Merge SPI and Touch driver template to BYD_LCD branch for integration.
// Copyright (c) 2010 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
// lukasz.forynski@gmail.com
//
// Description:
// Implementation of IIC master channel for a SPI bus.
//
#define DBGPRINT(x)
#define DBG_ERR(x) x
#ifdef _DEBUG
#define DEBUG_ONLY(x) //x
#else
#define DEBUG_ONLY(x)
#endif
// DO NOT CHANGE THESE- trying to tune the driver (unless you really know what you're doing)
// as this this is only for development purpose to tune the driver. Fifo mode is not yet enabled, but this
// doesn't affect operation. After development has been finished - these macros and #ifdefs will be removed
// entirely. For now only SINGLE_MODE should ever be defined.
//#define USE_TX_FIFO
//#define USING_TX_COUNTER
//#define PER_TRANSFER_MODE
#define SINGLE_MODE
#include <assp/omap3530_assp/omap3530_assp_priv.h>
#include <assp/omap3530_assp/omap3530_prcm.h>
#include <drivers/iic.h>
#include "omap3530_spi.h"
#include "psl_init.h"
#include "master.h"
DSpiMasterBeagle::DSpiMasterBeagle(TInt aChannelNumber, TBusType aBusType, TChannelDuplex aChanDuplex) :
DIicBusChannelMaster(aBusType, aChanDuplex),
iTransferEndDfc(TransferEndDfc, this, KIicPslDfcPriority)
{
iChannelNumber = aChannelNumber;
iIrqId = KMcSpiIrqId[iChannelNumber];
iHwBase = KMcSpiRegBase[iChannelNumber];
iState = EIdle;
iCurrSS = -1; // make sure channel will be fully configured on the first use
DBGPRINT(Kern::Printf("DSpiMasterBeagle::DSpiMasterBeagle: at 0x%x, iChannelNumber = %d", this, iChannelNumber));
}
TInt DSpiMasterBeagle::DoCreate()
{
DBGPRINT(Kern::Printf("\nDSpiMasterBeagle::DoCreate() McSPI%d \n", iChannelNumber+1));
DBGPRINT(Kern::Printf("HW revision is %x", AsspRegister::Read32(iHwBase + MCSPI_REVISION)));
TInt r = KErrNone;
// Create the DFCQ to be used by the channel
if(!iDfcQ)
{
TBuf8<KMaxName> threadName (KIicPslThreadName);
threadName.AppendNum(iChannelNumber);
r = Kern::DfcQCreate(iDfcQ, KIicPslThreadPriority, &threadName);
if(r != KErrNone)
{
DBG_ERR(Kern::Printf("DFC Queue creation failed, channel number: %d, r = %d\n", iChannelNumber, r));
return r;
}
}
// PIL Base class initialization - this must be called prior to SetDfcQ(iDfcQ)
r = Init();
if(r == KErrNone)
{
// Call base class function to set DFCQ pointers in the required objects
// This also enables the channel to process transaction requests
SetDfcQ(iDfcQ);
// PSL DFCQ initialisation for local DFC
iTransferEndDfc.SetDfcQ(iDfcQ);
// Bind interrupts.
r = Interrupt::Bind(iIrqId, Isr, this);
if(r < KErrNone)
{
DBG_ERR(Kern::Printf("ERROR: InterruptBind error.. %d", r));
return r;
}
}
// Make sure clocks are enabled (TBD: this could go to 'PowerUp/PowerDown' if using PRM)
Prcm::SetClockState( Prcm::EClkMcSpi3_F, Prcm::EClkOn );
Prcm::SetClockState( Prcm::EClkMcSpi3_I, Prcm::EClkOn );
// TODO:consider auto-idle for PRCM.CM_AUTOIDLE1_CORE
// setup default spi pins. For channel 2 (McSPI3) it can be configured dynamically
SetupSpiPins(iChannelNumber);
return r;
}
// A static method used to construct the DSpiMasterBeagle object.
DSpiMasterBeagle* DSpiMasterBeagle::New(TInt aChannelNumber, const TBusType aBusType, const TChannelDuplex aChanDuplex)
{
DBGPRINT(Kern::Printf("DSpiMasterBeagle::NewL(): ChannelNumber = %d, BusType =%d", aChannelNumber, aBusType));
DSpiMasterBeagle *pChan = new DSpiMasterBeagle(aChannelNumber, aBusType, aChanDuplex);
TInt r = KErrNoMemory;
if(pChan)
{
r = pChan->DoCreate();
}
if(r != KErrNone)
{
delete pChan;
pChan = NULL;
}
return pChan;
}
// This method is called by the PIL to initiate the transaction. After finishing it's processing,
// the PSL calls the PIL function CompleteRequest to indicate the success (or otherwise) of the request
TInt DSpiMasterBeagle::DoRequest(TIicBusTransaction* aTransaction)
{
DBGPRINT(Kern::Printf("\n=>DSpiMasterBeagle::DoRequest (aTransaction=0x%x)\n", aTransaction));
// If the pointer to the transaction passed in as a parameter, or its associated pointer to the
// header information is NULL, return KErrArgument
if(!aTransaction || !GetTransactionHeader(aTransaction))
{
return KErrArgument;
}
// The PSL operates a simple state machine to ensure that only one transaction is processed
// at a time - if the channel is currently busy, reject the request (PIL should not try that!)
if(iState != EIdle)
{
return KErrInUse;
}
// copy pointer to the transaction
iCurrTransaction = aTransaction;
// Configure the hardware to support the transaction
TInt r = PrepareConfiguration();
if(r == KErrNone)
{
r = ConfigureInterface();
if(r == KErrNone)
{
// start processing transfers of this transaction.
r = ProcessNextTransfers();
}
}
return r;
}
TInt DSpiMasterBeagle::PrepareConfiguration()
{
TConfigSpiV01 &newHeader = (*(TConfigSpiBufV01*) (GetTransactionHeader(iCurrTransaction)))();
// get the slave address (i.e. known as a 'channel' for the current SPI module)
TInt busId = iCurrTransaction->GetBusId();
TInt slaveAddr = GET_SLAVE_ADDR(busId);
TInt slavePinSet = 0;
if(slaveAddr >= KMcSpiNumSupportedSlaves[iChannelNumber]) // address is 0-based
{
DBG_ERR(Kern::Printf("Slave address for McSPI%d should be < %, was: %d !",
iChannelNumber + 1, KMcSpiNumSupportedSlaves[iChannelNumber], slaveAddr));
return KErrArgument; // Slave address out of range
}
// Slave addresses > 1 for McSPI3 (iChannel2) really means alternative pin settings,
// so adjust it in such case. *Pin set indexes are +1 to skip over the pin set for McSPI4
// channel in the pin configuration table.
if(iChannelNumber == 2 && slaveAddr > 1)
{
slavePinSet = slaveAddr > 3 ? 3 : 2; // slaveAddr: 2-3: pin set 2(1*); 4-5: pin set 3(2*)
slaveAddr &= 1; // modulo 2 (i.e. 2 CS for McSPI3)
}
// reconfigure pins if needed..
if(slavePinSet != iCurrSlavePinSet)
{
iCurrSlavePinSet = slavePinSet;
SetupSpiPins(iChannelNumber, iCurrSlavePinSet);
}
// store configuration parameters
iCurrSS = slaveAddr;
iCurrHeader = newHeader; //copy the header..
return KErrNone;
}
// Init the hardware with the data provided in the transaction and slave-address field
// (these values are already stored in the iCurrHeader)
TInt DSpiMasterBeagle::ConfigureInterface()
{
DBGPRINT(Kern::Printf("ConfigureInterface()"));
// soft reset the SPI..
TUint val = AsspRegister::Read32(iHwBase + MCSPI_SYSCONFIG);
val = MCSPI_SYSCONFIG_SOFTRESET; // issue reset
AsspRegister::Write32(iHwBase + MCSPI_SYSCONFIG, MCSPI_SYSCONFIG_SOFTRESET);
val = 0; // TODO will add here this 'smart-wait' stuff that was proposed earlier..
while (!(val & MCSPI_SYSSTATUS_RESETDONE))
val = AsspRegister::Read32(iHwBase + MCSPI_SYSSTATUS);
// disable and clear all interrupts..
AsspRegister::Write32(iHwBase + MCSPI_IRQENABLE, 0);
AsspRegister::Write32(iHwBase + MCSPI_IRQSTATUS,
MCSPI_IRQ_RX_FULL(iCurrSS) |
MCSPI_IRQ_RX_FULL(iCurrSS) |
MCSPI_IRQ_TX_UNDERFLOW(iCurrSS) |
MCSPI_IRQ_TX_EMPTY(iCurrSS) |
MCSPI_IRQ_RX_OVERFLOW);
// channel configuration
// Set the SPI1.MCSPI_CHxCONF[18] IS bit to 0 for the spi1_somi pin in receive mode.
// val = MCSPI_CHxCONF_IS; // pin selection (somi - simo)
// TODO configuration of PINS could also be configurable on a 'per SPI module' basis..
// Set the SPI1.MCSPI_CHxCONF[17] DPE1 bit to 0 and the SPI1.MCSPI_CHxCONF[16] DPE0 bit to 1 for the spi1.simo pin in transmit mode.
val = MCSPI_CHxCONF_DPE0;
// Set transmit & | receive mode for transmit only mode here. If needed - it will be changed dynamically.
val |= MCSPI_CHxCONF_TRM_NO_RECEIVE;
// set word length.
val |= SpiWordWidth(iCurrHeader.iWordWidth);
// use the appropriate word with (assuming the data is aligned to bytes).
if(iCurrHeader.iWordWidth > ESpiWordWidth_16)
{
iWordSize = 4;
}
else if (iCurrHeader.iWordWidth > ESpiWordWidth_8)
{
iWordSize = 2;
}
else
{
iWordSize = 1;
}
// set Slave Select / Chip select signal mode
val |= iCurrHeader.iSSPinActiveMode == ESpiCSPinActiveLow ? MCSPI_CHxCONF_EPOL_LOW : 0;
// set the CLK POL and PHA (clock mode)
val |= SpiClkMode(iCurrHeader.iClkMode);
// Set clock. Note that CheckHdr() will be called prior to this function for this header,
// so the value iClkSpeedHz is valid at this point, the KErrNotSupported is not possible
// so the return value check can be ommited here
val |= SpiClkValue(iCurrHeader.iClkSpeedHz);
// __ASSERT_DEBUG(val >= KErrNone, Kern::Fault("spi/master.cpp, line: ", __LINE__));
#ifdef USE_TX_FIFO
// enable fifo for transmission..
// Update me: this can only set in a 'single' mode.. or for only one channel
// but at the momment IIC SPI is used in 'single' mode onlny..
val |= MCSPI_CHxCONF_FFEW;
// val |= MCSPI_CHxCONF_FFER; // fifo enable for receive.. (TODO)
#endif
val |= (iCurrHeader.iTransactionWaitCycles & 3) << MCSPI_CHxCONF_TCS_SHIFT;
// update the register..
AsspRegister::Write32(iHwBase + MCSPI_CHxCONF(iCurrSS), val);
// set spim_somi pin direction to input
val = MCSPI_SYST_SPIDATDIR0;
// drive csx pin to inactive state
if(iCurrHeader.iSSPinActiveMode == ESpiCSPinActiveLow)
{
AsspRegister::Modify32(iHwBase + MCSPI_SYST, 1u << iCurrSS, 0);
}
else
{
AsspRegister::Modify32(iHwBase + MCSPI_SYST, 0, (1u << iCurrSS));
}
// Set the MS bit to 0 to provide the clock (ie. to setup as master)
#ifndef SINGLE_MODE
AsspRegister::Write32(iHwBase + MCSPI_MODULCTRL, MCSPI_MODULCTRL_MS_MASTER);
// change the pad config - now the SPI drives the line appropriately..
SetCsActive(iChannelNumber, iCurrSS, iCurrSlavePinSet);
#else
AsspRegister::Write32(iHwBase + MCSPI_MODULCTRL, MCSPI_MODULCTRL_MS_MASTER | MCSPI_MODULCTRL_SINGLE);
#endif
return KErrNone;
}
TInt DSpiMasterBeagle::ProcessNextTransfers()
{
DBGPRINT(Kern::Printf("DSpiMasterBeagle::ProcessNextTransfers():%s", iState==EIdle ? "first" : "next"));
// Since new transfers are strating, clear exisiting flags
iOperation.iValue = TIicOperationType::ENop;
// If this is the first transfer in the transaction the channel will be in state EIdle
if(iState == EIdle)
{
// Get the pointer to half-duplex transfer object..
iHalfDTransfer = GetTransHalfDuplexTferPtr(iCurrTransaction);
// Get the pointer to full-duplex transfer object..
iFullDTransfer = GetTransFullDuplexTferPtr(iCurrTransaction);
// Update the channel state to EBusy and initialise the transaction status
iState = EBusy;
iTransactionStatus = KErrNone;
// start timeout timer for this transaction
StartSlaveTimeOutTimer(iCurrHeader.iTimeoutPeriod);
}
else
// If not in state EIdle, get the next transfer in the linked-list held by the transaction
{
// Get the pointer the next half-duplex transfer object..
iHalfDTransfer = GetTferNextTfer(iHalfDTransfer);
// Get the pointer to the next half-duplex transfer object..
if(iFullDTransfer)
{
iFullDTransfer = GetTferNextTfer(iFullDTransfer);
}
}
TInt r = KErrNone;
if(!iFullDTransfer && !iHalfDTransfer)
{
// There is no more to transfer - and all previous were were completed,
DBGPRINT(Kern::Printf("All transfers completed successfully"));
ExitComplete(KErrNone);
}
else
{
// Process next transfers
TInt8 hDTrType = (TInt8) GetTferType(iHalfDTransfer);
if(iFullDTransfer)
{
// For full-duplex transfer setup the read transfer first, as it doesn't
// really start anything - SPI master starts operation when Tx (or clocks)starts..
if(hDTrType == TIicBusTransfer::EMasterRead)
{
r = StartTransfer(iHalfDTransfer, TIicBusTransfer::EMasterRead);
if(r != KErrNone)
{
return r;
}
r = StartTransfer(iFullDTransfer, TIicBusTransfer::EMasterWrite);
}
else // hDTrType == TIicBusTransfer::EMasterWrite)
{
r = StartTransfer(iFullDTransfer, TIicBusTransfer::EMasterRead);
if(r != KErrNone)
{
return r;
}
r = StartTransfer(iHalfDTransfer, TIicBusTransfer::EMasterWrite);
}
}
else
// This is a HalfDuplex transfer - so just start it
{
r = StartTransfer(iHalfDTransfer, hDTrType);
}
}
return r;
}
TInt DSpiMasterBeagle::StartTransfer(TIicBusTransfer* aTransferPtr, TUint8 aType)
{
DBGPRINT(Kern::Printf("DSpiMasterBeagle::StartTransfer() @0x%x, aType: %s",
aTransferPtr, aType == TIicBusTransfer::EMasterWrite ? "write" : "read"));
if(aTransferPtr == NULL)
{
DBG_ERR(Kern::Printf("DSpiMasterBeagle::StartTransfer - NULL pointer\n"));
return KErrArgument;
}
TInt r = KErrNone;
switch(aType)
{
case TIicBusTransfer::EMasterWrite:
{
DBGPRINT(Kern::Printf("Starting EMasterWrite, duplex=%x", iFullDTransfer));
// Get a pointer to the transfer object's buffer, to facilitate passing arguments to DoTransfer
const TDes8* desBufPtr = GetTferBuffer(aTransferPtr);
DBGPRINT(Kern::Printf("Length %d, iWordSize %d", desBufPtr->Length(), iWordSize));
// Store the current address and ending address for Transmission - they are required by the ISR and DFC
iTxData = (TInt8*) desBufPtr->Ptr();
iTxDataEnd = (TInt8*) (iTxData + desBufPtr->Length());
if ((TInt)iTxDataEnd % iWordSize)
{
DBG_ERR(Kern::Printf("Wrong configuration - word size does not match buffer length"));
return KErrArgument;
}
DBGPRINT(Kern::Printf("Tx: Start: %x, End %x, bytes %d", iTxData, iTxDataEnd, desBufPtr->Length()));
// Set the flag to indicate that we'll be transmitting data
iOperation.iOp.iIsTransmitting = ETrue;
// initiate the transmission..
r = DoTransfer(aType);
if(r != KErrNone)
{
DBG_ERR(Kern::Printf("Starting Write failed, r = %d", r));
}
break;
}
case TIicBusTransfer::EMasterRead:
{
DBGPRINT(Kern::Printf("Starting EMasterRead, duplex=%x", iFullDTransfer));
// Get a pointer to the transfer object's buffer, to facilitate passing arguments to DoTransfer
const TDes8* aBufPtr = GetTferBuffer(aTransferPtr);
// Store the current address and ending address for Reception - they are required by the ISR and DFC
iRxData = (TInt8*) aBufPtr->Ptr();
iRxDataEnd = (TInt8*) (iRxData + aBufPtr->Length());
DBGPRINT(Kern::Printf("Rx: Start: %x, End %x, bytes %d", iRxData, iRxDataEnd, aBufPtr->Length()));
// Set the flag to indicate that we'll be receiving data
iOperation.iOp.iIsReceiving = ETrue;
// initiate the reception
r = DoTransfer(aType);
if(r != KErrNone)
{
DBG_ERR(Kern::Printf("Starting Read failed, r = %d", r));
}
break;
}
default:
{
DBG_ERR(Kern::Printf("Unsupported TransactionType %x", aType));
r = KErrArgument;
break;
}
}
return r;
}
// Method called by StartTransfer to actually initiate the transfers.
TInt DSpiMasterBeagle::DoTransfer(TUint8 aType)
{
DBGPRINT(Kern::Printf("\nDSpiMasterBeagle::DoTransfer()"));
TInt r = KErrNone;
AsspRegister::Write32(iHwBase + MCSPI_IRQSTATUS, ~0);
switch(aType)
{
case TIicBusTransfer::EMasterWrite:
{
// enable the channel here..
AsspRegister::Write32(iHwBase + MCSPI_CHxCTRL(iCurrSS), MCSPI_CHxCTRL_EN);
AsspRegister::Modify32(iHwBase + MCSPI_IRQSTATUS, 0,
MCSPI_IRQ_TX_EMPTY(iCurrSS) /*| MCSPI_IRQ_TX_UNDERFLOW(iCurrSS)*/);
AsspRegister::Modify32(iHwBase + MCSPI_IRQENABLE, 0,
MCSPI_IRQ_TX_EMPTY(iCurrSS) /*| MCSPI_IRQ_TX_UNDERFLOW(iCurrSS)*/);
#ifdef SINGLE_MODE
// in SINGLE mode needs to manually assert CS line for current
AsspRegister::Modify32(iHwBase + MCSPI_CHxCONF(iCurrSS), 0, MCSPI_CHxCONF_FORCE);
// change the pad config - now the SPI drives the line appropriately..
SetCsActive(iChannelNumber, iCurrSS, iCurrSlavePinSet);
#endif /*SINGLE_MODE*/
#ifdef USE_TX_FIFO
const TInt KTxFifoThreshold = 8;
TUint numWordsToTransfer = (iTxDataEnd - iTxData);
TUint wordsToWrite = Min(numWordsToTransfer/iWordSize, KTxFifoThreshold/iWordSize);
TInt iAlmostFullLevel = 0;
TInt iAlmostEmptyLevel = 1; //KTxFifoThreshold;
// setup FIFOs
AsspRegister::Write32(iHwBase + MCSPI_XFERLEVEL,
MCSPI_XFERLEVEL_WCNT(0) | // total num words
MCSPI_XFERLEVEL_AFL(iAlmostFullLevel) | // Rx almost full
MCSPI_XFERLEVEL_AEL(iAlmostEmptyLevel) ); // Tx almost empty
// copy data to fifo..
for (TInt i = 0; i < wordsToWrite; i++)
{
iTxData += iWordSize;
AsspRegister::Write32(iHwBase + MCSPI_TXx(iCurrSS), *(iTxData -iWordSize));
}
#else /*USE_TX_FIFO*/
TUint val = 0;
for (TInt i = 0; i < iWordSize; i++)
{
val |= (*iTxData++) << i * 8;
}
DEBUG_ONLY(DumpCurrentStatus("DoTransfer(Write)"));
AsspRegister::Write32(iHwBase + MCSPI_TXx(iCurrSS), val);
#endif /*USE_TX_FIFO*/
// enable system interrupt
Interrupt::Enable(iIrqId);
break;
}
case TIicBusTransfer::EMasterRead:
{
// enable transmit and receive..
AsspRegister::Modify32(iHwBase + MCSPI_CHxCONF(iCurrSS), MCSPI_CHxCONF_TRM_NO_RECEIVE, 0);
// for single read (not duplex) one way to to allow clock generation is to enable Tx
// and write '0' to Txregister (just like in duplex transaction). We also need to assert Cs line.
if(!iFullDTransfer)
{
// enable the channel..
AsspRegister::Write32(iHwBase + MCSPI_CHxCTRL(iCurrSS), MCSPI_CHxCTRL_EN);
// enable TX and RX Empty interrupts
AsspRegister::Modify32(iHwBase + MCSPI_IRQSTATUS, 0, MCSPI_IRQ_TX_EMPTY(iCurrSS) | MCSPI_IRQ_RX_FULL(iCurrSS));
AsspRegister::Modify32(iHwBase + MCSPI_IRQENABLE, 0, MCSPI_IRQ_TX_EMPTY(iCurrSS) | MCSPI_IRQ_RX_FULL(iCurrSS));
#ifdef SINGLE_MODE
// in SINGLE mode needs to manually assert CS line for current
AsspRegister::Modify32(iHwBase + MCSPI_CHxCONF(iCurrSS), 0, MCSPI_CHxCONF_FORCE);
// change the pad config - now the SPI drives the line appropriately..
SetCsActive(iChannelNumber, iCurrSS, iCurrSlavePinSet);
#endif /*SINGLE_MODE*/
}
else
{
// enable only interrupts for RX here. Tx is handled in EMasterWrite case above.
AsspRegister::Write32(iHwBase + MCSPI_IRQSTATUS, MCSPI_IRQ_RX_FULL(iCurrSS));
AsspRegister::Write32(iHwBase + MCSPI_IRQENABLE, MCSPI_IRQ_RX_FULL(iCurrSS));
}
DEBUG_ONLY(DumpCurrentStatus("DoTransfer(Read)"));
// and enable system interrupts
if(!iFullDTransfer)
Interrupt::Enable(iIrqId);
break;
}
default:
{
DBG_ERR(Kern::Printf("Unsupported TransactionType %x", aType));
r = KErrArgument;
break;
}
}
return r;
}
#ifdef _DEBUG
static TInt IsrCnt = 0;
void DSpiMasterBeagle::DumpCurrentStatus(const TInt8* aWhere /*=NULL*/)
{
if(aWhere)
Kern::Printf("------ Status (%s)--------", aWhere);
else
Kern::Printf("------ Status --------");
Kern::Printf("\niTransactionStatus: %d", iTransactionStatus);
Kern::Printf("iTransferEndDfc %s queued", iTransferEndDfc.Queued() ? "" : "NOT");
if(iOperation.iOp.iIsTransmitting)
{
Kern::Printf("TX STATUS:");
Kern::Printf(" iTxData %x", iTxData);
Kern::Printf(" iTxDataEnd %x", iTxDataEnd);
Kern::Printf(" left to write: %x (words)", (iTxDataEnd - iTxData)/iWordSize);
}
if(iOperation.iOp.iIsReceiving)
{
Kern::Printf("RX STATUS:");
Kern::Printf(" iRxData %x", iRxData);
Kern::Printf(" iRxDataEnd %x", iRxDataEnd);
Kern::Printf(" left to read: %x (words)", (iRxDataEnd - iRxData)/iWordSize);
}
Kern::Printf(" iCurrSS %d",iCurrSS);
Kern::Printf("IsrCnt %d", IsrCnt);
TUint status = AsspRegister::Read32(iHwBase + MCSPI_IRQSTATUS);
Kern::Printf("MCSPI_IRQSTATUS (0x%x):", status);
if(status & MCSPI_IRQ_TX_EMPTY(iCurrSS))
Kern::Printf(" MCSPI_IRQ_TX_EMPTY");
if(status & MCSPI_IRQ_TX_UNDERFLOW(iCurrSS))
Kern::Printf(" MCSPI_IRQ_TX_UNDERFLOW");
if(!iCurrSS && status & MCSPI_IRQ_RX_OVERFLOW)
Kern::Printf(" MCSPI_IRQ_RX_OVERFLOW");
if(status & MCSPI_IRQ_RX_FULL(iCurrSS))
Kern::Printf(" MCSPI_IRQ_RX_FULL");
Kern::Printf("MCSPI_CHxSTAT(%d):", iCurrSS);
status = AsspRegister::Read32(iHwBase + MCSPI_CHxSTAT(iCurrSS));
if(status & MCSPI_CHxSTAT_RXFFF)
Kern::Printf(" MCSPI_CHxSTAT_RXFFF");
if(status & MCSPI_CHxSTAT_RXFFE)
Kern::Printf(" MCSPI_CHxSTAT_RXFFE");
if(status & MCSPI_CHxSTAT_TXFFF)
Kern::Printf(" MCSPI_CHxSTAT_TXFFF");
if(status & MCSPI_CHxSTAT_TXFFE)
Kern::Printf(" MCSPI_CHxSTAT_TXFFE");
if(status & MCSPI_CHxSTAT_EOT)
Kern::Printf(" MCSPI_CHxSTAT_EOT");
if(status & MCSPI_CHxSTAT_TXS)
Kern::Printf(" MCSPI_CHxSTAT_TXS");
if(status & MCSPI_CHxSTAT_RXS)
Kern::Printf(" MCSPI_CHxSTAT_RXS");
Kern::Printf("MCSPI_XFERLEVEL:");
status = AsspRegister::Read32(iHwBase + MCSPI_XFERLEVEL);
Kern::Printf(" MCSPI_XFERLEVEL_WCNT %d", status >> MCSPI_XFERLEVEL_WCNT_OFFSET);
Kern::Printf(" MCSPI_XFERLEVEL_AFL %d", (status >> MCSPI_XFERLEVEL_AFL_OFFSET) & 0x3F);
Kern::Printf(" MCSPI_XFERLEVEL_AEL %d\n", (status >> MCSPI_XFERLEVEL_AEL_OFFSET) & 0x1F);
Kern::Printf("---------------------------------------/*\n\n\n");
}
#endif
void DSpiMasterBeagle::Isr(TAny* aPtr)
{
DSpiMasterBeagle *a = (DSpiMasterBeagle*) aPtr;
DEBUG_ONLY(IsrCnt++);
DEBUG_ONLY(a->DumpCurrentStatus("Isr entry"));
TUint32 status = AsspRegister::Read32(a->iHwBase + MCSPI_IRQSTATUS);
AsspRegister::Write32(a->iHwBase + MCSPI_IRQSTATUS, status); // clear status bits..
// TX_EMPTY - when an item (or number of items if FIFO is used) was transmitted..
if(status & MCSPI_IRQ_TX_EMPTY(a->iCurrSS))
{
if(a->iOperation.iOp.iIsTransmitting)
{
#ifdef USE_TX_FIFO
// when FIFO is used - should write (at least) the MCSPI_XFERLEVEL_AFL + 1 words to this register..
while(a->iTxData != a->iTxDataEnd)
{
AsspRegister::Write32(a->iHwBase + MCSPI_TXx(a->iCurrSS), *a->iTxData);
a->iTxData += a->iWordSize; // Then increment the pointer to the data.s
if(AsspRegister::Read32(a->iHwBase + MCSPI_CHxSTAT(a->iCurrSS)) & MCSPI_CHxSTAT_TXFFF)
{
break;
}
}
#else
// transfer next word..
if(a->iTxData != a->iTxDataEnd)
{
TUint val = 0;
for (TInt i = 0; i < a->iWordSize; i++)
{
val |= (*a->iTxData++) << i * 8;
}
AsspRegister::Write32(a->iHwBase + MCSPI_TXx(a->iCurrSS), val);
}
// check again - if this was the last one..and we're not waiting for rx - end transfer
if(a->iTxData == a->iTxDataEnd && !a->iOperation.iOp.iIsReceiving)
{
Interrupt::Disable(a->iIrqId);
a->iTransferEndDfc.Add();
}
#endif
}
else
{
// writing a 'dummy' word (for read only transferss (writing 0 doesn't change line state)
AsspRegister::Write32(a->iHwBase + MCSPI_TXx(a->iCurrSS), 0);
}
}
if(status & MCSPI_IRQ_RX_FULL(a->iCurrSS))
{
if(a->iOperation.iOp.iIsReceiving)
{
if(a->iRxDataEnd != a->iRxData)
{
TUint8 nextRxValue = AsspRegister::Read32(a->iHwBase + MCSPI_RXx(a->iCurrSS));
*a->iRxData = nextRxValue;
a->iRxData += a->iWordSize;
}
// If the Rx buffer is now full, finish the transmission.
if(a->iRxDataEnd == a->iRxData)
{
Interrupt::Disable(a->iIrqId);
a->iTransferEndDfc.Add();
}
}
}
#if 0 // TODO - probably master, as it creates CLK for slave - will never have to bother with this..
if(status & MCSPI_IRQ_TX_UNDERFLOW(a->iCurrSS))
{
DBG_ERR(Kern::Printf("Underflow"));
a->iTransactionStatus = KErrUnderflow;
// disable the channel..
AsspRegister::Modify32(a->iHwBase + MCSPI_CHxCTRL(0), MCSPI_CHxCTRL_EN, 0);
Interrupt::Disable(a->iIrqId);
DEBUG_ONLY(a->DumpCurrentStatus("TxUnderflow"));
DBG_ERR(Kern::Fault("TxUnderflow", 0));
}
#endif
#if defined(USE_TX_FIFO) && defined(USING_TX_COUNTER)
if(status & MCSPI_IRQSTATUS_EOW)
{
Kern::Printf("EOW");
// TODO: end of transfer..
}
#endif
// end of ISR processing
DEBUG_ONLY(a->DumpCurrentStatus("Isr end"));
}
void DSpiMasterBeagle::TransferEndDfc(TAny* aPtr)
{
DBGPRINT(Kern::Printf("DSpiMasterBeagle::TransferEndDfc"));
DSpiMasterBeagle *a = (DSpiMasterBeagle*) aPtr;
TUint chanStatus = AsspRegister::Read32(a->iHwBase + MCSPI_CHxSTAT(a->iCurrSS));
if(a->iOperation.iOp.iIsTransmitting)
{
TUint expected = MCSPI_CHxSTAT_EOT | MCSPI_CHxSTAT_TXS;
#ifdef USE_TX_FIFO
while(!AsspRegister::Read32(a->iHwBase + MCSPI_CHxSTAT(a->iCurrSS)) & MCSPI_CHxSTAT_TXFFE);
#endif
while(chanStatus & expected != expected)
{
chanStatus = AsspRegister::Read32(a->iHwBase + MCSPI_CHxSTAT(a->iCurrSS));
}
}
if(a->iOperation.iOp.iIsReceiving)
{
TUint expected = MCSPI_CHxSTAT_RXS;
while(chanStatus & expected != expected)
{
chanStatus = AsspRegister::Read32(a->iHwBase + MCSPI_CHxSTAT(a->iCurrSS));
}
__ASSERT_DEBUG(a->iRxDataEnd == a->iRxData,
Kern::Fault("SPI master: exiting not having received all?", 12));
}
#ifdef SINGLE_MODE
// manually de-assert CS line for this channel
AsspRegister::Modify32(a->iHwBase + MCSPI_CHxCONF(a->iCurrSS), MCSPI_CHxCONF_FORCE, 0);
// put the CS signal to 'inactive' state (as on channel disable it would have a glitch)
SetCsInactive(a->iChannelNumber, a->iCurrSS, a->iCurrHeader.iSSPinActiveMode, a->iCurrSlavePinSet);
#endif
// disable the channel
AsspRegister::Modify32(a->iHwBase + MCSPI_CHxCTRL(0), MCSPI_CHxCTRL_EN, 0);
// Start the next transfer for this transaction, if any remain
if(a->iState == EBusy)
{
TInt err = a->ProcessNextTransfers();
if(err != KErrNone)
{
// If the next transfer could not be started, complete the transaction with
// the returned error code
a->ExitComplete(err);
}
}
}
void DSpiMasterBeagle::ExitComplete(TInt aErr, TBool aComplete /*= ETrue*/)
{
DBGPRINT(Kern::Printf("DSpiMasterBeagle::ExitComplete, aErr %d, aComplete %d", aErr, aComplete));
// in the case of error - make sure to reset the channel
if(aErr != KErrNone)
{
// make sure CS is in inactive state (for the current / last transaction) on error
// TODO: add extendable transaction support (..i.e. with no de-assertion of CS pin between such transactions)
SetCsInactive(iChannelNumber, iCurrSS, iCurrHeader.iSSPinActiveMode, iCurrSlavePinSet);
// disable this channel
AsspRegister::Modify32(iHwBase + MCSPI_CHxCTRL(iCurrSS), MCSPI_CHxCTRL_EN, 0);
AsspRegister::Write32(iHwBase + MCSPI_SYSCONFIG, MCSPI_SYSCONFIG_SOFTRESET);
iCurrSS = -1; // make sure the interface will be re-configured at next transaction
}
// Disable interrupts for the channel
Interrupt::Disable(iIrqId);
// Cancel any timers and DFCs..
CancelTimeOut();
iTransferEndDfc.Cancel();
// Change the channel state back to EIdle
iState = EIdle;
// Call the PIL method to complete the request
if(aComplete)
{
CompleteRequest(aErr);
}
}
#ifdef _DEBUG
void DumpHeader(TConfigSpiV01& aHeader)
{
Kern::Printf("header:");
Kern::Printf("iWordWidth %d (%d bits)", aHeader.iWordWidth, (SpiWordWidth(aHeader.iWordWidth)) >> MCSPI_CHxCONF_WL_OFFSET + 1);
Kern::Printf("iClkSpeedHz %d", aHeader.iClkSpeedHz);
Kern::Printf("iClkMode %d", aHeader.iClkMode);
Kern::Printf("iTimeoutPeriod %d", aHeader.iTimeoutPeriod);
Kern::Printf("iBitOrder %d", aHeader.iBitOrder);
Kern::Printf("iTransactionWaitCycles %d", aHeader.iTransactionWaitCycles);
Kern::Printf("iSSPinActiveMode %d", aHeader.iSSPinActiveMode);
}
#endif
// virtual method called by the PIL when a transaction is queued (with QueueTransaction).
// This is done in the context of the Client's thread.
// The PSL is required to check that the transaction header is valid for this channel.
TInt DSpiMasterBeagle::CheckHdr(TDes8* aHdrBuff)
{
TInt r = KErrNone;
if(!aHdrBuff)
{
r = KErrArgument;
}
else
{
TConfigSpiV01 &header = (*(TConfigSpiBufV01*) (aHdrBuff))();
// check if word width and clock are supported
if(SpiWordWidth(header.iWordWidth) < KMinSpiWordWidth ||
SpiClkValue(header.iClkSpeedHz) < 0 || // == KErrNotSupported
header.iBitOrder == ELsbFirst || // this SPI only transmits MSB fist
(TUint)header.iTransactionWaitCycles > KMaxTransactionWaitTime) // max 3(+.5) cycles between words
{
#ifdef _DEBUG
if(header.iBitOrder == ELsbFirst)
DBG_ERR(Kern::Printf("iClkSpeedHz value (%d) is not supported", header.iClkSpeedHz));
if(SpiClkValue(header.iClkSpeedHz) < 0)
DBG_ERR(Kern::Printf("iClkSpeedHz: %d is not supported", header.iClkSpeedHz));
if((SpiWordWidth(header.iWordWidth)+ 1) >> MCSPI_CHxCONF_WL_OFFSET < KMinSpiWordWidth)
DBG_ERR(Kern::Printf("iWordWidth: %d is not supported, min value is: %d",
SpiWordWidth(header.iWordWidth), KMinSpiWordWidth));
if((TUint)header.iTransactionWaitCycles > 3)
DBG_ERR(Kern::Printf("iTransactionWaitCycles: %d is not supported, value should be from 0 to %d",
header.iTransactionWaitCycles, KMaxTransactionWaitTime));
DumpHeader(header);
#endif
r = KErrNotSupported;
DBG_ERR(Kern::Printf("DSpiMasterBeagle::CheckHdr()failed, r = %d", r));
}
}
return r;
}
// This method is called by the PIL in the case of expiry of a timer for a transaction.
// TODO: this name is confusing - it could be changed in the PIL to reflect it's real purpose(TBD)
// It has NOTHING to do with a Slave (i.e. slave might be completely silent for SPI-and master won't notice it!)
TInt DSpiMasterBeagle::HandleSlaveTimeout()
{
DBG_ERR(Kern::Printf("HandleSlaveTimeout"));
// Stop the PSL's operation, and inform the PIL of the timeout
ExitComplete(KErrTimedOut, EFalse);
return KErrTimedOut;
}