symbian-qemu-0.9.1-12/qemu-symbian-svp/hw/onenand.c
changeset 1 2fb8b9db1c86
equal deleted inserted replaced
0:ffa851df0825 1:2fb8b9db1c86
       
     1 /*
       
     2  * OneNAND flash memories emulation.
       
     3  *
       
     4  * Copyright (C) 2008 Nokia Corporation
       
     5  * Written by Andrzej Zaborowski <andrew@openedhand.com>
       
     6  *
       
     7  * This program is free software; you can redistribute it and/or
       
     8  * modify it under the terms of the GNU General Public License as
       
     9  * published by the Free Software Foundation; either version 2 or
       
    10  * (at your option) version 3 of the License.
       
    11  *
       
    12  * This program is distributed in the hope that it will be useful,
       
    13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
       
    14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
       
    15  * GNU General Public License for more details.
       
    16  *
       
    17  * You should have received a copy of the GNU General Public License
       
    18  * along with this program; if not, write to the Free Software
       
    19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
       
    20  * MA 02111-1307 USA
       
    21  */
       
    22 
       
    23 #include "qemu-common.h"
       
    24 #include "flash.h"
       
    25 #include "irq.h"
       
    26 #include "sysemu.h"
       
    27 #include "block.h"
       
    28 
       
    29 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
       
    30 #define PAGE_SHIFT	11
       
    31 
       
    32 /* Fixed */
       
    33 #define BLOCK_SHIFT	(PAGE_SHIFT + 6)
       
    34 
       
    35 struct onenand_s {
       
    36     uint32_t id;
       
    37     int shift;
       
    38     target_phys_addr_t base;
       
    39     qemu_irq intr;
       
    40     qemu_irq rdy;
       
    41     BlockDriverState *bdrv;
       
    42     BlockDriverState *bdrv_cur;
       
    43     uint8_t *image;
       
    44     uint8_t *otp;
       
    45     uint8_t *current;
       
    46     ram_addr_t ram;
       
    47     uint8_t *boot[2];
       
    48     uint8_t *data[2][2];
       
    49     int iomemtype;
       
    50     int cycle;
       
    51     int otpmode;
       
    52 
       
    53     uint16_t addr[8];
       
    54     uint16_t unladdr[8];
       
    55     int bufaddr;
       
    56     int count;
       
    57     uint16_t command;
       
    58     uint16_t config[2];
       
    59     uint16_t status;
       
    60     uint16_t intstatus;
       
    61     uint16_t wpstatus;
       
    62 
       
    63     struct ecc_state_s ecc;
       
    64 
       
    65     int density_mask;
       
    66     int secs;
       
    67     int secs_cur;
       
    68     int blocks;
       
    69     uint8_t *blockwp;
       
    70 };
       
    71 
       
    72 enum {
       
    73     ONEN_BUF_BLOCK = 0,
       
    74     ONEN_BUF_BLOCK2 = 1,
       
    75     ONEN_BUF_DEST_BLOCK = 2,
       
    76     ONEN_BUF_DEST_PAGE = 3,
       
    77     ONEN_BUF_PAGE = 7,
       
    78 };
       
    79 
       
    80 enum {
       
    81     ONEN_ERR_CMD = 1 << 10,
       
    82     ONEN_ERR_ERASE = 1 << 11,
       
    83     ONEN_ERR_PROG = 1 << 12,
       
    84     ONEN_ERR_LOAD = 1 << 13,
       
    85 };
       
    86 
       
    87 enum {
       
    88     ONEN_INT_RESET = 1 << 4,
       
    89     ONEN_INT_ERASE = 1 << 5,
       
    90     ONEN_INT_PROG = 1 << 6,
       
    91     ONEN_INT_LOAD = 1 << 7,
       
    92     ONEN_INT = 1 << 15,
       
    93 };
       
    94 
       
    95 enum {
       
    96     ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
       
    97     ONEN_LOCK_LOCKED = 1 << 1,
       
    98     ONEN_LOCK_UNLOCKED = 1 << 2,
       
    99 };
       
   100 
       
   101 void onenand_base_update(void *opaque, target_phys_addr_t new)
       
   102 {
       
   103     struct onenand_s *s = (struct onenand_s *) opaque;
       
   104 
       
   105     s->base = new;
       
   106 
       
   107     /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
       
   108      * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
       
   109      * write boot commands.  Also take note of the BWPS bit.  */
       
   110     cpu_register_physical_memory(s->base + (0x0000 << s->shift),
       
   111                     0x0200 << s->shift, s->iomemtype);
       
   112     cpu_register_physical_memory(s->base + (0x0200 << s->shift),
       
   113                     0xbe00 << s->shift,
       
   114                     (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
       
   115     if (s->iomemtype)
       
   116         cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
       
   117                     0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
       
   118 }
       
   119 
       
   120 void onenand_base_unmap(void *opaque)
       
   121 {
       
   122     struct onenand_s *s = (struct onenand_s *) opaque;
       
   123 
       
   124     cpu_register_physical_memory(s->base,
       
   125                     0x10000 << s->shift, IO_MEM_UNASSIGNED);
       
   126 }
       
   127 
       
   128 static void onenand_intr_update(struct onenand_s *s)
       
   129 {
       
   130     qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
       
   131 }
       
   132 
       
   133 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
       
   134 static void onenand_reset(struct onenand_s *s, int cold)
       
   135 {
       
   136     memset(&s->addr, 0, sizeof(s->addr));
       
   137     s->command = 0;
       
   138     s->count = 1;
       
   139     s->bufaddr = 0;
       
   140     s->config[0] = 0x40c0;
       
   141     s->config[1] = 0x0000;
       
   142     onenand_intr_update(s);
       
   143     qemu_irq_raise(s->rdy);
       
   144     s->status = 0x0000;
       
   145     s->intstatus = cold ? 0x8080 : 0x8010;
       
   146     s->unladdr[0] = 0;
       
   147     s->unladdr[1] = 0;
       
   148     s->wpstatus = 0x0002;
       
   149     s->cycle = 0;
       
   150     s->otpmode = 0;
       
   151     s->bdrv_cur = s->bdrv;
       
   152     s->current = s->image;
       
   153     s->secs_cur = s->secs;
       
   154 
       
   155     if (cold) {
       
   156         /* Lock the whole flash */
       
   157         memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
       
   158 
       
   159         if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
       
   160             cpu_abort(cpu_single_env, "%s: Loading the BootRAM failed.\n",
       
   161                             __FUNCTION__);
       
   162     }
       
   163 }
       
   164 
       
   165 static inline int onenand_load_main(struct onenand_s *s, int sec, int secn,
       
   166                 void *dest)
       
   167 {
       
   168     if (s->bdrv_cur)
       
   169         return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
       
   170     else if (sec + secn > s->secs_cur)
       
   171         return 1;
       
   172 
       
   173     memcpy(dest, s->current + (sec << 9), secn << 9);
       
   174 
       
   175     return 0;
       
   176 }
       
   177 
       
   178 static inline int onenand_prog_main(struct onenand_s *s, int sec, int secn,
       
   179                 void *src)
       
   180 {
       
   181     if (s->bdrv_cur)
       
   182         return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
       
   183     else if (sec + secn > s->secs_cur)
       
   184         return 1;
       
   185 
       
   186     memcpy(s->current + (sec << 9), src, secn << 9);
       
   187 
       
   188     return 0;
       
   189 }
       
   190 
       
   191 static inline int onenand_load_spare(struct onenand_s *s, int sec, int secn,
       
   192                 void *dest)
       
   193 {
       
   194     uint8_t buf[512];
       
   195 
       
   196     if (s->bdrv_cur) {
       
   197         if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
       
   198             return 1;
       
   199         memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
       
   200     } else if (sec + secn > s->secs_cur)
       
   201         return 1;
       
   202     else
       
   203         memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
       
   204  
       
   205     return 0;
       
   206 }
       
   207 
       
   208 static inline int onenand_prog_spare(struct onenand_s *s, int sec, int secn,
       
   209                 void *src)
       
   210 {
       
   211     uint8_t buf[512];
       
   212 
       
   213     if (s->bdrv_cur) {
       
   214         if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
       
   215             return 1;
       
   216         memcpy(buf + ((sec & 31) << 4), src, secn << 4);
       
   217         return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
       
   218     } else if (sec + secn > s->secs_cur)
       
   219         return 1;
       
   220 
       
   221     memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
       
   222  
       
   223     return 0;
       
   224 }
       
   225 
       
   226 static inline int onenand_erase(struct onenand_s *s, int sec, int num)
       
   227 {
       
   228     /* TODO: optimise */
       
   229     uint8_t buf[512];
       
   230 
       
   231     memset(buf, 0xff, sizeof(buf));
       
   232     for (; num > 0; num --, sec ++) {
       
   233         if (onenand_prog_main(s, sec, 1, buf))
       
   234             return 1;
       
   235         if (onenand_prog_spare(s, sec, 1, buf))
       
   236             return 1;
       
   237     }
       
   238 
       
   239     return 0;
       
   240 }
       
   241 
       
   242 static void onenand_command(struct onenand_s *s, int cmd)
       
   243 {
       
   244     int b;
       
   245     int sec;
       
   246     void *buf;
       
   247 #define SETADDR(block, page)			\
       
   248     sec = (s->addr[page] & 3) +			\
       
   249             ((((s->addr[page] >> 2) & 0x3f) +	\
       
   250               (((s->addr[block] & 0xfff) |	\
       
   251                 (s->addr[block] >> 15 ?		\
       
   252                  s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
       
   253 #define SETBUF_M()				\
       
   254     buf = (s->bufaddr & 8) ?			\
       
   255             s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];	\
       
   256     buf += (s->bufaddr & 3) << 9;
       
   257 #define SETBUF_S()				\
       
   258     buf = (s->bufaddr & 8) ?			\
       
   259             s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];	\
       
   260     buf += (s->bufaddr & 3) << 4;
       
   261 
       
   262     switch (cmd) {
       
   263     case 0x00:	/* Load single/multiple sector data unit into buffer */
       
   264         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
       
   265 
       
   266         SETBUF_M()
       
   267         if (onenand_load_main(s, sec, s->count, buf))
       
   268             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
       
   269 
       
   270 #if 0
       
   271         SETBUF_S()
       
   272         if (onenand_load_spare(s, sec, s->count, buf))
       
   273             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
       
   274 #endif
       
   275 
       
   276         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
       
   277          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
       
   278          * then we need two split the read/write into two chunks.
       
   279          */
       
   280         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
       
   281         break;
       
   282     case 0x13:	/* Load single/multiple spare sector into buffer */
       
   283         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
       
   284 
       
   285         SETBUF_S()
       
   286         if (onenand_load_spare(s, sec, s->count, buf))
       
   287             s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
       
   288 
       
   289         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
       
   290          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
       
   291          * then we need two split the read/write into two chunks.
       
   292          */
       
   293         s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
       
   294         break;
       
   295     case 0x80:	/* Program single/multiple sector data unit from buffer */
       
   296         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
       
   297 
       
   298         SETBUF_M()
       
   299         if (onenand_prog_main(s, sec, s->count, buf))
       
   300             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
       
   301 
       
   302 #if 0
       
   303         SETBUF_S()
       
   304         if (onenand_prog_spare(s, sec, s->count, buf))
       
   305             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
       
   306 #endif
       
   307 
       
   308         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
       
   309          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
       
   310          * then we need two split the read/write into two chunks.
       
   311          */
       
   312         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
       
   313         break;
       
   314     case 0x1a:	/* Program single/multiple spare area sector from buffer */
       
   315         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
       
   316 
       
   317         SETBUF_S()
       
   318         if (onenand_prog_spare(s, sec, s->count, buf))
       
   319             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
       
   320 
       
   321         /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
       
   322          * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
       
   323          * then we need two split the read/write into two chunks.
       
   324          */
       
   325         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
       
   326         break;
       
   327     case 0x1b:	/* Copy-back program */
       
   328         SETBUF_S()
       
   329 
       
   330         SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
       
   331         if (onenand_load_main(s, sec, s->count, buf))
       
   332             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
       
   333 
       
   334         SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
       
   335         if (onenand_prog_main(s, sec, s->count, buf))
       
   336             s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
       
   337 
       
   338         /* TODO: spare areas */
       
   339 
       
   340         s->intstatus |= ONEN_INT | ONEN_INT_PROG;
       
   341         break;
       
   342 
       
   343     case 0x23:	/* Unlock NAND array block(s) */
       
   344         s->intstatus |= ONEN_INT;
       
   345 
       
   346         /* XXX the previous (?) area should be locked automatically */
       
   347         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
       
   348             if (b >= s->blocks) {
       
   349                 s->status |= ONEN_ERR_CMD;
       
   350                 break;
       
   351             }
       
   352             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
       
   353                 break;
       
   354 
       
   355             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
       
   356         }
       
   357         break;
       
   358     case 0x27:	/* Unlock All NAND array blocks */
       
   359         s->intstatus |= ONEN_INT;
       
   360 
       
   361         for (b = 0; b < s->blocks; b ++) {
       
   362             if (b >= s->blocks) {
       
   363                 s->status |= ONEN_ERR_CMD;
       
   364                 break;
       
   365             }
       
   366             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
       
   367                 break;
       
   368 
       
   369             s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
       
   370         }
       
   371         break;
       
   372 
       
   373     case 0x2a:	/* Lock NAND array block(s) */
       
   374         s->intstatus |= ONEN_INT;
       
   375 
       
   376         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
       
   377             if (b >= s->blocks) {
       
   378                 s->status |= ONEN_ERR_CMD;
       
   379                 break;
       
   380             }
       
   381             if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
       
   382                 break;
       
   383 
       
   384             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
       
   385         }
       
   386         break;
       
   387     case 0x2c:	/* Lock-tight NAND array block(s) */
       
   388         s->intstatus |= ONEN_INT;
       
   389 
       
   390         for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
       
   391             if (b >= s->blocks) {
       
   392                 s->status |= ONEN_ERR_CMD;
       
   393                 break;
       
   394             }
       
   395             if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
       
   396                 continue;
       
   397 
       
   398             s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
       
   399         }
       
   400         break;
       
   401 
       
   402     case 0x71:	/* Erase-Verify-Read */
       
   403         s->intstatus |= ONEN_INT;
       
   404         break;
       
   405     case 0x95:	/* Multi-block erase */
       
   406         qemu_irq_pulse(s->intr);
       
   407         /* Fall through.  */
       
   408     case 0x94:	/* Block erase */
       
   409         sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
       
   410                         (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
       
   411                 << (BLOCK_SHIFT - 9);
       
   412         if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
       
   413             s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
       
   414 
       
   415         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
       
   416         break;
       
   417     case 0xb0:	/* Erase suspend */
       
   418         break;
       
   419     case 0x30:	/* Erase resume */
       
   420         s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
       
   421         break;
       
   422 
       
   423     case 0xf0:	/* Reset NAND Flash core */
       
   424         onenand_reset(s, 0);
       
   425         break;
       
   426     case 0xf3:	/* Reset OneNAND */
       
   427         onenand_reset(s, 0);
       
   428         break;
       
   429 
       
   430     case 0x65:	/* OTP Access */
       
   431         s->intstatus |= ONEN_INT;
       
   432         s->bdrv_cur = 0;
       
   433         s->current = s->otp;
       
   434         s->secs_cur = 1 << (BLOCK_SHIFT - 9);
       
   435         s->addr[ONEN_BUF_BLOCK] = 0;
       
   436         s->otpmode = 1;
       
   437         break;
       
   438 
       
   439     default:
       
   440         s->status |= ONEN_ERR_CMD;
       
   441         s->intstatus |= ONEN_INT;
       
   442         fprintf(stderr, "%s: unknown OneNAND command %x\n",
       
   443                         __FUNCTION__, cmd);
       
   444     }
       
   445 
       
   446     onenand_intr_update(s);
       
   447 }
       
   448 
       
   449 static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
       
   450 {
       
   451     struct onenand_s *s = (struct onenand_s *) opaque;
       
   452     int offset = addr >> s->shift;
       
   453 
       
   454     switch (offset) {
       
   455     case 0x0000 ... 0xc000:
       
   456         return lduw_le_p(s->boot[0] + addr);
       
   457 
       
   458     case 0xf000:	/* Manufacturer ID */
       
   459         return (s->id >> 16) & 0xff;
       
   460     case 0xf001:	/* Device ID */
       
   461         return (s->id >>  8) & 0xff;
       
   462     /* TODO: get the following values from a real chip!  */
       
   463     case 0xf002:	/* Version ID */
       
   464         return (s->id >>  0) & 0xff;
       
   465     case 0xf003:	/* Data Buffer size */
       
   466         return 1 << PAGE_SHIFT;
       
   467     case 0xf004:	/* Boot Buffer size */
       
   468         return 0x200;
       
   469     case 0xf005:	/* Amount of buffers */
       
   470         return 1 | (2 << 8);
       
   471     case 0xf006:	/* Technology */
       
   472         return 0;
       
   473 
       
   474     case 0xf100 ... 0xf107:	/* Start addresses */
       
   475         return s->addr[offset - 0xf100];
       
   476 
       
   477     case 0xf200:	/* Start buffer */
       
   478         return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
       
   479 
       
   480     case 0xf220:	/* Command */
       
   481         return s->command;
       
   482     case 0xf221:	/* System Configuration 1 */
       
   483         return s->config[0] & 0xffe0;
       
   484     case 0xf222:	/* System Configuration 2 */
       
   485         return s->config[1];
       
   486 
       
   487     case 0xf240:	/* Controller Status */
       
   488         return s->status;
       
   489     case 0xf241:	/* Interrupt */
       
   490         return s->intstatus;
       
   491     case 0xf24c:	/* Unlock Start Block Address */
       
   492         return s->unladdr[0];
       
   493     case 0xf24d:	/* Unlock End Block Address */
       
   494         return s->unladdr[1];
       
   495     case 0xf24e:	/* Write Protection Status */
       
   496         return s->wpstatus;
       
   497 
       
   498     case 0xff00:	/* ECC Status */
       
   499         return 0x00;
       
   500     case 0xff01:	/* ECC Result of main area data */
       
   501     case 0xff02:	/* ECC Result of spare area data */
       
   502     case 0xff03:	/* ECC Result of main area data */
       
   503     case 0xff04:	/* ECC Result of spare area data */
       
   504         cpu_abort(cpu_single_env, "%s: imeplement ECC\n", __FUNCTION__);
       
   505         return 0x0000;
       
   506     }
       
   507 
       
   508     fprintf(stderr, "%s: unknown OneNAND register %x\n",
       
   509                     __FUNCTION__, offset);
       
   510     return 0;
       
   511 }
       
   512 
       
   513 static void onenand_write(void *opaque, target_phys_addr_t addr,
       
   514                 uint32_t value)
       
   515 {
       
   516     struct onenand_s *s = (struct onenand_s *) opaque;
       
   517     int offset = addr >> s->shift;
       
   518     int sec;
       
   519 
       
   520     switch (offset) {
       
   521     case 0x0000 ... 0x01ff:
       
   522     case 0x8000 ... 0x800f:
       
   523         if (s->cycle) {
       
   524             s->cycle = 0;
       
   525 
       
   526             if (value == 0x0000) {
       
   527                 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
       
   528                 onenand_load_main(s, sec,
       
   529                                 1 << (PAGE_SHIFT - 9), s->data[0][0]);
       
   530                 s->addr[ONEN_BUF_PAGE] += 4;
       
   531                 s->addr[ONEN_BUF_PAGE] &= 0xff;
       
   532             }
       
   533             break;
       
   534         }
       
   535 
       
   536         switch (value) {
       
   537         case 0x00f0:	/* Reset OneNAND */
       
   538             onenand_reset(s, 0);
       
   539             break;
       
   540 
       
   541         case 0x00e0:	/* Load Data into Buffer */
       
   542             s->cycle = 1;
       
   543             break;
       
   544 
       
   545         case 0x0090:	/* Read Identification Data */
       
   546             memset(s->boot[0], 0, 3 << s->shift);
       
   547             s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
       
   548             s->boot[0][1 << s->shift] = (s->id >>  8) & 0xff;
       
   549             s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
       
   550             break;
       
   551 
       
   552         default:
       
   553             fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
       
   554                             __FUNCTION__, value);
       
   555         }
       
   556         break;
       
   557 
       
   558     case 0xf100 ... 0xf107:	/* Start addresses */
       
   559         s->addr[offset - 0xf100] = value;
       
   560         break;
       
   561 
       
   562     case 0xf200:	/* Start buffer */
       
   563         s->bufaddr = (value >> 8) & 0xf;
       
   564         if (PAGE_SHIFT == 11)
       
   565             s->count = (value & 3) ?: 4;
       
   566         else if (PAGE_SHIFT == 10)
       
   567             s->count = (value & 1) ?: 2;
       
   568         break;
       
   569 
       
   570     case 0xf220:	/* Command */
       
   571         if (s->intstatus & (1 << 15))
       
   572             break;
       
   573         s->command = value;
       
   574         onenand_command(s, s->command);
       
   575         break;
       
   576     case 0xf221:	/* System Configuration 1 */
       
   577         s->config[0] = value;
       
   578         onenand_intr_update(s);
       
   579         qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
       
   580         break;
       
   581     case 0xf222:	/* System Configuration 2 */
       
   582         s->config[1] = value;
       
   583         break;
       
   584 
       
   585     case 0xf241:	/* Interrupt */
       
   586         s->intstatus &= value;
       
   587         if ((1 << 15) & ~s->intstatus)
       
   588             s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
       
   589                             ONEN_ERR_PROG | ONEN_ERR_LOAD);
       
   590         onenand_intr_update(s);
       
   591         break;
       
   592     case 0xf24c:	/* Unlock Start Block Address */
       
   593         s->unladdr[0] = value & (s->blocks - 1);
       
   594         /* For some reason we have to set the end address to by default
       
   595          * be same as start because the software forgets to write anything
       
   596          * in there.  */
       
   597         s->unladdr[1] = value & (s->blocks - 1);
       
   598         break;
       
   599     case 0xf24d:	/* Unlock End Block Address */
       
   600         s->unladdr[1] = value & (s->blocks - 1);
       
   601         break;
       
   602 
       
   603     default:
       
   604         fprintf(stderr, "%s: unknown OneNAND register %x\n",
       
   605                         __FUNCTION__, offset);
       
   606     }
       
   607 }
       
   608 
       
   609 static CPUReadMemoryFunc *onenand_readfn[] = {
       
   610     onenand_read,	/* TODO */
       
   611     onenand_read,
       
   612     onenand_read,
       
   613 };
       
   614 
       
   615 static CPUWriteMemoryFunc *onenand_writefn[] = {
       
   616     onenand_write,	/* TODO */
       
   617     onenand_write,
       
   618     onenand_write,
       
   619 };
       
   620 
       
   621 void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
       
   622 {
       
   623     struct onenand_s *s = (struct onenand_s *) qemu_mallocz(sizeof(*s));
       
   624     int bdrv_index = drive_get_index(IF_MTD, 0, 0);
       
   625     uint32_t size = 1 << (24 + ((id >> 12) & 7));
       
   626     void *ram;
       
   627 
       
   628     s->shift = regshift;
       
   629     s->intr = irq;
       
   630     s->rdy = 0;
       
   631     s->id = id;
       
   632     s->blocks = size >> BLOCK_SHIFT;
       
   633     s->secs = size >> 9;
       
   634     s->blockwp = qemu_malloc(s->blocks);
       
   635     s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
       
   636     s->iomemtype = cpu_register_io_memory(0, onenand_readfn,
       
   637                     onenand_writefn, s);
       
   638     if (bdrv_index == -1)
       
   639         s->image = memset(qemu_malloc(size + (size >> 5)),
       
   640                         0xff, size + (size >> 5));
       
   641     else
       
   642         s->bdrv = drives_table[bdrv_index].bdrv;
       
   643     s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
       
   644                     0xff, (64 + 2) << PAGE_SHIFT);
       
   645     s->ram = qemu_ram_alloc(0xc000 << s->shift);
       
   646     /* FIXME: This is broken if it spans multiple RAM regions.  */
       
   647     ram = host_ram_addr(s->ram);
       
   648     s->boot[0] = ram + (0x0000 << s->shift);
       
   649     s->boot[1] = ram + (0x8000 << s->shift);
       
   650     s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
       
   651     s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
       
   652     s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
       
   653     s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
       
   654 
       
   655     onenand_reset(s, 1);
       
   656 
       
   657     return s;
       
   658 }
       
   659 
       
   660 void *onenand_raw_otp(void *opaque)
       
   661 {
       
   662     struct onenand_s *s = (struct onenand_s *) opaque;
       
   663 
       
   664     return s->otp;
       
   665 }