hostsupport/hostopenvg/src/src/riPath.cpp
branchbug235_bringup_0
changeset 54 067180f57b12
parent 53 c2ef9095503a
child 55 09263774e342
--- a/hostsupport/hostopenvg/src/src/riPath.cpp	Wed Oct 06 17:59:01 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2779 +0,0 @@
-/*------------------------------------------------------------------------
- *
- * OpenVG 1.1 Reference Implementation
- * -----------------------------------
- *
- * Copyright (c) 2007 The Khronos Group Inc.
- * Portions copyright (c) 2010 Nokia Corporation and/or its subsidiary(-ies).
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and /or associated documentation files
- * (the "Materials "), to deal in the Materials without restriction,
- * including without limitation the rights to use, copy, modify, merge,
- * publish, distribute, sublicense, and/or sell copies of the Materials,
- * and to permit persons to whom the Materials are furnished to do so,
- * subject to the following conditions: 
- *
- * The above copyright notice and this permission notice shall be included 
- * in all copies or substantial portions of the Materials. 
- *
- * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
- * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
- * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR
- * THE USE OR OTHER DEALINGS IN THE MATERIALS.
- *
- *//**
- * \file
- * \brief   Implementation of Path functions.
- * \note    
- *//*-------------------------------------------------------------------*/
-
-#include "riPath.h"
-
-//==============================================================================================
-
-
-//==============================================================================================
-
-namespace OpenVGRI
-{
-
-RIfloat inputFloat(VGfloat f);  //defined in riApi.cpp
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Form a reliable normalized average of the two unit input vectors.
-*           The average always lies to the given direction from the first
-*           vector.
-* \param    u0, u1 Unit input vectors.
-* \param    cw True if the average should be clockwise from u0, false if
-*              counterclockwise.
-* \return   Average of the two input vectors.
-* \note     
-*//*-------------------------------------------------------------------*/
-
-static const Vector2 unitAverage(const Vector2& u0, const Vector2& u1, bool cw)
-{
-    Vector2 u = 0.5f * (u0 + u1);
-    Vector2 n0 = perpendicularCCW(u0);
-
-    if( dot(u, u) > 0.25f )
-    {   //the average is long enough and thus reliable
-        if( dot(n0, u1) < 0.0f )
-            u = -u; //choose the larger angle
-    }
-    else
-    {   // the average is too short, use the average of the normals to the vectors instead
-        Vector2 n1 = perpendicularCW(u1);
-        u = 0.5f * (n0 + n1);
-    }
-    if( cw )
-        u = -u;
-
-    return normalize(u);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Form a reliable normalized average of the two unit input vectors.
-*           The average lies on the side where the angle between the input
-*           vectors is less than 180 degrees.
-* \param    u0, u1 Unit input vectors.
-* \return   Average of the two input vectors.
-* \note     
-*//*-------------------------------------------------------------------*/
-
-static const Vector2 unitAverage(const Vector2& u0, const Vector2& u1)
-{
-    Vector2 u = 0.5f * (u0 + u1);
-
-    if( dot(u, u) < 0.25f )
-    {   // the average is unreliable, use the average of the normals to the vectors instead
-        Vector2 n0 = perpendicularCCW(u0);
-        Vector2 n1 = perpendicularCW(u1);
-        u = 0.5f * (n0 + n1);
-        if( dot(n1, u0) < 0.0f )
-            u = -u;
-    }
-
-    return normalize(u);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Interpolate the given unit tangent vectors to the given
-*           direction on a unit circle.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-static const Vector2 circularLerp(const Vector2& t0, const Vector2& t1, RIfloat ratio, bool cw)
-{
-    Vector2 u0 = t0, u1 = t1;
-    RIfloat l0 = 0.0f, l1 = 1.0f;
-    for(int i=0;i<18;i++)
-    {
-        Vector2 n = unitAverage(u0, u1, cw);
-        RIfloat l = 0.5f * (l0 + l1);
-        if( ratio < l )
-        {
-            u1 = n;
-            l1 = l;
-        }
-        else
-        {
-            u0 = n;
-            l0 = l;
-        }
-    }
-    return u0;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Interpolate the given unit tangent vectors on a unit circle.
-*           Smaller angle between the vectors is used.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-static const Vector2 circularLerp(const Vector2& t0, const Vector2& t1, RIfloat ratio)
-{
-    Vector2 u0 = t0, u1 = t1;
-    RIfloat l0 = 0.0f, l1 = 1.0f;
-    for(int i=0;i<18;i++)
-    {
-        Vector2 n = unitAverage(u0, u1);
-        RIfloat l = 0.5f * (l0 + l1);
-        if( ratio < l )
-        {
-            u1 = n;
-            l1 = l;
-        }
-        else
-        {
-            u0 = n;
-            l0 = l;
-        }
-    }
-    return u0;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Path constructor.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-Path::Path(VGint format, VGPathDatatype datatype, RIfloat scale, RIfloat bias, int segmentCapacityHint, int coordCapacityHint, VGbitfield caps) :
-    m_format(format),
-    m_datatype(datatype),
-    m_scale(scale),
-    m_bias(bias),
-    m_capabilities(caps),
-    m_referenceCount(0),
-    m_segments(),
-    m_data(),
-    m_vertices(),
-    m_segmentToVertex(),
-    m_userMinx(0.0f),
-    m_userMiny(0.0f),
-    m_userMaxx(0.0f),
-    m_userMaxy(0.0f)
-{
-    RI_ASSERT(format == VG_PATH_FORMAT_STANDARD);
-    RI_ASSERT(datatype >= VG_PATH_DATATYPE_S_8 && datatype <= VG_PATH_DATATYPE_F);
-    if(segmentCapacityHint > 0)
-        m_segments.reserve(RI_INT_MIN(segmentCapacityHint, 65536));
-    if(coordCapacityHint > 0)
-        m_data.reserve(RI_INT_MIN(coordCapacityHint, 65536) * getBytesPerCoordinate(datatype));
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Path destructor.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-Path::~Path()
-{
-    RI_ASSERT(m_referenceCount == 0);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Reads a coordinate and applies scale and bias.
-* \param    
-* \return   
-*//*-------------------------------------------------------------------*/
-
-RIfloat Path::getCoordinate(int i) const
-{
-    RI_ASSERT(i >= 0 && i < m_data.size() / getBytesPerCoordinate(m_datatype));
-    RI_ASSERT(m_scale != 0.0f);
-
-    const RIuint8* ptr = &m_data[0];
-    switch(m_datatype)
-    {
-    case VG_PATH_DATATYPE_S_8:
-        return (RIfloat)(((const RIint8*)ptr)[i]) * m_scale + m_bias;
-
-    case VG_PATH_DATATYPE_S_16:
-        return (RIfloat)(((const RIint16*)ptr)[i]) * m_scale + m_bias;
-
-    case VG_PATH_DATATYPE_S_32:
-        return (RIfloat)(((const RIint32*)ptr)[i]) * m_scale + m_bias;
-
-    default:
-        RI_ASSERT(m_datatype == VG_PATH_DATATYPE_F);
-        return (RIfloat)(((const RIfloat32*)ptr)[i]) * m_scale + m_bias;
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Writes a coordinate, subtracting bias and dividing out scale.
-* \param    
-* \return   
-* \note     If the coordinates do not fit into path datatype range, they
-*           will overflow silently.
-*//*-------------------------------------------------------------------*/
-
-void Path::setCoordinate(Array<RIuint8>& data, VGPathDatatype datatype, RIfloat scale, RIfloat bias, int i, RIfloat c)
-{
-    RI_ASSERT(i >= 0 && i < data.size()/getBytesPerCoordinate(datatype));
-    RI_ASSERT(!RI_ISNAN(scale));    
-    RI_ASSERT(!RI_ISNAN(bias));
-    RI_ASSERT(scale != 0.0f);
-
-    c = inputFloat(c); // Revalidate: Can happen when a coordinate has been transformed.
-    c -= bias;
-    c /= scale;
-
-    RI_ASSERT(!RI_ISNAN(c));
-
-    RIuint8* ptr = &data[0];
-    switch(datatype)
-    {
-    case VG_PATH_DATATYPE_S_8:
-        ((RIint8*)ptr)[i] = (RIint8)floor(c + 0.5f);    //add 0.5 for correct rounding
-        break;
-
-    case VG_PATH_DATATYPE_S_16:
-        ((RIint16*)ptr)[i] = (RIint16)floor(c + 0.5f);  //add 0.5 for correct rounding
-        break;
-
-    case VG_PATH_DATATYPE_S_32:
-        ((RIint32*)ptr)[i] = (RIint32)floor(c + 0.5f);  //add 0.5 for correct rounding
-        break;
-
-    default:
-        RI_ASSERT(datatype == VG_PATH_DATATYPE_F);
-        ((RIfloat32*)ptr)[i] = (RIfloat32)c;
-        break;
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Given a datatype, returns the number of bytes per coordinate.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-int Path::getBytesPerCoordinate(VGPathDatatype datatype)
-{
-    if(datatype == VG_PATH_DATATYPE_S_8)
-        return 1;
-    if(datatype == VG_PATH_DATATYPE_S_16)
-        return 2;
-    RI_ASSERT(datatype == VG_PATH_DATATYPE_S_32 || datatype == VG_PATH_DATATYPE_F);
-    return 4;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Given a path segment type, returns the number of coordinates
-*           it uses.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-int Path::segmentToNumCoordinates(VGPathSegment segment)
-{
-    RI_ASSERT(((int)segment >> 1) >= 0 && ((int)segment >> 1) <= 12);
-    static const int coords[13] = {0,2,2,1,1,4,6,2,4,5,5,5,5};
-    return coords[(int)segment >> 1];
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Computes the number of coordinates a segment sequence uses.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-int Path::countNumCoordinates(const RIuint8* segments, int numSegments)
-{
-    RI_ASSERT(segments);
-    RI_ASSERT(numSegments >= 0);
-
-    int coordinates = 0;
-    for(int i=0;i<numSegments;i++)
-        coordinates += segmentToNumCoordinates(getPathSegment(segments[i]));
-    return coordinates;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Clears path segments and data, and resets capabilities.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-void Path::clear(VGbitfield capabilities)
-{
-    m_segments.clear();
-    m_data.clear();
-    m_capabilities = capabilities;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Appends user segments and data.
-* \param    
-* \return   
-* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::appendData(const RIuint8* segments, int numSegments, const RIuint8* data)
-{
-    RI_ASSERT(numSegments > 0);
-    RI_ASSERT(segments && data);
-    RI_ASSERT(m_referenceCount > 0);
-
-    //allocate new arrays
-    int oldSegmentsSize = m_segments.size();
-    int newSegmentsSize = oldSegmentsSize + numSegments;
-    Array<RIuint8> newSegments;
-    newSegments.resize(newSegmentsSize);    //throws bad_alloc
-
-    int newCoords = countNumCoordinates(segments, numSegments);
-    int bytesPerCoordinate = getBytesPerCoordinate(m_datatype);
-    int newDataSize = m_data.size() + newCoords * bytesPerCoordinate;
-    Array<RIuint8> newData;
-    newData.resize(newDataSize);    //throws bad_alloc
-    //if we get here, the memory allocations have succeeded
-
-    //copy old segments and append new ones
-    if(m_segments.size())
-        ri_memcpy(&newSegments[0], &m_segments[0], m_segments.size());
-    ri_memcpy(&newSegments[0] + m_segments.size(), segments, numSegments);
-
-    //copy old data and append new ones
-    if(newData.size())
-    {
-        if(m_data.size())
-            ri_memcpy(&newData[0], &m_data[0], m_data.size());
-        if(m_datatype == VG_PATH_DATATYPE_F)
-        {
-            RIfloat32* d = (RIfloat32*)(&newData[0] + m_data.size());
-            const RIfloat32* s = (const RIfloat32*)data;
-            for(int i=0;i<newCoords;i++)
-                *d++ = (RIfloat32)inputFloat(*s++);
-        }
-        else
-        {
-            ri_memcpy(&newData[0] + m_data.size(), data, newCoords * bytesPerCoordinate);
-        }
-    }
-
-    RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
-
-    //replace old arrays
-    m_segments.swap(newSegments);
-    m_data.swap(newData);
-
-    int c = 0;
-    for(int i=0;i<m_segments.size();i++)
-    {
-        VGPathSegment segment = getPathSegment(m_segments[i]);
-        int coords = segmentToNumCoordinates(segment);
-        c += coords;
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Appends a path.
-* \param    
-* \return   
-* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::append(const Path* srcPath)
-{
-    RI_ASSERT(srcPath);
-    RI_ASSERT(m_referenceCount > 0 && srcPath->m_referenceCount > 0);
-
-    if(srcPath->m_segments.size())
-    {
-        //allocate new arrays
-        int newSegmentsSize = m_segments.size() + srcPath->m_segments.size();
-        Array<RIuint8> newSegments;
-        newSegments.resize(newSegmentsSize);    //throws bad_alloc
-
-        int newDataSize = m_data.size() + srcPath->getNumCoordinates() * getBytesPerCoordinate(m_datatype);
-        Array<RIuint8> newData;
-        newData.resize(newDataSize);    //throws bad_alloc
-        //if we get here, the memory allocations have succeeded
-
-        //copy old segments and append new ones
-        if(m_segments.size())
-            ri_memcpy(&newSegments[0], &m_segments[0], m_segments.size());
-        if(srcPath->m_segments.size())
-            ri_memcpy(&newSegments[0] + m_segments.size(), &srcPath->m_segments[0], srcPath->m_segments.size());
-
-        //copy old data and append new ones
-        if(m_data.size())
-            ri_memcpy(&newData[0], &m_data[0], m_data.size());
-        for(int i=0;i<srcPath->getNumCoordinates();i++)
-            setCoordinate(newData, m_datatype, m_scale, m_bias, i + getNumCoordinates(), srcPath->getCoordinate(i));
-
-        RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
-
-        //replace old arrays
-        m_segments.swap(newSegments);
-        m_data.swap(newData);
-    }
-}
-
-int Path::coordsSizeInBytes( int startIndex, int numSegments )
-    {
-    RI_ASSERT(numSegments > 0);
-    RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size());
-    RI_ASSERT(m_referenceCount > 0);
-
-    int numCoords = countNumCoordinates(&m_segments[startIndex], numSegments);
-    if(!numCoords)
-        return 0;
-    int bytesPerCoordinate = getBytesPerCoordinate(m_datatype);
-    return (numCoords * bytesPerCoordinate);
-    }
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Modifies existing coordinate data.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-void Path::modifyCoords(int startIndex, int numSegments, const RIuint8* data)
-{
-    RI_ASSERT(numSegments > 0);
-    RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size());
-    RI_ASSERT(data);
-    RI_ASSERT(m_referenceCount > 0);
-
-    int startCoord = countNumCoordinates(&m_segments[0], startIndex);
-    int numCoords = countNumCoordinates(&m_segments[startIndex], numSegments);
-    if(!numCoords)
-        return;
-    int bytesPerCoordinate = getBytesPerCoordinate(m_datatype);
-    RIuint8* dst = &m_data[startCoord * bytesPerCoordinate];
-    if(m_datatype == VG_PATH_DATATYPE_F)
-    {
-        RIfloat32* d = (RIfloat32*)dst;
-        const RIfloat32* s = (const RIfloat32*)data;
-        for(int i=0;i<numCoords;i++)
-            *d++ = (RIfloat32)inputFloat(*s++);
-    }
-    else
-    {
-        ri_memcpy(dst, data, numCoords*bytesPerCoordinate);
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Appends a transformed copy of the source path.
-* \param    
-* \return   
-* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::transform(const Path* srcPath, const Matrix3x3& matrix)
-{
-    RI_ASSERT(srcPath);
-    RI_ASSERT(m_referenceCount > 0 && srcPath->m_referenceCount > 0);
-    RI_ASSERT(matrix.isAffine());
-
-    if(!srcPath->m_segments.size())
-        return;
-
-    //count the number of resulting coordinates
-    int numSrcCoords = 0;
-    int numDstCoords = 0;
-    for(int i=0;i<srcPath->m_segments.size();i++)
-    {
-        VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
-        int coords = segmentToNumCoordinates(segment);
-        numSrcCoords += coords;
-        if(segment == VG_HLINE_TO || segment == VG_VLINE_TO)
-            coords = 2; //convert hline and vline to lines
-        numDstCoords += coords;
-    }
-
-    //allocate new arrays
-    Array<RIuint8> newSegments;
-    newSegments.resize(m_segments.size() + srcPath->m_segments.size()); //throws bad_alloc
-    Array<RIuint8> newData;
-    newData.resize(m_data.size() + numDstCoords * getBytesPerCoordinate(m_datatype));   //throws bad_alloc
-    //if we get here, the memory allocations have succeeded
-
-    //copy old segments
-    if(m_segments.size())
-        ri_memcpy(&newSegments[0], &m_segments[0], m_segments.size());
-
-    //copy old data
-    if(m_data.size())
-        ri_memcpy(&newData[0], &m_data[0], m_data.size());
-
-    int srcCoord = 0;
-    int dstCoord = getNumCoordinates();
-    Vector2 s(0,0);     //the beginning of the current subpath
-    Vector2 o(0,0);     //the last point of the previous segment
-    for(int i=0;i<srcPath->m_segments.size();i++)
-    {
-        VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
-        VGPathAbsRel absRel = getPathAbsRel(srcPath->m_segments[i]);
-        int coords = segmentToNumCoordinates(segment);
-
-        switch(segment)
-        {
-        case VG_CLOSE_PATH:
-        {
-            RI_ASSERT(coords == 0);
-            o = s;
-            break;
-        }
-
-        case VG_MOVE_TO:
-        {
-            RI_ASSERT(coords == 2);
-            Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            Vector2 tc;
-
-            if (absRel == VG_ABSOLUTE)
-                tc = affineTransform(matrix, c);
-            else
-            {
-                tc = affineTangentTransform(matrix, c);
-                c += o;
-            }
-            
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
-            s = c;
-            o = c;
-            break;
-        }
-
-        case VG_LINE_TO:
-        {
-            RI_ASSERT(coords == 2);
-            Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            Vector2 tc;
-
-            if (absRel == VG_ABSOLUTE)
-                tc = affineTransform(matrix, c);
-            else
-            {
-                tc = affineTangentTransform(matrix, c);
-                c += o;
-            }
-
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
-            o = c;
-            break;
-        }
-
-        case VG_HLINE_TO:
-        {
-            RI_ASSERT(coords == 1);
-            Vector2 c(srcPath->getCoordinate(srcCoord+0), 0);
-            Vector2 tc;
-
-            if (absRel == VG_ABSOLUTE)
-            {
-                c.y = o.y;
-                tc = affineTransform(matrix, c);
-            }
-            else
-            {
-                tc = affineTangentTransform(matrix, c);
-                c += o;
-            }
-
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
-            o = c;
-            segment = VG_LINE_TO;
-            break;
-        }
-
-        case VG_VLINE_TO:
-        {
-            RI_ASSERT(coords == 1);
-            Vector2 c(0, srcPath->getCoordinate(srcCoord+0));
-            Vector2 tc;
-
-            if (absRel == VG_ABSOLUTE)
-            {
-                c.x = o.x;
-                tc = affineTransform(matrix, c);
-            }
-            else
-            {
-                tc = affineTangentTransform(matrix, c);
-                c += o;
-            }
-
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
-            o = c;
-            segment = VG_LINE_TO;
-            break;
-        }
-
-        case VG_QUAD_TO:
-        {
-            RI_ASSERT(coords == 4);
-            Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
-            Vector2 tc0, tc1;
-
-            if (absRel == VG_ABSOLUTE)
-            {
-                tc0 = affineTransform(matrix, c0);
-                tc1 = affineTransform(matrix, c1);
-            }
-            else
-            {
-                tc0 = affineTangentTransform(matrix, c0);
-                tc1 = affineTangentTransform(matrix, c1);
-                c1 += o;
-            }
-
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.y);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
-            o = c1;
-            break;
-        }
-
-        case VG_CUBIC_TO:
-        {
-            RI_ASSERT(coords == 6);
-            Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
-            Vector2 c2(srcPath->getCoordinate(srcCoord+4), srcPath->getCoordinate(srcCoord+5));
-            Vector2 tc0, tc1, tc2;
-
-            if (absRel == VG_ABSOLUTE)
-            {
-                tc0 = affineTransform(matrix, c0);
-                tc1 = affineTransform(matrix, c1);
-                tc2 = affineTransform(matrix, c2);
-            }
-            else
-            {
-                tc0 = affineTangentTransform(matrix, c0);
-                tc1 = affineTangentTransform(matrix, c1);
-                tc2 = affineTangentTransform(matrix, c2);
-                c2 += o;
-            }
-
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc0.y);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.y);
-            o = c2;
-            break;
-        }
-
-        case VG_SQUAD_TO:
-        {
-            RI_ASSERT(coords == 2);
-            Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            Vector2 tc1;
-
-            if (absRel == VG_ABSOLUTE)
-                tc1 = affineTransform(matrix, c1);
-            else
-            {
-                tc1 = affineTangentTransform(matrix, c1);
-                c1 += o;
-            }
-
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
-            o = c1;
-            break;
-        }
-
-        case VG_SCUBIC_TO:
-        {
-            RI_ASSERT(coords == 4);
-            Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            Vector2 c2(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
-            Vector2 tc1, tc2;
-
-            if (absRel == VG_ABSOLUTE)
-            {
-                tc1 = affineTransform(matrix, c1);
-                tc2 = affineTransform(matrix, c2);
-            }
-            else
-            {
-                tc1 = affineTangentTransform(matrix, c1);
-                tc2 = affineTangentTransform(matrix, c2);
-                c2 += o;
-            }
-
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc1.y);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc2.y);
-            o = c2;
-            break;
-        }
-
-        default:
-        {
-            RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
-                      segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
-            RI_ASSERT(coords == 5);
-            RIfloat rh = srcPath->getCoordinate(srcCoord+0);
-            RIfloat rv = srcPath->getCoordinate(srcCoord+1);
-            RIfloat rot = srcPath->getCoordinate(srcCoord+2);
-            Vector2 c(srcPath->getCoordinate(srcCoord+3), srcPath->getCoordinate(srcCoord+4));
-
-            rot = RI_DEG_TO_RAD(rot);
-            Matrix3x3 u((RIfloat)cos(rot)*rh, -(RIfloat)sin(rot)*rv,  0,
-                        (RIfloat)sin(rot)*rh,  (RIfloat)cos(rot)*rv,  0,
-                        0,                   0,                   1);
-            u = matrix * u;
-            u[2].set(0,0,1);        //force affinity
-            //u maps from the unit circle to transformed ellipse
-
-            //compute new rh, rv and rot
-            Vector2 p(u[0][0], u[1][0]);
-            Vector2 q(u[1][1], -u[0][1]);
-            bool swapped = false;
-            if(dot(p,p) < dot(q,q))
-            {
-                RI_SWAP(p.x,q.x);
-                RI_SWAP(p.y,q.y);
-                swapped = true;
-            }
-            Vector2 h = (p+q) * 0.5f;
-            Vector2 hp = (p-q) * 0.5f;
-            RIfloat hlen = h.length();
-            RIfloat hplen = hp.length();
-            rh = hlen + hplen;
-            rv = hlen - hplen;
-
-            if (RI_ISNAN(rh)) rh = 0.0f;
-            if (RI_ISNAN(rv)) rv = 0.0f;
-
-            h = hplen * h + hlen * hp;
-            hlen = dot(h,h);
-            if(hlen == 0.0f)
-                rot = 0.0f;
-            else
-            {
-                h.normalize();
-                rot = (RIfloat)acos(h.x);
-                if(h.y < 0.0f)
-                    rot = 2.0f*RI_PI - rot;
-                if (RI_ISNAN(rot))
-                    rot = 0.0f;
-            }
-            if(swapped)
-                rot += RI_PI*0.5f;
-
-            Vector2 tc;
-            if (absRel == VG_ABSOLUTE)
-                tc = affineTransform(matrix, c);
-            else
-            {
-                tc = affineTangentTransform(matrix, c);
-                c += o;
-            }
-
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, rh);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, rv);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, RI_RAD_TO_DEG(rot));
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.x);
-            setCoordinate(newData, m_datatype, m_scale, m_bias, dstCoord++, tc.y);
-            o = c;
-
-            //flip winding if the determinant is negative
-            if (matrix.det() < 0)
-            {
-                switch (segment)
-                {
-                case VG_SCCWARC_TO: segment = VG_SCWARC_TO;     break;
-                case VG_SCWARC_TO:  segment = VG_SCCWARC_TO;    break;
-                case VG_LCCWARC_TO: segment = VG_LCWARC_TO;     break;
-                case VG_LCWARC_TO:  segment = VG_LCCWARC_TO;    break;
-                default:                                        break;
-                }
-            }
-            break;
-        }
-        }
-
-        newSegments[m_segments.size() + i] = (RIuint8)(segment | absRel);
-        srcCoord += coords;
-    }
-    RI_ASSERT(srcCoord == numSrcCoords);
-    RI_ASSERT(dstCoord == getNumCoordinates() + numDstCoords);
-
-    RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
-
-    //replace old arrays
-    m_segments.swap(newSegments);
-    m_data.swap(newData);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Normalizes a path for interpolation.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-void Path::normalizeForInterpolation(const Path* srcPath)
-{
-    RI_ASSERT(srcPath);
-    RI_ASSERT(srcPath != this);
-    RI_ASSERT(srcPath->m_referenceCount > 0);
-
-    //count the number of resulting coordinates
-    int numSrcCoords = 0;
-    int numDstCoords = 0;
-    for(int i=0;i<srcPath->m_segments.size();i++)
-    {
-        VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
-        int coords = segmentToNumCoordinates(segment);
-        numSrcCoords += coords;
-        switch(segment)
-        {
-        case VG_CLOSE_PATH:
-        case VG_MOVE_TO:
-        case VG_LINE_TO:
-            break;
-
-        case VG_HLINE_TO:
-        case VG_VLINE_TO:
-            coords = 2;
-            break;
-
-        case VG_QUAD_TO:
-        case VG_CUBIC_TO:
-        case VG_SQUAD_TO:
-        case VG_SCUBIC_TO:
-            coords = 6;
-            break;
-
-        default:
-            RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
-                      segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
-            break;
-        }
-        numDstCoords += coords;
-    }
-
-    m_segments.resize(srcPath->m_segments.size());  //throws bad_alloc
-    m_data.resize(numDstCoords * getBytesPerCoordinate(VG_PATH_DATATYPE_F));    //throws bad_alloc
-
-    int srcCoord = 0;
-    int dstCoord = 0;
-    Vector2 s(0,0);     //the beginning of the current subpath
-    Vector2 o(0,0);     //the last point of the previous segment
-
-    // the last internal control point of the previous segment, if the
-    //segment was a (regular or smooth) quadratic or cubic
-    //Bezier, or else the last point of the previous segment
-    Vector2 p(0,0);     
-    for(int i=0;i<srcPath->m_segments.size();i++)
-    {
-        VGPathSegment segment = getPathSegment(srcPath->m_segments[i]);
-        VGPathAbsRel absRel = getPathAbsRel(srcPath->m_segments[i]);
-        int coords = segmentToNumCoordinates(segment);
-
-        switch(segment)
-        {
-        case VG_CLOSE_PATH:
-        {
-            RI_ASSERT(coords == 0);
-            p = s;
-            o = s;
-            break;
-        }
-
-        case VG_MOVE_TO:
-        {
-            RI_ASSERT(coords == 2);
-            Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            if(absRel == VG_RELATIVE)
-                c += o;
-            setCoordinate(dstCoord++, c.x);
-            setCoordinate(dstCoord++, c.y);
-            s = c;
-            p = c;
-            o = c;
-            break;
-        }
-
-        case VG_LINE_TO:
-        {
-            RI_ASSERT(coords == 2);
-            Vector2 c(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            if(absRel == VG_RELATIVE)
-                c += o;
-            setCoordinate(dstCoord++, c.x);
-            setCoordinate(dstCoord++, c.y);
-            p = c;
-            o = c;
-            break;
-        }
-
-        case VG_HLINE_TO:
-        {
-            RI_ASSERT(coords == 1);
-            Vector2 c(srcPath->getCoordinate(srcCoord+0), o.y);
-            if(absRel == VG_RELATIVE)
-                c.x += o.x;
-            setCoordinate(dstCoord++, c.x);
-            setCoordinate(dstCoord++, c.y);
-            p = c;
-            o = c;
-            segment = VG_LINE_TO;
-            break;
-        }
-
-        case VG_VLINE_TO:
-        {
-            RI_ASSERT(coords == 1);
-            Vector2 c(o.x, srcPath->getCoordinate(srcCoord+0));
-            if(absRel == VG_RELATIVE)
-                c.y += o.y;
-            setCoordinate(dstCoord++, c.x);
-            setCoordinate(dstCoord++, c.y);
-            p = c;
-            o = c;
-            segment = VG_LINE_TO;
-            break;
-        }
-
-        case VG_QUAD_TO:
-        {
-            RI_ASSERT(coords == 4);
-            Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
-            if(absRel == VG_RELATIVE)
-            {
-                c0 += o;
-                c1 += o;
-            }
-            Vector2 d0 = (1.0f/3.0f) * (o + 2.0f * c0);
-            Vector2 d1 = (1.0f/3.0f) * (c1 + 2.0f * c0);
-            setCoordinate(dstCoord++, d0.x);
-            setCoordinate(dstCoord++, d0.y);
-            setCoordinate(dstCoord++, d1.x);
-            setCoordinate(dstCoord++, d1.y);
-            setCoordinate(dstCoord++, c1.x);
-            setCoordinate(dstCoord++, c1.y);
-            p = c0;
-            o = c1;
-            segment = VG_CUBIC_TO;
-            break;
-        }
-
-        case VG_CUBIC_TO:
-        {
-            RI_ASSERT(coords == 6);
-            Vector2 c0(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            Vector2 c1(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
-            Vector2 c2(srcPath->getCoordinate(srcCoord+4), srcPath->getCoordinate(srcCoord+5));
-            if(absRel == VG_RELATIVE)
-            {
-                c0 += o;
-                c1 += o;
-                c2 += o;
-            }
-            setCoordinate(dstCoord++, c0.x);
-            setCoordinate(dstCoord++, c0.y);
-            setCoordinate(dstCoord++, c1.x);
-            setCoordinate(dstCoord++, c1.y);
-            setCoordinate(dstCoord++, c2.x);
-            setCoordinate(dstCoord++, c2.y);
-            p = c1;
-            o = c2;
-            break;
-        }
-
-        case VG_SQUAD_TO:
-        {
-            RI_ASSERT(coords == 2);
-            Vector2 c0 = 2.0f * o - p;
-            Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            if(absRel == VG_RELATIVE)
-                c1 += o;
-            Vector2 d0 = (1.0f/3.0f) * (o + 2.0f * c0);
-            Vector2 d1 = (1.0f/3.0f) * (c1 + 2.0f * c0);
-            setCoordinate(dstCoord++, d0.x);
-            setCoordinate(dstCoord++, d0.y);
-            setCoordinate(dstCoord++, d1.x);
-            setCoordinate(dstCoord++, d1.y);
-            setCoordinate(dstCoord++, c1.x);
-            setCoordinate(dstCoord++, c1.y);
-            p = c0;
-            o = c1;
-            segment = VG_CUBIC_TO;
-            break;
-        }
-
-        case VG_SCUBIC_TO:
-        {
-            RI_ASSERT(coords == 4);
-            Vector2 c0 = 2.0f * o - p;
-            Vector2 c1(srcPath->getCoordinate(srcCoord+0), srcPath->getCoordinate(srcCoord+1));
-            Vector2 c2(srcPath->getCoordinate(srcCoord+2), srcPath->getCoordinate(srcCoord+3));
-            if(absRel == VG_RELATIVE)
-            {
-                c1 += o;
-                c2 += o;
-            }
-            setCoordinate(dstCoord++, c0.x);
-            setCoordinate(dstCoord++, c0.y);
-            setCoordinate(dstCoord++, c1.x);
-            setCoordinate(dstCoord++, c1.y);
-            setCoordinate(dstCoord++, c2.x);
-            setCoordinate(dstCoord++, c2.y);
-            p = c1;
-            o = c2;
-            segment = VG_CUBIC_TO;
-            break;
-        }
-
-        default:
-        {
-            RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
-                      segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
-            RI_ASSERT(coords == 5);
-            RIfloat rh = srcPath->getCoordinate(srcCoord+0);
-            RIfloat rv = srcPath->getCoordinate(srcCoord+1);
-            RIfloat rot = srcPath->getCoordinate(srcCoord+2);
-            Vector2 c(srcPath->getCoordinate(srcCoord+3), srcPath->getCoordinate(srcCoord+4));
-            if(absRel == VG_RELATIVE)
-                c += o;
-            setCoordinate(dstCoord++, rh);
-            setCoordinate(dstCoord++, rv);
-            setCoordinate(dstCoord++, rot);
-            setCoordinate(dstCoord++, c.x);
-            setCoordinate(dstCoord++, c.y);
-            p = c;
-            o = c;
-            break;
-        }
-        }
-
-        m_segments[i] = (RIuint8)(segment | VG_ABSOLUTE);
-        srcCoord += coords;
-    }
-    RI_ASSERT(srcCoord == numSrcCoords);
-    RI_ASSERT(dstCoord == numDstCoords);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Appends a linearly interpolated copy of the two source paths.
-* \param    
-* \return   
-* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-bool Path::interpolate(const Path* startPath, const Path* endPath, RIfloat amount)
-{
-    RI_ASSERT(startPath && endPath);
-    RI_ASSERT(m_referenceCount > 0 && startPath->m_referenceCount > 0 && endPath->m_referenceCount > 0);
-
-    if(!startPath->m_segments.size() || startPath->m_segments.size() != endPath->m_segments.size())
-        return false;   //start and end paths are incompatible or zero length
-
-    Path start(VG_PATH_FORMAT_STANDARD, VG_PATH_DATATYPE_F, 1.0f, 0.0f, 0, 0, 0);
-    start.normalizeForInterpolation(startPath); //throws bad_alloc
-
-    Path end(VG_PATH_FORMAT_STANDARD, VG_PATH_DATATYPE_F, 1.0f, 0.0f, 0, 0, 0);
-    end.normalizeForInterpolation(endPath); //throws bad_alloc
-
-    //check that start and end paths are compatible
-    if(start.m_data.size() != end.m_data.size() || start.m_segments.size() != end.m_segments.size())
-        return false;   //start and end paths are incompatible
-
-    //allocate new arrays
-    Array<RIuint8> newSegments;
-    newSegments.resize(m_segments.size() + start.m_segments.size());    //throws bad_alloc
-    Array<RIuint8> newData;
-    newData.resize(m_data.size() + start.m_data.size() * getBytesPerCoordinate(m_datatype) / getBytesPerCoordinate(start.m_datatype));  //throws bad_alloc
-    //if we get here, the memory allocations have succeeded
-
-    //copy old segments
-    if(m_segments.size())
-        ri_memcpy(&newSegments[0], &m_segments[0], m_segments.size());
-
-    //copy old data
-    if(m_data.size())
-        ri_memcpy(&newData[0], &m_data[0], m_data.size());
-
-    //copy segments
-    for(int i=0;i<start.m_segments.size();i++)
-    {
-        VGPathSegment s = getPathSegment(start.m_segments[i]);
-        VGPathSegment e = getPathSegment(end.m_segments[i]);
-
-        if(s == VG_SCCWARC_TO || s == VG_SCWARC_TO || s == VG_LCCWARC_TO || s == VG_LCWARC_TO)
-        {
-            if(e != VG_SCCWARC_TO && e != VG_SCWARC_TO && e != VG_LCCWARC_TO && e != VG_LCWARC_TO)
-                return false;   //start and end paths are incompatible
-            if(amount < 0.5f)
-                newSegments[m_segments.size() + i] = start.m_segments[i];
-            else
-                newSegments[m_segments.size() + i] = end.m_segments[i];
-        }
-        else
-        {
-            if(s != e)
-                return false;   //start and end paths are incompatible
-            newSegments[m_segments.size() + i] = start.m_segments[i];
-        }
-    }
-
-    //interpolate data
-    int oldNumCoords = getNumCoordinates();
-    for(int i=0;i<start.getNumCoordinates();i++)
-        setCoordinate(newData, m_datatype, m_scale, m_bias, oldNumCoords + i, start.getCoordinate(i) * (1.0f - amount) + end.getCoordinate(i) * amount);
-
-    RI_ASSERT(newData.size() == countNumCoordinates(&newSegments[0],newSegments.size()) * getBytesPerCoordinate(m_datatype));
-
-    //replace old arrays
-    m_segments.swap(newSegments);
-    m_data.swap(newData);
-
-    return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Tessellates a path for filling and appends resulting edges
-*           to a rasterizer.
-* \param    
-* \return   
-* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::fill(const Matrix3x3& pathToSurface, Rasterizer& rasterizer)
-{
-    RI_ASSERT(m_referenceCount > 0);
-    RI_ASSERT(pathToSurface.isAffine());
-
-    tessellate(pathToSurface, 0.0f);    //throws bad_alloc
-
-    try
-    {
-        Vector2 p0(0,0), p1(0,0);
-        for(int i=0;i<m_vertices.size();i++)
-        {
-            p1 = affineTransform(pathToSurface, m_vertices[i].userPosition);
-
-            if(!(m_vertices[i].flags & START_SEGMENT))
-            {   //in the middle of a segment
-                rasterizer.addEdge(p0, p1); //throws bad_alloc
-            }
-
-            p0 = p1;
-        }
-    }
-    catch(std::bad_alloc)
-    {
-        rasterizer.clear(); //remove the unfinished path
-        throw;
-    }
-}
-
-/**
- *  \brief  Intersection between lines (p0->p1) and (p2->p3)
- *  \todo   This must be done in the rasterizer to get correct results.
- */
-static void intersectLines(const Vector2& p0, const Vector2& p1, const Vector2& p2, const Vector2& p3, Vector2& pt)
-{
-    RIfloat n = (p1.x-p0.x)*(p0.y-p2.y)-(p1.y-p0.y)*(p0.x-p2.x);
-    RIfloat d = (p3.y-p2.y)*(p1.x-p0.x)-(p3.x-p2.x)*(p1.y-p0.y);
-    if (d == 0) 
-    {
-        pt = p0;
-        return;
-    }
-    RIfloat t = n/d;
-    Vector2 dir = p1-p0;
-
-    pt = p0+t*dir;
-}
-
-static bool isCCW(const Vector2& a, const Vector2& b)
-{
-    RIfloat c = a.x*b.y - a.y*b.x;
-    return c >= 0;
-}
-
-/**
- * \brief   Add a CCW stitch-triangle so that accw -> acw is the base of the triangle.
- * \param   accw    Counter-clockwise stroke end (for example).
- * \param   acw     Clockwise stroke end.
- * \param   p       Tip of the triangle to form.
- */
-static void addStitchTriangle(Rasterizer& rasterizer, const Vector2& accw, const Vector2& acw, const Vector2& p)
-{
-    if (isCCW(p - accw, acw - accw))
-    {
-        // p "below"
-        rasterizer.addEdge(accw, p);
-        rasterizer.addEdge(p, acw);
-        rasterizer.addEdge(acw, accw);
-    }
-    else
-    {
-        rasterizer.addEdge(accw, acw);
-        rasterizer.addEdge(acw, p);
-        rasterizer.addEdge(p, accw);
-    }
-}
-
-/**
- * \brief   Add a (ccw-closed) segment to path. See the naming of parameters for input order:
- *          pp = previous, nn = next
- */
-static void addStrokeSegment(Rasterizer& rasterizer, const Vector2& ppccw, const Vector2& ppcw, const Vector2& nnccw, const Vector2& nncw)
-{
-    RIfloat d = dot(nnccw-ppccw, nncw-ppcw);
-    if(d < 0)
-    {
-        Vector2 ip;
-        intersectLines(ppccw, ppcw, nnccw, nncw, ip);
-
-        // Create two triangles from the self-intersecting part
-        if (isCCW(ppccw - nnccw, ip - nnccw))
-        {
-            rasterizer.addEdge(nnccw, ppccw);
-            rasterizer.addEdge(ppccw, ip);
-            rasterizer.addEdge(ip, nnccw);
-
-            rasterizer.addEdge(nncw, ppcw);
-            rasterizer.addEdge(ppcw, ip);
-            rasterizer.addEdge(ip, nncw);
-        }
-        else
-        {
-            rasterizer.addEdge(nnccw, ip);
-            rasterizer.addEdge(ip, ppccw);
-            rasterizer.addEdge(ppccw, nnccw);
-
-            rasterizer.addEdge(nncw, ip);
-            rasterizer.addEdge(ip, ppcw);
-            rasterizer.addEdge(ppcw, nncw);
-        }
-        // Final stitch (not necessary if done in the rasterizer)
-        addStitchTriangle(rasterizer, ppccw, ppcw, ip);
-        addStitchTriangle(rasterizer, nnccw, nncw, ip);
-    }
-    else
-    {
-        rasterizer.addEdge(ppccw, ppcw);	//throws bad_alloc
-        rasterizer.addEdge(ppcw, nncw);	//throws bad_alloc
-        rasterizer.addEdge(nncw, nnccw);		//throws bad_alloc
-        rasterizer.addEdge(nnccw, ppccw);	//throws bad_alloc
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Smoothly interpolates between two StrokeVertices. Positions
-*           are interpolated linearly, while tangents are interpolated
-*           on a unit circle. Stroking is implemented so that overlapping
-*           geometry doesnt cancel itself when filled with nonzero rule.
-*           The resulting polygons are closed.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-void Path::interpolateStroke(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const StrokeVertex& v0, const StrokeVertex& v1, RIfloat strokeWidth) const
-{
-    Vector2 ppccw, endccw;
-    Vector2 ppcw, endcw;
-    
-    if (m_mirror)
-    {
-        ppccw = affineTransform(pathToSurface, v0.cw);
-        ppcw = affineTransform(pathToSurface, v0.ccw);
-        endccw = affineTransform(pathToSurface, v1.cw);
-        endcw = affineTransform(pathToSurface, v1.ccw);
-    }
-    else
-    {
-        ppccw = affineTransform(pathToSurface, v0.ccw);
-        ppcw = affineTransform(pathToSurface, v0.cw);
-        endccw = affineTransform(pathToSurface, v1.ccw);
-        endcw = affineTransform(pathToSurface, v1.cw);
-    }
-
-	const RIfloat tessellationAngle = 5.0f;
-
-	RIfloat angle = RI_RAD_TO_DEG((RIfloat)acos(RI_CLAMP(dot(v0.t, v1.t), -1.0f, 1.0f))) / tessellationAngle;
-	int samples = RI_INT_MAX((int)ceil(angle), 1);
-	Vector2 prev = v0.p;
-	Vector2 prevt = v0.t;
-	Vector2 position = v0.p;
-	for(int j=0;j<samples-1;j++)
-	{
-		RIfloat t = (RIfloat)(j+1) / (RIfloat)samples;
-		position = v0.p * (1.0f - t) + v1.p * t;
-		Vector2 tangent = circularLerp(v0.t, v1.t, t);
-		Vector2 n = normalize(perpendicularCCW(tangent)) * strokeWidth * 0.5f;
-
-		Vector2 nnccw = affineTransform(pathToSurface, position + n);
-		Vector2 nncw = affineTransform(pathToSurface, position - n);
-
-        addStrokeSegment(rasterizer, ppccw, ppcw, nnccw, nncw);
-
-		ppccw = nnccw;
-		ppcw = nncw;
-		prev = position;
-		prevt = tangent;
-	}
-
-	//connect the last segment to the end coordinates
-	//Vector2 n = affineTangentTransform(pathToSurface, perpendicularCCW(v1.t));
-    Vector2 nncw = endcw;
-    Vector2 nnccw = endccw;
-
-    addStrokeSegment(rasterizer, ppccw, ppcw, nnccw, nncw);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Generate edges for stroke caps. Resulting polygons are closed.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-void Path::doCap(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const StrokeVertex& v, RIfloat strokeWidth, VGCapStyle capStyle) const
-{
-    const bool mirror = m_mirror;
-    Vector2 ccwt, cwt, p;
-    if (mirror)
-    {
-        ccwt = affineTransform(pathToSurface, v.cw);
-        cwt = affineTransform(pathToSurface, v.ccw);
-        p = affineTransform(pathToSurface, v.p);
-    }
-    else
-    {
-        ccwt = affineTransform(pathToSurface, v.ccw);
-        cwt = affineTransform(pathToSurface, v.cw);
-        p = affineTransform(pathToSurface, v.p);
-    }
-
-    //rasterizer.clear();
-    switch(capStyle)
-    {
-    case VG_CAP_BUTT:
-        break;
-
-    case VG_CAP_ROUND:
-    {
-        const RIfloat tessellationAngle = 5.0f;
-
-        RIfloat angle = 180.0f / tessellationAngle;
-
-        int samples = (int)ceil(angle);
-        RIfloat step = 1.0f / samples;
-        RIfloat t = step;
-        Vector2 u0, u1;
-        if (!mirror)
-        {
-            u0 = normalize(v.cw - v.p);
-            u1 = normalize(v.ccw - v.p);
-        } else
-        {
-            u0 = normalize(v.ccw - v.p);
-            u1 = normalize(v.cw - v.p);
-        }
-        Vector2 prev = cwt;
-        rasterizer.addEdge(p, cwt);    //throws bad_alloc
-        for(int j=1;j<samples;j++)
-        {
-            Vector2 next = v.p + circularLerp(u0, u1, t, mirror) * strokeWidth * 0.5f;
-            next = affineTransform(pathToSurface, next);
-
-            rasterizer.addEdge(prev, next); //throws bad_alloc
-            prev = next;
-            t += step;
-        }
-        rasterizer.addEdge(prev, ccwt);  //throws bad_alloc
-        rasterizer.addEdge(ccwt, p);     //throws bad_alloc
-        break;
-    }
-
-    default:
-    {
-        RI_ASSERT(capStyle == VG_CAP_SQUARE);
-        Vector2 t = v.t;
-        t.normalize();
-        Vector2 ccws, cws;
-        if (!mirror)
-        {
-            ccws = affineTransform(pathToSurface, v.ccw + t * strokeWidth * 0.5f);
-            cws = affineTransform(pathToSurface, v.cw + t * strokeWidth * 0.5f);
-        }
-        else
-        {
-            ccws = affineTransform(pathToSurface, v.cw + t * strokeWidth * 0.5f);
-            cws = affineTransform(pathToSurface, v.ccw + t * strokeWidth * 0.5f);
-        }
-        rasterizer.addEdge(p, cwt);    //throws bad_alloc
-        rasterizer.addEdge(cwt, cws); //throws bad_alloc
-        rasterizer.addEdge(cws, ccws);  //throws bad_alloc
-        rasterizer.addEdge(ccws, ccwt);   //throws bad_alloc
-        rasterizer.addEdge(ccwt, p);     //throws bad_alloc
-        break;
-    }
-    }
-    //rasterizer.fill();
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Generate edges for stroke joins. Resulting polygons are closed.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-void Path::doJoin(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const StrokeVertex& v0, const StrokeVertex& v1, RIfloat strokeWidth, VGJoinStyle joinStyle, RIfloat miterLimit) const
-{
-    const bool mirror = m_mirror;
-    Vector2 ccw0t, ccw1t;
-    Vector2 cw0t, cw1t;
-    Vector2 m0t, m1t;
-    Vector2 tt0, tt1;
-
-    if(mirror)
-    {
-        ccw0t = affineTransform(pathToSurface, v0.cw);
-        cw0t = affineTransform(pathToSurface, v0.ccw);
-        m0t = affineTransform(pathToSurface, v0.p);
-        tt0 = affineTangentTransform(pathToSurface, v0.t);
-        ccw1t = affineTransform(pathToSurface, v1.cw);
-        cw1t = affineTransform(pathToSurface, v1.ccw);
-        m1t = affineTransform(pathToSurface, v1.p);
-        tt1 = affineTangentTransform(pathToSurface, v1.t);
-    } else
-    {
-        ccw0t = affineTransform(pathToSurface, v0.ccw);
-        cw0t = affineTransform(pathToSurface, v0.cw);
-        m0t = affineTransform(pathToSurface, v0.p);
-        tt0 = affineTangentTransform(pathToSurface, v0.t);
-        ccw1t = affineTransform(pathToSurface, v1.ccw);
-        cw1t = affineTransform(pathToSurface, v1.cw);
-        m1t = affineTransform(pathToSurface, v1.p);
-        tt1 = affineTangentTransform(pathToSurface, v1.t);
-    }
-
-    Vector2 tccw = v1.ccw - v0.ccw;
-    Vector2 s, e, m, st, et;
-    bool cw = true;
-
-    // \todo Uses addStrokeSegment, which is wasteful in several cases
-    // (but should be pretty robust)
-    // Round or miter to cw-side?
-    
-    if (dot(tt1, ccw0t - m0t) >= 0)
-        cw = false;
-        
-    // Add the bevel (which is part of all the other joins also)
-    // This would be a "consistent" way to handle joins (in addition
-    // to creating rounding to _both_ side of the join). However,
-    // the conformance test currently invalidates this case.
-    // \note Causes some extra geometry.
-    if (cw)
-        addStrokeSegment(rasterizer, ccw0t, m0t, ccw1t, m1t);
-    else
-        addStrokeSegment(rasterizer, m0t, cw0t, m1t, cw1t);
-
-    switch (joinStyle)
-    {
-    case VG_JOIN_BEVEL:
-        break;
-    case VG_JOIN_MITER:
-    {
-        RIfloat theta = (RIfloat)acos(RI_CLAMP(dot(v0.t, -v1.t), -1.0f, 1.0f));
-        RIfloat miterLengthPerStrokeWidth = 1.0f / (RIfloat)sin(theta*0.5f);
-        if (miterLengthPerStrokeWidth < miterLimit)
-        {   
-            // Miter
-            if (cw)
-            {
-                m = !mirror ? v0.ccw : v0.cw;
-                s = ccw1t;
-                e = ccw0t;
-            } else
-            {
-                m = !mirror ? v0.cw : v0.ccw;
-                s = cw0t;
-                e = cw1t;
-            }
-
-            RIfloat l = (RIfloat)cos(theta*0.5f) * miterLengthPerStrokeWidth * (strokeWidth * 0.5f);
-            l = RI_MIN(l, RI_FLOAT_MAX);    //force finite
-            Vector2 c = m + v0.t * l;
-            c = affineTransform(pathToSurface, c);
-
-            rasterizer.addEdge(s, c);
-            rasterizer.addEdge(c, e);
-            rasterizer.addEdge(e, s);
-        }
-        break;
-    }
-    default:
-    {
-        RI_ASSERT(joinStyle == VG_JOIN_ROUND);
-
-        Vector2 sp, ep;
-
-        const RIfloat tessellationAngle = 5.0f;
-            
-        if (cw)
-        {
-            s = ccw1t;
-            st = -v1.t;
-            e = ccw0t;
-            et = -v0.t;
-            sp = v1.p;
-            ep = v0.p;
-        } else
-        {
-            s = cw0t;
-            st = v0.t;
-            e = cw1t;
-            et = v1.t;
-            sp = v0.p;
-            ep = v1.p;
-        }
-
-        Vector2 prev = s;
-        RIfloat angle = RI_RAD_TO_DEG((RIfloat)acos(RI_CLAMP(dot(st, et), -1.0f, 1.0f))) / tessellationAngle;
-        int samples = (int)ceil(angle);
-        if( samples )
-        {
-            RIfloat step = 1.0f / samples;
-            RIfloat t = step;
-            for(int j=1;j<samples;j++)
-            {
-                Vector2 position = sp * (1.0f - t) + ep * t;
-                Vector2 tangent = circularLerp(st, et, t, mirror);
-
-                Vector2 next = position + normalize(perpendicular(tangent, !mirror)) * strokeWidth * 0.5f;
-                next = affineTransform(pathToSurface, next);
-
-                rasterizer.addEdge(prev, next); //throws bad_alloc
-                prev = next;
-                t += step;
-            }
-        }
-        rasterizer.addEdge(prev, e);    //throws bad_alloc
-        rasterizer.addEdge(e, s);
-        break;
-    }
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Tessellate a path, apply stroking, dashing, caps and joins, and
-*           append resulting edges to a rasterizer.
-* \param    
-* \return   
-* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::stroke(const Matrix3x3& pathToSurface, Rasterizer& rasterizer, const Array<RIfloat>& dashPattern, RIfloat dashPhase, bool dashPhaseReset, RIfloat strokeWidth, VGCapStyle capStyle, VGJoinStyle joinStyle, RIfloat miterLimit)
-{
-    RI_ASSERT(pathToSurface.isAffine());
-    RI_ASSERT(m_referenceCount > 0);
-    RI_ASSERT(strokeWidth >= 0.0f);
-    RI_ASSERT(miterLimit >= 1.0f);
-
-    tessellate(pathToSurface, strokeWidth); //throws bad_alloc
-
-    m_mirror = pathToSurface[0][0]*pathToSurface[1][1] < 0 ? true : false;
-
-    if(!m_vertices.size())
-        return;
-
-    bool dashing = true;
-    int dashPatternSize = dashPattern.size();
-    if( dashPattern.size() & 1 )
-        dashPatternSize--;  //odd number of dash pattern entries, discard the last one
-    RIfloat dashPatternLength = 0.0f;
-    for(int i=0;i<dashPatternSize;i++)
-        dashPatternLength += RI_MAX(dashPattern[i], 0.0f);
-    if(!dashPatternSize || dashPatternLength == 0.0f )
-        dashing = false;
-    dashPatternLength = RI_MIN(dashPatternLength, RI_FLOAT_MAX);
-
-    //walk along the path
-    //stop at the next event which is either:
-    //-path vertex
-    //-dash stop
-    //for robustness, decisions based on geometry are done only once.
-    //inDash keeps track whether the last point was in dash or not
-
-    //loop vertex events
-    try
-    {
-        RIfloat nextDash = 0.0f;
-        int d = 0;
-        bool inDash = true;
-        StrokeVertex v0, v1, vs;
-        for(int i=0;i<m_vertices.size();i++)
-        {
-            //read the next vertex
-            Vertex& v = m_vertices[i];
-            v1.p = v.userPosition;
-            v1.t = v.userTangent;
-            RI_ASSERT(!isZero(v1.t));   //don't allow zero tangents
-
-            v1.ccw = v1.p + normalize(perpendicularCCW(v1.t)) * strokeWidth * 0.5f;
-            v1.cw = v1.p + normalize(perpendicularCW(v1.t)) * strokeWidth * 0.5f;
-
-            v1.pathLength = v.pathLength;
-            v1.flags = v.flags;
-            v1.inDash = dashing ? inDash : true;    //NOTE: for other than START_SEGMENT vertices inDash will be updated after dashing
-
-            //process the vertex event
-            if(v.flags & START_SEGMENT)
-            {
-                if(v.flags & START_SUBPATH)
-                {
-                    if( dashing )
-                    {   //initialize dashing by finding which dash or gap the first point of the path lies in
-                        if(dashPhaseReset || i == 0)
-                        {
-                            d = 0;
-                            inDash = true;
-                            nextDash = v1.pathLength - RI_MOD(dashPhase, dashPatternLength);
-                            for(;;)
-                            {
-                                RIfloat prevDash = nextDash;
-                                nextDash = prevDash + RI_MAX(dashPattern[d], 0.0f);
-                                if(nextDash >= v1.pathLength)
-                                    break;
-
-                                if( d & 1 )
-                                    inDash = true;
-                                else
-                                    inDash = false;
-                                d = (d+1) % dashPatternSize;
-                            }
-                            v1.inDash = inDash;
-                            //the first point of the path lies between prevDash and nextDash
-                            //d in the index of the next dash stop
-                            //inDash is true if the first point is in a dash
-                        }
-                    }
-                    vs = v1;    //save the subpath start point
-                }
-                else
-                {
-                    if( v.flags & IMPLICIT_CLOSE_SUBPATH )
-                    {   //do caps for the start and end of the current subpath
-                        if( v0.inDash )
-                            doCap(pathToSurface, rasterizer, v0, strokeWidth, capStyle);    //end cap   //throws bad_alloc
-                        if( vs.inDash )
-                        {
-                            StrokeVertex vi = vs;
-                            vi.t = -vi.t;
-                            RI_SWAP(vi.ccw.x, vi.cw.x);
-                            RI_SWAP(vi.ccw.y, vi.cw.y);
-                            doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);    //start cap //throws bad_alloc
-                        }
-                    }
-                    else
-                    {   //join two segments
-                        RI_ASSERT(v0.inDash == v1.inDash);
-                        if( v0.inDash )
-                            doJoin(pathToSurface, rasterizer, v0, v1, strokeWidth, joinStyle, miterLimit);  //throws bad_alloc
-                    }
-                }
-            }
-            else
-            {   //in the middle of a segment
-                if( !(v.flags & IMPLICIT_CLOSE_SUBPATH) )
-                {   //normal segment, do stroking
-                    if( dashing )
-                    {
-                        StrokeVertex prevDashVertex = v0;   //dashing of the segment starts from the previous vertex
-
-                        if(nextDash + 10000.0f * dashPatternLength < v1.pathLength)
-                            throw std::bad_alloc();     //too many dashes, throw bad_alloc
-
-                        //loop dash events until the next vertex event
-                        //zero length dashes are handled as a special case since if they hit the vertex,
-                        //we want to include their starting point to this segment already in order to generate a join
-                        int numDashStops = 0;
-                        while(nextDash < v1.pathLength || (nextDash <= v1.pathLength && dashPattern[(d+1) % dashPatternSize] == 0.0f))
-                        {
-                            RIfloat edgeLength = v1.pathLength - v0.pathLength;
-                            RIfloat ratio = 0.0f;
-                            if(edgeLength > 0.0f)
-                                ratio = (nextDash - v0.pathLength) / edgeLength;
-                            StrokeVertex nextDashVertex;
-                            nextDashVertex.p = v0.p * (1.0f - ratio) + v1.p * ratio;
-                            nextDashVertex.t = circularLerp(v0.t, v1.t, ratio);
-                            nextDashVertex.ccw = nextDashVertex.p + normalize(perpendicularCCW(nextDashVertex.t)) * strokeWidth * 0.5f;
-                            nextDashVertex.cw = nextDashVertex.p + normalize(perpendicularCW(nextDashVertex.t)) * strokeWidth * 0.5f;
-
-                            if( inDash )
-                            {   //stroke from prevDashVertex -> nextDashVertex
-                                if( numDashStops )
-                                {   //prevDashVertex is not the start vertex of the segment, cap it (start vertex has already been joined or capped)
-                                    StrokeVertex vi = prevDashVertex;
-                                    vi.t = -vi.t;
-                                    RI_SWAP(vi.ccw.x, vi.cw.x);
-                                    RI_SWAP(vi.ccw.y, vi.cw.y);
-                                    doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);    //throws bad_alloc
-                                }
-                                interpolateStroke(pathToSurface, rasterizer, prevDashVertex, nextDashVertex, strokeWidth);  //throws bad_alloc
-                                doCap(pathToSurface, rasterizer, nextDashVertex, strokeWidth, capStyle);    //end cap   //throws bad_alloc
-                            }
-                            prevDashVertex = nextDashVertex;
-
-                            if( d & 1 )
-                            {   //dash starts
-                                RI_ASSERT(!inDash);
-                                inDash = true;
-                            }
-                            else
-                            {   //dash ends
-                                RI_ASSERT(inDash);
-                                inDash = false;
-                            }
-                            d = (d+1) % dashPatternSize;
-                            nextDash += RI_MAX(dashPattern[d], 0.0f);
-                            numDashStops++;
-                        }
-                        
-                        if( inDash )
-                        {   //stroke prevDashVertex -> v1
-                            if( numDashStops )
-                            {   //prevDashVertex is not the start vertex of the segment, cap it (start vertex has already been joined or capped)
-                                StrokeVertex vi = prevDashVertex;
-                                vi.t = -vi.t;
-                                RI_SWAP(vi.ccw.x, vi.cw.x);
-                                RI_SWAP(vi.ccw.y, vi.cw.y);
-                                doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);    //throws bad_alloc
-                            }
-                            interpolateStroke(pathToSurface, rasterizer, prevDashVertex, v1, strokeWidth);  //throws bad_alloc
-                            //no cap, leave path open
-                        }
-
-                        v1.inDash = inDash; //update inDash status of the segment end point
-                    }
-                    else    //no dashing, just interpolate segment end points
-                        interpolateStroke(pathToSurface, rasterizer, v0, v1, strokeWidth);  //throws bad_alloc
-                }
-            }
-
-            if((v.flags & END_SEGMENT) && (v.flags & CLOSE_SUBPATH))
-            {   //join start and end of the current subpath
-                if( v1.inDash && vs.inDash )
-                    doJoin(pathToSurface, rasterizer, v1, vs, strokeWidth, joinStyle, miterLimit);  //throws bad_alloc
-                else
-                {   //both start and end are not in dash, cap them
-                    if( v1.inDash )
-                        doCap(pathToSurface, rasterizer, v1, strokeWidth, capStyle);    //end cap   //throws bad_alloc
-                    if( vs.inDash )
-                    {
-                        StrokeVertex vi = vs;
-                        vi.t = -vi.t;
-                        RI_SWAP(vi.ccw.x, vi.cw.x);
-                        RI_SWAP(vi.ccw.y, vi.cw.y);
-                        doCap(pathToSurface, rasterizer, vi, strokeWidth, capStyle);    //start cap //throws bad_alloc
-                    }
-                }
-            }
-
-            v0 = v1;
-        }
-    }
-    catch(std::bad_alloc)
-    {
-        rasterizer.clear(); //remove the unfinished path
-        throw;
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Tessellates a path, and returns a position and a tangent on the path
-*           given a distance along the path.
-* \param    
-* \return   
-* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::getPointAlong(int startIndex, int numSegments, RIfloat distance, Vector2& p, Vector2& t)
-{
-    RI_ASSERT(m_referenceCount > 0);
-    RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size() && numSegments > 0);
-
-    Matrix3x3 identity;
-    identity.identity();
-    tessellate(identity, 0.0f); //throws bad_alloc
-
-    RI_ASSERT(startIndex >= 0 && startIndex < m_segmentToVertex.size());
-    RI_ASSERT(startIndex + numSegments >= 0 && startIndex + numSegments <= m_segmentToVertex.size());
-
-    // ignore move segments at the start of the path
-    while (numSegments && (m_segments[startIndex] & ~VG_RELATIVE) == VG_MOVE_TO)
-    {
-        startIndex++;
-        numSegments--;
-    }
-
-    // ignore move segments at the end of the path
-    while (numSegments && (m_segments[startIndex + numSegments - 1] & ~VG_RELATIVE) == VG_MOVE_TO)
-        numSegments--;
-
-    // empty path?
-    if (!m_vertices.size() || !numSegments)
-    {
-        p.set(0,0);
-        t.set(1,0);
-        return;
-    }
-
-    int startVertex = m_segmentToVertex[startIndex].start;
-    int endVertex = m_segmentToVertex[startIndex + numSegments - 1].end;
-
-    if(startVertex == -1)
-        startVertex = 0;
-
-    // zero length?
-    if (startVertex >= endVertex)
-    {
-        p = m_vertices[startVertex].userPosition;
-        t.set(1,0);
-        return;
-    }
-
-    RI_ASSERT(startVertex >= 0 && startVertex < m_vertices.size());
-    RI_ASSERT(endVertex >= 0 && endVertex < m_vertices.size());
-
-    distance += m_vertices[startVertex].pathLength; //map distance to the range of the whole path
-
-    if(distance <= m_vertices[startVertex].pathLength)
-    {   //return the first point of the path
-        p = m_vertices[startVertex].userPosition;
-        t = m_vertices[startVertex].userTangent;
-        return;
-    }
-
-    if(distance >= m_vertices[endVertex].pathLength)
-    {   //return the last point of the path
-        p = m_vertices[endVertex].userPosition;
-        t = m_vertices[endVertex].userTangent;
-        return;
-    }
-
-    //search for the segment containing the distance
-    for(int s=startIndex;s<startIndex+numSegments;s++)
-    {
-        int start = m_segmentToVertex[s].start;
-        int end = m_segmentToVertex[s].end;
-        if(start < 0)
-            start = 0;
-        if(end < 0)
-            end = 0;
-        RI_ASSERT(start >= 0 && start < m_vertices.size());
-        RI_ASSERT(end >= 0 && end < m_vertices.size());
-
-        if(distance >= m_vertices[start].pathLength && distance < m_vertices[end].pathLength)
-        {   //segment contains the queried distance
-            for(int i=start;i<end;i++)
-            {
-                const Vertex& v0 = m_vertices[i];
-                const Vertex& v1 = m_vertices[i+1];
-                if(distance >= v0.pathLength && distance < v1.pathLength)
-                {   //segment found, interpolate linearly between its end points
-                    RIfloat edgeLength = v1.pathLength - v0.pathLength;
-                    RI_ASSERT(edgeLength > 0.0f);
-                    RIfloat r = (distance - v0.pathLength) / edgeLength;
-                    p = (1.0f - r) * v0.userPosition + r * v1.userPosition;
-                    t = (1.0f - r) * v0.userTangent + r * v1.userTangent;
-                    return;
-                }
-            }
-        }
-    }
-
-    RI_ASSERT(0);   //point not found (should never get here)
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Tessellates a path, and computes its length.
-* \param    
-* \return   
-* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-RIfloat Path::getPathLength(int startIndex, int numSegments)
-{
-    RI_ASSERT(m_referenceCount > 0);
-    RI_ASSERT(startIndex >= 0 && startIndex + numSegments <= m_segments.size() && numSegments > 0);
-
-    Matrix3x3 identity;
-    identity.identity();
-    tessellate(identity, 0.0f); //throws bad_alloc
-
-    RI_ASSERT(startIndex >= 0 && startIndex < m_segmentToVertex.size());
-    RI_ASSERT(startIndex + numSegments >= 0 && startIndex + numSegments <= m_segmentToVertex.size());
-
-    int startVertex = m_segmentToVertex[startIndex].start;
-    int endVertex = m_segmentToVertex[startIndex + numSegments - 1].end;
-
-    if(!m_vertices.size())
-        return 0.0f;
-
-    RIfloat startPathLength = 0.0f;
-    if(startVertex >= 0)
-    {
-        RI_ASSERT(startVertex >= 0 && startVertex < m_vertices.size());
-        startPathLength = m_vertices[startVertex].pathLength;
-    }
-    RIfloat endPathLength = 0.0f;
-    if(endVertex >= 0)
-    {
-        RI_ASSERT(endVertex >= 0 && endVertex < m_vertices.size());
-        endPathLength = m_vertices[endVertex].pathLength;
-    }
-
-    return endPathLength - startPathLength;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Tessellates a path, and computes its bounding box in user space.
-* \param    
-* \return   
-* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::getPathBounds(RIfloat& minx, RIfloat& miny, RIfloat& maxx, RIfloat& maxy)
-{
-    RI_ASSERT(m_referenceCount > 0);
-
-    Matrix3x3 identity;
-    identity.identity();
-    tessellate(identity, 0.0f); //throws bad_alloc
-
-    if(m_vertices.size())
-    {
-        minx = m_userMinx;
-        miny = m_userMiny;
-        maxx = m_userMaxx;
-        maxy = m_userMaxy;
-    }
-    else
-    {
-        minx = miny = 0;
-        maxx = maxy = -1;
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Tessellates a path, and computes its bounding box in surface space.
-* \param    
-* \return   
-* \note     if runs out of memory, throws bad_alloc and leaves the path as it was
-*//*-------------------------------------------------------------------*/
-
-void Path::getPathTransformedBounds(const Matrix3x3& pathToSurface, RIfloat& minx, RIfloat& miny, RIfloat& maxx, RIfloat& maxy)
-{
-    RI_ASSERT(m_referenceCount > 0);
-    RI_ASSERT(pathToSurface.isAffine());
-
-    Matrix3x3 identity;
-    identity.identity();
-    tessellate(identity, 0.0f); //throws bad_alloc
-
-    if(m_vertices.size())
-    {
-        Vector3 p0(m_userMinx, m_userMiny, 1.0f);
-        Vector3 p1(m_userMinx, m_userMaxy, 1.0f);
-        Vector3 p2(m_userMaxx, m_userMaxy, 1.0f);
-        Vector3 p3(m_userMaxx, m_userMiny, 1.0f);
-        p0 = pathToSurface * p0;
-        p1 = pathToSurface * p1;
-        p2 = pathToSurface * p2;
-        p3 = pathToSurface * p3;
-
-        minx = RI_MIN(RI_MIN(RI_MIN(p0.x, p1.x), p2.x), p3.x);
-        miny = RI_MIN(RI_MIN(RI_MIN(p0.y, p1.y), p2.y), p3.y);
-        maxx = RI_MAX(RI_MAX(RI_MAX(p0.x, p1.x), p2.x), p3.x);
-        maxy = RI_MAX(RI_MAX(RI_MAX(p0.y, p1.y), p2.y), p3.y);
-    }
-    else
-    {
-        minx = miny = 0;
-        maxx = maxy = -1;
-    }
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Adds a vertex to a tessellated path.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-void Path::addVertex(const Vector2& p, const Vector2& t, RIfloat pathLength, unsigned int flags)
-{
-    RI_ASSERT(!isZero(t));
-
-    Vertex v;
-    v.pathLength = pathLength;
-    v.userPosition = p;
-    v.userTangent = t;
-    v.flags = flags;
-    m_vertices.push_back(v);    //throws bad_alloc
-    m_numTessVertices++;
-
-    m_userMinx = RI_MIN(m_userMinx, v.userPosition.x);
-    m_userMiny = RI_MIN(m_userMiny, v.userPosition.y);
-    m_userMaxx = RI_MAX(m_userMaxx, v.userPosition.x);
-    m_userMaxy = RI_MAX(m_userMaxy, v.userPosition.y);
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Adds an edge to a tessellated path.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-void Path::addEdge(const Vector2& p0, const Vector2& p1, const Vector2& t0, const Vector2& t1, unsigned int startFlags, unsigned int endFlags)
-{
-    Vertex v;
-    RIfloat pathLength = 0.0f;
-
-    RI_ASSERT(!isZero(t0) && !isZero(t1));
-
-    //segment midpoints are shared between edges
-    if(!m_numTessVertices)
-    {
-        if(m_vertices.size() > 0)
-            pathLength = m_vertices[m_vertices.size()-1].pathLength;
-
-        addVertex(p0, t0, pathLength, startFlags);  //throws bad_alloc
-    }
-
-    //other than implicit close paths (caused by a MOVE_TO) add to path length
-    if( !(endFlags & IMPLICIT_CLOSE_SUBPATH) )
-    {
-        //NOTE: with extremely large coordinates the floating point path length is infinite
-        RIfloat l = (p1 - p0).length();
-        pathLength = m_vertices[m_vertices.size()-1].pathLength + l;
-        pathLength = RI_MIN(pathLength, RI_FLOAT_MAX);
-    }
-
-    addVertex(p1, t1, pathLength, endFlags);    //throws bad_alloc
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Tessellates a close-path segment.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-void Path::addEndPath(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, bool subpathHasGeometry, unsigned int flags)
-{
-    RI_UNREF(pathToSurface);
-    m_numTessVertices = 0;
-    if(!subpathHasGeometry)
-    {   //single vertex
-        Vector2 t(1.0f,0.0f);
-        addEdge(p0, p1, t, t, START_SEGMENT | START_SUBPATH, END_SEGMENT | END_SUBPATH);    //throws bad_alloc
-        m_numTessVertices = 0;
-        addEdge(p0, p1, -t, -t, IMPLICIT_CLOSE_SUBPATH | START_SEGMENT, IMPLICIT_CLOSE_SUBPATH | END_SEGMENT);  //throws bad_alloc
-        return;
-    }
-    //the subpath contains segment commands that have generated geometry
-
-    //add a close path segment to the start point of the subpath
-    RI_ASSERT(m_vertices.size() > 0);
-    m_vertices[m_vertices.size()-1].flags |= END_SUBPATH;
-
-    Vector2 t = normalize(p1 - p0);
-    if(isZero(t))
-        t = m_vertices[m_vertices.size()-1].userTangent;    //if the segment is zero-length, use the tangent of the last segment end point so that proper join will be generated
-    RI_ASSERT(!isZero(t));
-
-    addEdge(p0, p1, t, t, flags | START_SEGMENT, flags | END_SEGMENT);  //throws bad_alloc
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Tessellates a line-to segment.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-bool Path::addLineTo(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, bool subpathHasGeometry)
-{
-    RI_UNREF(pathToSurface);
-    if(p0 == p1)
-        return false;   //discard zero-length segments
-
-    //compute end point tangents
-    Vector2 t = normalize(p1 - p0);
-    RI_ASSERT(!isZero(t));
-
-    m_numTessVertices = 0;
-    unsigned int startFlags = START_SEGMENT;
-    if(!subpathHasGeometry)
-        startFlags |= START_SUBPATH;
-    addEdge(p0, p1, t, t, startFlags, END_SEGMENT); //throws bad_alloc
-    return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Tessellates a quad-to segment.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-bool Path::addQuadTo(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, const Vector2& p2, bool subpathHasGeometry, float strokeWidth)
-{
-    RI_UNREF(pathToSurface);
-    RI_UNREF(strokeWidth);
-    if(p0 == p1 && p0 == p2)
-    {
-        RI_ASSERT(p1 == p2);
-        return false;   //discard zero-length segments
-    }
-
-    //compute end point tangents
-
-    Vector2 incomingTangent = normalize(p1 - p0);
-    Vector2 outgoingTangent = normalize(p2 - p1);
-    if(p0 == p1)
-        incomingTangent = normalize(p2 - p0);
-    if(p1 == p2)
-        outgoingTangent = normalize(p2 - p0);
-    RI_ASSERT(!isZero(incomingTangent) && !isZero(outgoingTangent));
-
-    m_numTessVertices = 0;
-    unsigned int startFlags = START_SEGMENT;
-    if(!subpathHasGeometry)
-        startFlags |= START_SUBPATH;
-
-    const int segments = RI_NUM_TESSELLATED_SEGMENTS_QUAD;
-    Vector2 pp = p0;
-    Vector2 tp = incomingTangent;
-    unsigned int prevFlags = startFlags;
-    for(int i=1;i<segments;i++)
-    {
-        RIfloat t = (RIfloat)i / (RIfloat)segments;
-        RIfloat u = 1.0f-t;
-        Vector2 pn = u*u * p0 + 2.0f*t*u * p1 + t*t * p2;
-        Vector2 tn = (-1.0f+t) * p0 + (1.0f-2.0f*t) * p1 + t * p2;
-        tn = normalize(tn);
-        if(isZero(tn))
-            tn = tp;
-
-        addEdge(pp, pn, tp, tn, prevFlags, 0);  //throws bad_alloc
-
-        pp = pn;
-        tp = tn;
-        prevFlags = 0;
-    }
-    addEdge(pp, p2, tp, outgoingTangent, prevFlags, END_SEGMENT);   //throws bad_alloc
-    return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Tessellates a cubic-to segment.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-bool Path::addCubicTo(const Matrix3x3& pathToSurface, const Vector2& p0, const Vector2& p1, const Vector2& p2, const Vector2& p3, bool subpathHasGeometry, float strokeWidth)
-{
-    RI_UNREF(pathToSurface);
-    RI_UNREF(strokeWidth);
-
-    if(p0 == p1 && p0 == p2 && p0 == p3)
-    {
-        RI_ASSERT(p1 == p2 && p1 == p3 && p2 == p3);
-        return false;   //discard zero-length segments
-    }
-
-    //compute end point tangents
-    Vector2 incomingTangent = normalize(p1 - p0);
-    Vector2 outgoingTangent = normalize(p3 - p2);
-    if(p0 == p1)
-    {
-        incomingTangent = normalize(p2 - p0);
-        if(p1 == p2)
-            incomingTangent = normalize(p3 - p0);
-    }
-    if(p2 == p3)
-    {
-        outgoingTangent = normalize(p3 - p1);
-        if(p1 == p2)
-            outgoingTangent = normalize(p3 - p0);
-    }
-    RI_ASSERT(!isZero(incomingTangent) && !isZero(outgoingTangent));
-
-    m_numTessVertices = 0;
-    unsigned int startFlags = START_SEGMENT;
-    if(!subpathHasGeometry)
-        startFlags |= START_SUBPATH;
-
-    const int segments = RI_NUM_TESSELLATED_SEGMENTS_CUBIC;
-    Vector2 pp = p0;
-    Vector2 tp = incomingTangent;
-    unsigned int prevFlags = startFlags;
-    for(int i=1;i<segments;i++)
-    {
-        RIfloat t = (RIfloat)i / (RIfloat)segments;
-        Vector2 pn = (1.0f - 3.0f*t + 3.0f*t*t - t*t*t) * p0 + (3.0f*t - 6.0f*t*t + 3.0f*t*t*t) * p1 + (3.0f*t*t - 3.0f*t*t*t) * p2 + t*t*t * p3;
-        Vector2 tn = (-3.0f + 6.0f*t - 3.0f*t*t) * p0 + (3.0f - 12.0f*t + 9.0f*t*t) * p1 + (6.0f*t - 9.0f*t*t) * p2 + 3.0f*t*t * p3;
-
-        tn = normalize(tn);
-        if(isZero(tn))
-            tn = tp;
-
-        addEdge(pp, pn, tp, tn, prevFlags, 0);  //throws bad_alloc
-
-        pp = pn;
-        tp = tn;
-        prevFlags = 0;
-    }
-    addEdge(pp, p3, tp, outgoingTangent, prevFlags, END_SEGMENT);   //throws bad_alloc
-    return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Finds an ellipse center and transformation from the unit circle to
-*           that ellipse.
-* \param    rh Length of the horizontal axis
-*           rv Length of the vertical axis
-*           rot Rotation angle
-*           p0,p1 User space end points of the arc
-*           c0,c1 (Return value) Unit circle space center points of the two ellipses
-*           u0,u1 (Return value) Unit circle space end points of the arc
-*           unitCircleToEllipse (Return value) A matrix mapping from unit circle space to user space
-* \return   true if ellipse exists, false if doesn't
-* \note     
-*//*-------------------------------------------------------------------*/
-
-static bool findEllipses(RIfloat rh, RIfloat rv, RIfloat rot, const Vector2& p0, const Vector2& p1, VGPathSegment segment, Vector2& c0, Vector2& c1, Vector2& u0, Vector2& u1, Matrix3x3& unitCircleToEllipse, bool& cw)
-{
-    rh = RI_ABS(rh);
-    rv = RI_ABS(rv);
-    if(rh == 0.0f || rv == 0.0f || p0 == p1)
-        return false;   //degenerate ellipse
-
-    rot = RI_DEG_TO_RAD(rot);
-    unitCircleToEllipse.set((RIfloat)cos(rot)*rh, -(RIfloat)sin(rot)*rv,  0,
-                            (RIfloat)sin(rot)*rh,  (RIfloat)cos(rot)*rv,  0,
-                            0,                   0,                   1);
-    Matrix3x3 ellipseToUnitCircle = invert(unitCircleToEllipse);
-    //force affinity
-    ellipseToUnitCircle[2][0] = 0.0f;
-    ellipseToUnitCircle[2][1] = 0.0f;
-    ellipseToUnitCircle[2][2] = 1.0f;
-
-    // Transform p0 and p1 into unit space
-    u0 = affineTransform(ellipseToUnitCircle, p0);
-    u1 = affineTransform(ellipseToUnitCircle, p1);
-
-    Vector2 m = 0.5f * (u0 + u1);
-    Vector2 d = u0 - u1;
-
-    RIfloat lsq = (RIfloat)dot(d,d);
-    if(lsq <= 0.0f)
-        return false;   //the points are coincident
-
-    RIfloat disc = (1.0f / lsq) - 0.25f;
-    if(disc < 0.0f)
-    {   //the points are too far apart for a solution to exist, scale the axes so that there is a solution
-        RIfloat l = (RIfloat)sqrt(lsq);
-        rh *= 0.5f * l;
-        rv *= 0.5f * l;
-
-        //redo the computation with scaled axes
-        unitCircleToEllipse.set((RIfloat)cos(rot)*rh, -(RIfloat)sin(rot)*rv,  0,
-                                (RIfloat)sin(rot)*rh,  (RIfloat)cos(rot)*rv,  0,
-                                0,                   0,                   1);
-        ellipseToUnitCircle = invert(unitCircleToEllipse);
-        //force affinity
-        ellipseToUnitCircle[2][0] = 0.0f;
-        ellipseToUnitCircle[2][1] = 0.0f;
-        ellipseToUnitCircle[2][2] = 1.0f;
-
-        // Transform p0 and p1 into unit space
-        u0 = affineTransform(ellipseToUnitCircle, p0);
-        u1 = affineTransform(ellipseToUnitCircle, p1);
-
-        // Solve for intersecting unit circles
-        d = u0 - u1;
-        m = 0.5f * (u0 + u1);
-
-        lsq = dot(d,d);
-        if(lsq <= 0.0f)
-            return false;   //the points are coincident
-
-        disc = RI_MAX(0.0f, 1.0f / lsq - 0.25f);
-    }
-
-    if(u0 == u1)
-        return false;
-
-    Vector2 sd = d * (RIfloat)sqrt(disc);
-    Vector2 sp = perpendicularCW(sd);
-    c0 = m + sp;
-    c1 = m - sp;
-
-    //choose the center point and direction
-    Vector2 cp = c0;
-    if(segment == VG_SCWARC_TO || segment == VG_LCCWARC_TO)
-        cp = c1;
-    cw = false;
-    if(segment == VG_SCWARC_TO || segment == VG_LCWARC_TO)
-        cw = true;
-
-    //move the unit circle origin to the chosen center point
-    u0 -= cp;
-    u1 -= cp;
-
-    if(u0 == u1 || isZero(u0) || isZero(u1))
-        return false;
-
-    //transform back to the original coordinate space
-    cp = affineTransform(unitCircleToEllipse, cp);
-    unitCircleToEllipse[0][2] = cp.x;
-    unitCircleToEllipse[1][2] = cp.y;
-    return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Tessellates an arc-to segment.
-* \param    
-* \return   
-* \note     
-*//*-------------------------------------------------------------------*/
-
-bool Path::addArcTo(const Matrix3x3& pathToSurface, const Vector2& p0, RIfloat rh, RIfloat rv, RIfloat rot, const Vector2& p1, const Vector2& p1r, VGPathSegment segment, bool subpathHasGeometry, float strokeWidth)
-{
-    RI_UNREF(pathToSurface);
-    RI_UNREF(strokeWidth);
-
-    if(p0 == p1)
-        return false;   //discard zero-length segments
-    
-    // Check NaNs
-    // \todo Make a general vec2 function?
-    if (RI_ISNAN(p0.x) || RI_ISNAN(p0.y))
-        return false;
-
-    if (RI_ISNAN(p1.x) || RI_ISNAN(p1.y))
-        return false;
-
-    Vector2 c0, c1, u0, u1;
-    Matrix3x3 unitCircleToEllipse;
-    bool cw;
-
-    m_numTessVertices = 0;
-    unsigned int startFlags = START_SEGMENT;
-    if(!subpathHasGeometry)
-        startFlags |= START_SUBPATH;
-
-    if(!findEllipses(rh, rv, rot, Vector2(), p1r, segment, c0, c1, u0, u1, unitCircleToEllipse, cw))
-    {   //ellipses don't exist, add line instead
-        Vector2 t = normalize(p1r);
-        RI_ASSERT(!isZero(t));
-        addEdge(p0, p1, t, t, startFlags, END_SEGMENT); //throws bad_alloc
-        return true;
-    }
-
-    //compute end point tangents
-    Vector2 incomingTangent = perpendicular(u0, cw);
-    incomingTangent = affineTangentTransform(unitCircleToEllipse, incomingTangent);
-    incomingTangent = normalize(incomingTangent);
-    Vector2 outgoingTangent = perpendicular(u1, cw);
-    outgoingTangent = affineTangentTransform(unitCircleToEllipse, outgoingTangent);
-    outgoingTangent = normalize(outgoingTangent);
-    RI_ASSERT(!isZero(incomingTangent) && !isZero(outgoingTangent));
-
-    const int segments = RI_NUM_TESSELLATED_SEGMENTS_ARC;
-    Vector2 pp = p0;
-    Vector2 tp = incomingTangent;
-    unsigned int prevFlags = startFlags;
-    for(int i=1;i<segments;i++)
-    {
-        RIfloat t = (RIfloat)i / (RIfloat)segments;
-        Vector2 pn = circularLerp(u0, u1, t, cw);
-        Vector2 tn = perpendicular(pn, cw);
-        tn = affineTangentTransform(unitCircleToEllipse, tn);
-        pn = affineTransform(unitCircleToEllipse, pn) + p0;
-        tn = normalize(tn);
-        if(isZero(tn))
-            tn = tp;
-
-        addEdge(pp, pn, tp, tn, prevFlags, 0);  //throws bad_alloc
-
-        pp = pn;
-        tp = tn;
-        prevFlags = 0;
-    }
-    addEdge(pp, p1, tp, outgoingTangent, prevFlags, END_SEGMENT);   //throws bad_alloc
-    return true;
-}
-
-/*-------------------------------------------------------------------*//*!
-* \brief    Tessellates a path.
-* \param    
-* \return   
-* \note     tessellation output format: A list of vertices describing the
-*           path tessellated into line segments and relevant aspects of the
-*           input data. Each path segment has a start vertex, a number of
-*           internal vertices (possibly zero), and an end vertex. The start
-*           and end of segments and subpaths have been flagged, as well as
-*           implicit and explicit close subpath segments.
-*//*-------------------------------------------------------------------*/
-
-void Path::tessellate(const Matrix3x3& pathToSurface, float strokeWidth)
-{
-    m_vertices.clear();
-
-    m_userMinx = RI_FLOAT_MAX;
-    m_userMiny = RI_FLOAT_MAX;
-    m_userMaxx = -RI_FLOAT_MAX;
-    m_userMaxy = -RI_FLOAT_MAX;
-    
-    try
-    {
-        m_segmentToVertex.resize(m_segments.size());
-
-        int coordIndex = 0;
-        Vector2 s(0,0);     //the beginning of the current subpath
-        Vector2 o(0,0);     //the last point of the previous segment
-        Vector2 p(0,0);     //the last internal control point of the previous segment, if the segment was a (regular or smooth) quadratic or cubic Bezier, or else the last point of the previous segment
-
-        //tessellate the path segments
-        coordIndex = 0;
-        s.set(0,0);
-        o.set(0,0);
-        p.set(0,0);
-        bool subpathHasGeometry = false;
-        VGPathSegment prevSegment = VG_MOVE_TO;
-        for(int i=0;i<m_segments.size();i++)
-        {
-            VGPathSegment segment = getPathSegment(m_segments[i]);
-            VGPathAbsRel absRel = getPathAbsRel(m_segments[i]);
-            int coords = segmentToNumCoordinates(segment);
-            m_segmentToVertex[i].start = m_vertices.size();
-
-            switch(segment)
-            {
-            case VG_CLOSE_PATH:
-            {
-                RI_ASSERT(coords == 0);
-                addEndPath(pathToSurface, o, s, subpathHasGeometry, CLOSE_SUBPATH);
-                p = s;
-                o = s;
-                subpathHasGeometry = false;
-                break;
-            }
-
-            case VG_MOVE_TO:
-            {
-                RI_ASSERT(coords == 2);
-                Vector2 c(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
-                if(absRel == VG_RELATIVE)
-                    c += o;
-                if(prevSegment != VG_MOVE_TO && prevSegment != VG_CLOSE_PATH)
-                    addEndPath(pathToSurface, o, s, subpathHasGeometry, IMPLICIT_CLOSE_SUBPATH);
-                s = c;
-                p = c;
-                o = c;
-                subpathHasGeometry = false;
-                break;
-            }
-
-            case VG_LINE_TO:
-            {
-                RI_ASSERT(coords == 2);
-                Vector2 c(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
-                if(absRel == VG_RELATIVE)
-                    c += o;
-                if(addLineTo(pathToSurface, o, c, subpathHasGeometry))
-                    subpathHasGeometry = true;
-                p = c;
-                o = c;
-                break;
-            }
-
-            case VG_HLINE_TO:
-            {
-                RI_ASSERT(coords == 1);
-                Vector2 c(getCoordinate(coordIndex+0), o.y);
-                if(absRel == VG_RELATIVE)
-                    c.x += o.x;
-                if(addLineTo(pathToSurface, o, c, subpathHasGeometry))
-                    subpathHasGeometry = true;
-                p = c;
-                o = c;
-                break;
-            }
-
-            case VG_VLINE_TO:
-            {
-                RI_ASSERT(coords == 1);
-                Vector2 c(o.x, getCoordinate(coordIndex+0));
-                if(absRel == VG_RELATIVE)
-                    c.y += o.y;
-                if(addLineTo(pathToSurface, o, c, subpathHasGeometry))
-                    subpathHasGeometry = true;
-                p = c;
-                o = c;
-                break;
-            }
-
-            case VG_QUAD_TO:
-            {
-                RI_ASSERT(coords == 4);
-                Vector2 c0(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
-                Vector2 c1(getCoordinate(coordIndex+2), getCoordinate(coordIndex+3));
-                if(absRel == VG_RELATIVE)
-                {
-                    c0 += o;
-                    c1 += o;
-                }
-                if(addQuadTo(pathToSurface, o, c0, c1, subpathHasGeometry, strokeWidth))
-                    subpathHasGeometry = true;
-                p = c0;
-                o = c1;
-                break;
-            }
-
-            case VG_SQUAD_TO:
-            {
-                RI_ASSERT(coords == 2);
-                Vector2 c0 = 2.0f * o - p;
-                Vector2 c1(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
-                if(absRel == VG_RELATIVE)
-                    c1 += o;
-                if(addQuadTo(pathToSurface, o, c0, c1, subpathHasGeometry, strokeWidth))
-                    subpathHasGeometry = true;
-                p = c0;
-                o = c1;
-                break;
-            }
-
-            case VG_CUBIC_TO:
-            {
-                RI_ASSERT(coords == 6);
-                Vector2 c0(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
-                Vector2 c1(getCoordinate(coordIndex+2), getCoordinate(coordIndex+3));
-                Vector2 c2(getCoordinate(coordIndex+4), getCoordinate(coordIndex+5));
-                if(absRel == VG_RELATIVE)
-                {
-                    c0 += o;
-                    c1 += o;
-                    c2 += o;
-                }
-                if(addCubicTo(pathToSurface, o, c0, c1, c2, subpathHasGeometry, strokeWidth))
-                    subpathHasGeometry = true;
-                p = c1;
-                o = c2;
-                break;
-            }
-
-            case VG_SCUBIC_TO:
-            {
-                RI_ASSERT(coords == 4);
-                Vector2 c0 = 2.0f * o - p;
-                Vector2 c1(getCoordinate(coordIndex+0), getCoordinate(coordIndex+1));
-                Vector2 c2(getCoordinate(coordIndex+2), getCoordinate(coordIndex+3));
-                if(absRel == VG_RELATIVE)
-                {
-                    c1 += o;
-                    c2 += o;
-                }
-                if(addCubicTo(pathToSurface, o, c0, c1, c2, subpathHasGeometry, strokeWidth))
-                    subpathHasGeometry = true;
-                p = c1;
-                o = c2;
-                break;
-            }
-
-            default:
-            {
-                RI_ASSERT(segment == VG_SCCWARC_TO || segment == VG_SCWARC_TO ||
-                          segment == VG_LCCWARC_TO || segment == VG_LCWARC_TO);
-                RI_ASSERT(coords == 5);
-                RIfloat rh = getCoordinate(coordIndex+0);
-                RIfloat rv = getCoordinate(coordIndex+1);
-                RIfloat rot = getCoordinate(coordIndex+2);
-                Vector2 c(getCoordinate(coordIndex+3), getCoordinate(coordIndex+4));
-
-                Vector2 cr = c;
-                if(absRel == VG_ABSOLUTE)
-                    cr -= o;
-                else
-                    c += o;
-
-                if(addArcTo(pathToSurface, o, rh, rv, rot, c, cr, segment, subpathHasGeometry, strokeWidth))
-                    subpathHasGeometry = true;
-                p = c;
-                o = c;
-                break;
-            }
-            }
-
-            if(m_vertices.size() > m_segmentToVertex[i].start)
-            {   //segment produced vertices
-                m_segmentToVertex[i].end = m_vertices.size() - 1;
-            }
-            else
-            {   //segment didn't produce vertices (zero-length segment). Ignore it.
-                m_segmentToVertex[i].start = m_segmentToVertex[i].end = m_vertices.size()-1;
-            }
-            prevSegment = segment;
-            coordIndex += coords;
-        }
-
-        //add an implicit MOVE_TO to the end to close the last subpath.
-        //if the subpath contained only zero-length segments, this produces the necessary geometry to get it stroked
-        // and included in path bounds. The geometry won't be included in the pointAlongPath query.
-        if(prevSegment != VG_MOVE_TO && prevSegment != VG_CLOSE_PATH)
-            addEndPath(pathToSurface, o, s, subpathHasGeometry, IMPLICIT_CLOSE_SUBPATH);
-
-        //check that the flags are correct
-#ifdef RI_DEBUG
-        int prev = -1;
-        bool subpathStarted = false;
-        bool segmentStarted = false;
-        for(int i=0;i<m_vertices.size();i++)
-        {
-            Vertex& v = m_vertices[i];
-
-            if(v.flags & START_SUBPATH)
-            {
-                RI_ASSERT(!subpathStarted);
-                RI_ASSERT(v.flags & START_SEGMENT);
-                RI_ASSERT(!(v.flags & END_SUBPATH));
-                RI_ASSERT(!(v.flags & END_SEGMENT));
-                RI_ASSERT(!(v.flags & CLOSE_SUBPATH));
-                RI_ASSERT(!(v.flags & IMPLICIT_CLOSE_SUBPATH));
-                subpathStarted = true;
-            }
-            
-            if(v.flags & START_SEGMENT)
-            {
-                RI_ASSERT(subpathStarted || (v.flags & CLOSE_SUBPATH) || (v.flags & IMPLICIT_CLOSE_SUBPATH));
-                RI_ASSERT(!segmentStarted);
-                RI_ASSERT(!(v.flags & END_SUBPATH));
-                RI_ASSERT(!(v.flags & END_SEGMENT));
-                segmentStarted = true;
-            }
-            
-            if( v.flags & CLOSE_SUBPATH )
-            {
-                RI_ASSERT(segmentStarted);
-                RI_ASSERT(!subpathStarted);
-                RI_ASSERT((v.flags & START_SEGMENT) || (v.flags & END_SEGMENT));
-                RI_ASSERT(!(v.flags & IMPLICIT_CLOSE_SUBPATH));
-                RI_ASSERT(!(v.flags & START_SUBPATH));
-                RI_ASSERT(!(v.flags & END_SUBPATH));
-            }
-            if( v.flags & IMPLICIT_CLOSE_SUBPATH )
-            {
-                RI_ASSERT(segmentStarted);
-                RI_ASSERT(!subpathStarted);
-                RI_ASSERT((v.flags & START_SEGMENT) || (v.flags & END_SEGMENT));
-                RI_ASSERT(!(v.flags & CLOSE_SUBPATH));
-                RI_ASSERT(!(v.flags & START_SUBPATH));
-                RI_ASSERT(!(v.flags & END_SUBPATH));
-            }
-            
-            if( prev >= 0 )
-            {
-                RI_ASSERT(segmentStarted);
-                RI_ASSERT(subpathStarted || ((m_vertices[prev].flags & CLOSE_SUBPATH) && (m_vertices[i].flags & CLOSE_SUBPATH)) ||
-                          ((m_vertices[prev].flags & IMPLICIT_CLOSE_SUBPATH) && (m_vertices[i].flags & IMPLICIT_CLOSE_SUBPATH)));
-            }
-
-            prev = i;
-            if(v.flags & END_SEGMENT)
-            {
-                RI_ASSERT(subpathStarted || (v.flags & CLOSE_SUBPATH) || (v.flags & IMPLICIT_CLOSE_SUBPATH));
-                RI_ASSERT(segmentStarted);
-                RI_ASSERT(!(v.flags & START_SUBPATH));
-                RI_ASSERT(!(v.flags & START_SEGMENT));
-                segmentStarted = false;
-                prev = -1;
-            }
-            
-            if(v.flags & END_SUBPATH)
-            {
-                RI_ASSERT(subpathStarted);
-                RI_ASSERT(v.flags & END_SEGMENT);
-                RI_ASSERT(!(v.flags & START_SUBPATH));
-                RI_ASSERT(!(v.flags & START_SEGMENT));
-                RI_ASSERT(!(v.flags & CLOSE_SUBPATH));
-                RI_ASSERT(!(v.flags & IMPLICIT_CLOSE_SUBPATH));
-                subpathStarted = false;
-            }
-        }
-#endif  //RI_DEBUG
-    }
-    catch(std::bad_alloc)
-    {
-        m_vertices.clear();
-        throw;
-    }
-}
-
-//==============================================================================================
-
-}       //namespace OpenVGRI
-
-//==============================================================================================