182 //
       
  2183 	{
       
  2184 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IsoReadRxFifo(%d)", aEndpoint));
       
  2185 
       
  2186 	// TO DO: Read data from endpoint FIFO. Might be similar to BulkReadRxFifo.
       
  2187 	}
       
  2188 
       
  2189 
       
  2190 void DOmap3530Usbcc::IntTransmit(TInt aEndpoint)
       
  2191 //
       
  2192 // Endpoint 5 (INTERRUPT IN).
       
  2193 //
       
  2194 	{
       
  2195 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::IntTransmit(%d)", aEndpoint));
       
  2196 
       
  2197 	// TO DO: Write data to endpoint FIFO. Might be similar to BulkTransmit.
       
  2198 	}
       
  2199 
       
  2200 
       
  2201 void DOmap3530Usbcc::RxComplete(TEndpoint* aEndpoint)
       
  2202 //
       
  2203 // Called at the end of an Rx (OUT) transfer to complete to the PIL.
       
  2204 //
       
  2205 	{
       
  2206 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::RxComplete"));
       
  2207 	TUsbcRequestCallback* const req = aEndpoint->iRequest;	
       
  2208 
       
  2209 	__ASSERT_DEBUG((req != NULL), Kern::Fault(KUsbPanicCat, __LINE__));
       
  2210 
       
  2211 	aEndpoint->iRxBuf = NULL;
       
  2212 	aEndpoint->iRxTimerSet = EFalse;
       
  2213 	aEndpoint->iRxMoreDataRcvd = EFalse;
       
  2214 	req->iRxPackets = aEndpoint->iPackets;
       
  2215 	req->iError = aEndpoint->iLastError;
       
  2216 	EndpointRequestComplete(req);
       
  2217 	aEndpoint->iRequest = NULL;
       
  2218 	}
       
  2219 
       
  2220 
       
  2221 void DOmap3530Usbcc::StopRxTimer(TEndpoint* aEndpoint)
       
  2222 //
       
  2223 // Stops (cancels) the Rx timer for an endpoint.
       
  2224 //
       
  2225 	{
       
  2226 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::StopRxTimer"));
       
  2227 
       
  2228 	if (aEndpoint->iRxTimerSet)
       
  2229 		{
       
  2230 		__KTRACE_OPT(KUSB, Kern::Printf(" > stopping rx timer"));
       
  2231 		aEndpoint->iRxTimer.Cancel();
       
  2232 		aEndpoint->iRxTimerSet = EFalse;
       
  2233 		}
       
  2234 	}
       
  2235 
       
  2236 
       
  2237 void DOmap3530Usbcc::EndpointIntService(TInt aEndpoint)
       
  2238 //
       
  2239 // ISR for endpoint interrupts.
       
  2240 // Note: the aEndpoint here is a "hardware endpoint", not a aRealEndpoint.
       
  2241 //
       
  2242 	{
       
  2243 	switch (aEndpoint)
       
  2244 		{
       
  2245 	case 0:
       
  2246 		Ep0IntService();
       
  2247 		break;
       
  2248 	case 3:
       
  2249 	case 5:
       
  2250 	case 7:
       
  2251 	case 9:
       
  2252 	case 11:
       
  2253 	case 13:
       
  2254 	case 15:
       
  2255 	case 17:
       
  2256 	case 19:
       
  2257 	case 21:
       
  2258 	case 23:
       
  2259 	case 25:
       
  2260 	case 27:
       
  2261 	case 29:
       
  2262 		BulkTransmit(aEndpoint);	
       
  2263 		break;
       
  2264 	case 2:
       
  2265 	case 4:
       
  2266 	case 6:
       
  2267 	case 8:
       
  2268 	case 10:
       
  2269 	case 12:
       
  2270 	case 14:
       
  2271 	case 16:
       
  2272 	case 18:
       
  2273 	case 20:
       
  2274 	case 22:
       
  2275 	case 24:
       
  2276 	case 26:
       
  2277 	case 28:
       
  2278 		BulkReceive(aEndpoint);			
       
  2279 		break;
       
  2280 	case 30:
       
  2281 		IntTransmit(aEndpoint);
       
  2282 		break;
       
  2283 	default:
       
  2284 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Endpoint not found"));
       
  2285 		break;
       
  2286 		}
       
  2287 	}
       
  2288 
       
  2289 
       
  2290 TInt DOmap3530Usbcc::ResetIntService()
       
  2291 //
       
  2292 // ISR for a USB Reset event interrupt.
       
  2293 // This function returns a value which can be used on the calling end to decide how to proceed.
       
  2294 //
       
  2295 	{
       
  2296 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ResetIntService"));
       
  2297 
       
  2298 	// Clear an interrupt:
       
  2299 	// TO DO: Clear reset interrupt flag here.
       
  2300 
       
  2301 	// TO DO (optional): Enquire about special conditions and possibly return here.
       
  2302 	
       
  2303 	DeviceEventNotification(EUsbEventReset);
       
  2304 
       
  2305 	return KErrNone;
       
  2306 	}
       
  2307 
       
  2308 
       
  2309 void DOmap3530Usbcc::SuspendIntService()
       
  2310 //
       
  2311 // ISR for a USB Suspend event interrupt.
       
  2312 //
       
  2313 	{
       
  2314 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SuspendIntService"));
       
  2315 
       
  2316 	// Clear an interrupt:
       
  2317 	// TO DO: Clear suspend interrupt flag here.
       
  2318 
       
  2319 	DeviceEventNotification(EUsbEventSuspend);
       
  2320 	}
       
  2321 
       
  2322 
       
  2323 void DOmap3530Usbcc::ResumeIntService()
       
  2324 //
       
  2325 // ISR for a USB Resume event interrupt.
       
  2326 //
       
  2327 	{
       
  2328 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ResumeIntService"));
       
  2329 
       
  2330 	// Clear an interrupt:
       
  2331 	// TO DO: Clear resume interrupt flag here.
       
  2332 
       
  2333 	DeviceEventNotification(EUsbEventResume);
       
  2334 	}
       
  2335 
       
  2336 
       
  2337 void DOmap3530Usbcc::SofIntService()
       
  2338 //
       
  2339 // ISR for a USB Start-of-Frame event interrupt.
       
  2340 //
       
  2341 	{
       
  2342 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SofIntService"));
       
  2343 
       
  2344 	// Clear an interrupt:
       
  2345 	// TO DO: Clear SOF interrupt flag here.
       
  2346 	
       
  2347 	// TO DO (optional): Do something about the SOF condition.
       
  2348 	}
       
  2349 
       
  2350 
       
  2351 void DOmap3530Usbcc::UdcInterruptService()
       
  2352 //
       
  2353 // Main UDC ISR - determines the cause of the interrupt, clears the condition, dispatches further for service.
       
  2354 //
       
  2355 	{
       
  2356 	Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);	
       
  2357 	TUint status = AsspRegister::Read8(KUSBBase+K_INTRUSB_REG);	
       
  2358 
       
  2359 	// Reset interrupt
       
  2360 	if (status &  K_INT_RESET)
       
  2361 		{
       
  2362 		ResetIntService();
       
  2363 		}
       
  2364 
       
  2365 	// Resume interrupt
       
  2366 	if (status & K_INT_RESUME)
       
  2367 		{
       
  2368 		ResumeIntService();
       
  2369 		}
       
  2370 
       
  2371 	// Endpoint interrupt
       
  2372 	TUint TxEpInt = AsspRegister::Read16(KUSBBase+K_INTRTX_REG);	
       
  2373 
       
  2374 	TInt ep=0;
       
  2375 	for(TInt x=0; TxEpInt!=0 && x<16 ; x++)
       
  2376 		{
       
  2377 		if(TxEpInt&(1<<x))
       
  2378 			{
       
  2379 			EndpointIntService(ep);
       
  2380 			}
       
  2381 		if(ep==0) { ep++; } // TX EP's are odd numbered - numbers are array indicies so we start from 2
       
  2382 		ep+=2;
       
  2383 		}	
       
  2384 	TUint RxEpInt = AsspRegister::Read16(KUSBBase+K_INTRRX_REG);
       
  2385 	ep=2;
       
  2386 	for(TInt x=1; RxEpInt!=0 && x<16; x++)
       
  2387 		{
       
  2388 		if(RxEpInt&(1<<x))
       
  2389 			{
       
  2390 			EndpointIntService(ep);
       
  2391 			}
       
  2392 		ep+=2;
       
  2393 		}
       
  2394 		
       
  2395 	// Suspend interrupt should be serviced last
       
  2396 	if (status & K_INT_SUSPEND)
       
  2397 		{
       
  2398 		SuspendIntService();
       
  2399 		}
       
  2400 	
       
  2401 	Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
       
  2402 	}
       
  2403 
       
  2404 
       
  2405 void DOmap3530Usbcc::Ep0NextState(TEp0State aNextState)
       
  2406 //
       
  2407 // Moves the Ep0 state to aNextState.
       
  2408 //
       
  2409 	{
       
  2410 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::Ep0NextState"));
       
  2411 	iEp0State = aNextState;
       
  2412 	}
       
  2413 
       
  2414 
       
  2415 void DOmap3530Usbcc::UdcIsr(TAny* aPtr)
       
  2416 //
       
  2417 // This is the static ASSP first-level UDC interrupt service routine. It dispatches the call to the
       
  2418 // actual controller's ISR.
       
  2419 //
       
  2420 	{
       
  2421 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UdcIsr"));
       
  2422 	static_cast<DOmap3530Usbcc*>(aPtr)->UdcInterruptService();
       
  2423 	}
       
  2424 
       
  2425 
       
  2426 TInt DOmap3530Usbcc::UsbClientConnectorCallback(TAny* aPtr)
       
  2427 //
       
  2428 // This function is called in ISR context by the Variant's UsbClientConnectorInterruptService.
       
  2429 // (This function is static.)
       
  2430 //
       
  2431 	{
       
  2432 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::UsbClientConnectorCallback"));
       
  2433 
       
  2434 	DOmap3530Usbcc* const ptr = static_cast<DOmap3530Usbcc*>(aPtr);
       
  2435 	ptr->iCableConnected = ptr->iAssp->UsbClientConnectorInserted();
       
  2436 #ifdef _DEBUG
       
  2437 	_LIT(KIns, "inserted");
       
  2438 	_LIT(KRem, "removed");
       
  2439 	__KTRACE_OPT(KUSB, Kern::Printf(" > USB cable now %lS", ptr->iCableConnected ? &KIns : &KRem));
       
  2440 #endif
       
  2441 	if (ptr->iCableConnected)
       
  2442 		{
       
  2443 		ptr->DeviceEventNotification(EUsbEventCableInserted);
       
  2444 		}
       
  2445 	else
       
  2446 		{
       
  2447 		ptr->DeviceEventNotification(EUsbEventCableRemoved);
       
  2448 		}
       
  2449 
       
  2450 	return KErrNone;
       
  2451 	}
       
  2452 
       
  2453 
       
  2454 TInt DOmap3530Usbcc::SetupUdcInterrupt()
       
  2455 //
       
  2456 // Registers and enables the UDC interrupt (ASSP first level interrupt).
       
  2457 //
       
  2458 	{
       
  2459 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::SetupUdcInterrupt"));
       
  2460 
       
  2461 	TInt error = Interrupt::Bind(EOmap3530_IRQ92_HSUSB_MC_NINT, UdcIsr, this);
       
  2462 	if (error != KErrNone)
       
  2463 		{
       
  2464 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Binding UDC interrupt failed"));
       
  2465 		return error;
       
  2466 		}
       
  2467 	Interrupt::Enable(EOmap3530_IRQ92_HSUSB_MC_NINT);
       
  2468 	return KErrNone;
       
  2469 	}
       
  2470 
       
  2471 
       
  2472 void DOmap3530Usbcc::ReleaseUdcInterrupt()
       
  2473 //
       
  2474 // Disables and unbinds the UDC interrupt.
       
  2475 //
       
  2476 	{
       
  2477 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::ReleaseUdcInterrupt"));
       
  2478 
       
  2479 	Interrupt::Disable(EOmap3530_IRQ92_HSUSB_MC_NINT);
       
  2480 	Interrupt::Unbind(EOmap3530_IRQ92_HSUSB_MC_NINT);
       
  2481 	}
       
  2482 
       
  2483 	
       
  2484 void DOmap3530Usbcc::EnableSICLK()
       
  2485 	{
       
  2486 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::EnableSICLK"));
       
  2487 	if(iSICLKEnabled==0)
       
  2488 		{
       
  2489 		//TInt r = PowerResourceManager::ChangeResourceState( iPrmClientId, Omap3530Prm::EPrmClkHsUsbOtg_I, Prcm::EClkAuto );
       
  2490 		// What are we supposed to do with errors from PRM?
       
  2491 		
       
  2492 		
       
  2493 		AsspRegister::Modify32(KCM_ICLKEN1_CORE, KClearNone, KENHOSTOTGUSB_BIT);
       
  2494 		AsspRegister::Modify32(KCM_AUTOIDLE1_CORE, KClearNone, KAUTO_HOSTOTGUSB_BIT);
       
  2495 
       
  2496 		
       
  2497 		__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc: SICLK Enabled"));
       
  2498 		}
       
  2499 	iSICLKEnabled++;
       
  2500 	}
       
  2501 
       
  2502 void DOmap3530Usbcc::DisableSICLK()
       
  2503 	{
       
  2504 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DisableSICLK"));
       
  2505 	if(iSICLKEnabled==1)
       
  2506 		{
       
  2507 		//TInt r = PowerResourceManager::ChangeResourceState( iPrmClientId, Omap3530Prm::EPrmClkHsUsbOtg_I, Prcm::EClkOff );
       
  2508 		// What are we supposed to do with errors from PRM?
       
  2509 		
       
  2510 		AsspRegister::Modify32(KCM_ICLKEN1_CORE, KENHOSTOTGUSB_BIT, KSetNone);
       
  2511 		AsspRegister::Modify32(KCM_AUTOIDLE1_CORE, KAUTO_HOSTOTGUSB_BIT, KSetNone);
       
  2512 
       
  2513 		
       
  2514 		}
       
  2515 	if(iSICLKEnabled>0)
       
  2516 		{
       
  2517 		iSICLKEnabled--;
       
  2518 		}
       
  2519 	}
       
  2520 
       
  2521 TBool DOmap3530Usbcc::CurrentlyUsingHighSpeed()
       
  2522 	{
       
  2523 	return ETrue;
       
  2524 	}
       
  2525 
       
  2526 void DOmap3530Usbcc::SuspendDfcFn(TAny *aPtr)
       
  2527 	{
       
  2528 
       
  2529 	}
       
  2530 	
       
  2531 void DOmap3530Usbcc::ResumeDfcFn(TAny *aPtr)
       
  2532 	{
       
  2533 
       
  2534 	}
       
  2535 	
       
  2536 void DOmap3530Usbcc::ResetDfcFn(TAny *aPtr)
       
  2537 	{
       
  2538 	DOmap3530Usbcc* self = reinterpret_cast<DOmap3530Usbcc*>(aPtr);
       
  2539 	// Put the Transceiver into normal mode
       
  2540 	self->iPhy->EnablePHY();
       
  2541 	self->iPhy->SetPHYMode(ENormal);
       
  2542 	self->iPhy->DisablePHY();
       
  2543 	}
       
  2544 	
       
  2545 TBool DOmap3530Usbcc::DeviceHighSpeedCaps() const
       
  2546 	{
       
  2547 	__KTRACE_OPT(KUSB, Kern::Printf("DOmap3530Usbcc::DeviceHighSpeedCaps()"));
       
  2548 	return ETrue;
       
  2549 	}
       
  2550 
       
  2551 	
       
  2552 //
       
  2553 // --- DLL Exported Function --------------------------------------------------
       
  2554 //
       
  2555 
       
  2556 DECLARE_STANDARD_EXTENSION()
       
  2557 	{
       
  2558 	__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support (Udcc)..."));
       
  2559 
       
  2560 	DOmap3530Usbcc* const usbcc = new DOmap3530Usbcc();
       
  2561 	if (!usbcc)
       
  2562 		{
       
  2563 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Memory allocation for DOmap3530Usbcc failed"));
       
  2564 		return KErrNoMemory;
       
  2565 		}
       
  2566 Kern::Printf( "$1" );
       
  2567 	TInt r;
       
  2568 	if ((r = usbcc->Construct()) != KErrNone)
       
  2569 		{
       
  2570 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: Construction of DOmap3530Usbcc failed (%d)", r));
       
  2571 		delete usbcc;
       
  2572 		return r;
       
  2573 		}
       
  2574 Kern::Printf( "$2" );
       
  2575 
       
  2576 	if (usbcc->RegisterUdc(0) == NULL)
       
  2577 		{
       
  2578 		__KTRACE_OPT(KPANIC, Kern::Printf("  Error: PIL registration of PSL failed"));
       
  2579 		delete usbcc;
       
  2580 		return KErrGeneral;
       
  2581 		}
       
  2582 	
       
  2583 	__KTRACE_OPT(KUSB, Kern::Printf(" > Initializing USB client support: Done"));
       
  2584 
       
  2585 	return KErrNone;
       
  2586 	}
       
  2587 
       
  2588 
       
  2589 // --- EOF --------------------------------------------------------------------