2
|
1 |
/*
|
|
2 |
** 2007 August 27
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
**
|
|
13 |
** $Id: btmutex.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
14 |
**
|
|
15 |
** This file contains code used to implement mutexes on Btree objects.
|
|
16 |
** This code really belongs in btree.c. But btree.c is getting too
|
|
17 |
** big and we want to break it down some. This packaged seemed like
|
|
18 |
** a good breakout.
|
|
19 |
*/
|
|
20 |
#include "btreeInt.h"
|
|
21 |
#if SQLITE_THREADSAFE && !defined(SQLITE_OMIT_SHARED_CACHE)
|
|
22 |
|
|
23 |
|
|
24 |
/*
|
|
25 |
** Enter a mutex on the given BTree object.
|
|
26 |
**
|
|
27 |
** If the object is not sharable, then no mutex is ever required
|
|
28 |
** and this routine is a no-op. The underlying mutex is non-recursive.
|
|
29 |
** But we keep a reference count in Btree.wantToLock so the behavior
|
|
30 |
** of this interface is recursive.
|
|
31 |
**
|
|
32 |
** To avoid deadlocks, multiple Btrees are locked in the same order
|
|
33 |
** by all database connections. The p->pNext is a list of other
|
|
34 |
** Btrees belonging to the same database connection as the p Btree
|
|
35 |
** which need to be locked after p. If we cannot get a lock on
|
|
36 |
** p, then first unlock all of the others on p->pNext, then wait
|
|
37 |
** for the lock to become available on p, then relock all of the
|
|
38 |
** subsequent Btrees that desire a lock.
|
|
39 |
*/
|
|
40 |
void sqlite3BtreeEnter(Btree *p){
|
|
41 |
Btree *pLater;
|
|
42 |
|
|
43 |
/* Some basic sanity checking on the Btree. The list of Btrees
|
|
44 |
** connected by pNext and pPrev should be in sorted order by
|
|
45 |
** Btree.pBt value. All elements of the list should belong to
|
|
46 |
** the same connection. Only shared Btrees are on the list. */
|
|
47 |
assert( p->pNext==0 || p->pNext->pBt>p->pBt );
|
|
48 |
assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
|
|
49 |
assert( p->pNext==0 || p->pNext->db==p->db );
|
|
50 |
assert( p->pPrev==0 || p->pPrev->db==p->db );
|
|
51 |
assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
|
|
52 |
|
|
53 |
/* Check for locking consistency */
|
|
54 |
assert( !p->locked || p->wantToLock>0 );
|
|
55 |
assert( p->sharable || p->wantToLock==0 );
|
|
56 |
|
|
57 |
/* We should already hold a lock on the database connection */
|
|
58 |
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
59 |
|
|
60 |
if( !p->sharable ) return;
|
|
61 |
p->wantToLock++;
|
|
62 |
if( p->locked ) return;
|
|
63 |
|
|
64 |
/* In most cases, we should be able to acquire the lock we
|
|
65 |
** want without having to go throught the ascending lock
|
|
66 |
** procedure that follows. Just be sure not to block.
|
|
67 |
*/
|
|
68 |
if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
|
|
69 |
p->locked = 1;
|
|
70 |
return;
|
|
71 |
}
|
|
72 |
|
|
73 |
/* To avoid deadlock, first release all locks with a larger
|
|
74 |
** BtShared address. Then acquire our lock. Then reacquire
|
|
75 |
** the other BtShared locks that we used to hold in ascending
|
|
76 |
** order.
|
|
77 |
*/
|
|
78 |
for(pLater=p->pNext; pLater; pLater=pLater->pNext){
|
|
79 |
assert( pLater->sharable );
|
|
80 |
assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
|
|
81 |
assert( !pLater->locked || pLater->wantToLock>0 );
|
|
82 |
if( pLater->locked ){
|
|
83 |
sqlite3_mutex_leave(pLater->pBt->mutex);
|
|
84 |
pLater->locked = 0;
|
|
85 |
}
|
|
86 |
}
|
|
87 |
sqlite3_mutex_enter(p->pBt->mutex);
|
|
88 |
p->locked = 1;
|
|
89 |
for(pLater=p->pNext; pLater; pLater=pLater->pNext){
|
|
90 |
if( pLater->wantToLock ){
|
|
91 |
sqlite3_mutex_enter(pLater->pBt->mutex);
|
|
92 |
pLater->locked = 1;
|
|
93 |
}
|
|
94 |
}
|
|
95 |
}
|
|
96 |
|
|
97 |
/*
|
|
98 |
** Exit the recursive mutex on a Btree.
|
|
99 |
*/
|
|
100 |
void sqlite3BtreeLeave(Btree *p){
|
|
101 |
if( p->sharable ){
|
|
102 |
assert( p->wantToLock>0 );
|
|
103 |
p->wantToLock--;
|
|
104 |
if( p->wantToLock==0 ){
|
|
105 |
assert( p->locked );
|
|
106 |
sqlite3_mutex_leave(p->pBt->mutex);
|
|
107 |
p->locked = 0;
|
|
108 |
}
|
|
109 |
}
|
|
110 |
}
|
|
111 |
|
|
112 |
#ifndef NDEBUG
|
|
113 |
/*
|
|
114 |
** Return true if the BtShared mutex is held on the btree.
|
|
115 |
**
|
|
116 |
** This routine makes no determination one why or another if the
|
|
117 |
** database connection mutex is held.
|
|
118 |
**
|
|
119 |
** This routine is used only from within assert() statements.
|
|
120 |
*/
|
|
121 |
int sqlite3BtreeHoldsMutex(Btree *p){
|
|
122 |
return (p->sharable==0 ||
|
|
123 |
(p->locked && p->wantToLock && sqlite3_mutex_held(p->pBt->mutex)));
|
|
124 |
}
|
|
125 |
#endif
|
|
126 |
|
|
127 |
|
|
128 |
#ifndef SQLITE_OMIT_INCRBLOB
|
|
129 |
/*
|
|
130 |
** Enter and leave a mutex on a Btree given a cursor owned by that
|
|
131 |
** Btree. These entry points are used by incremental I/O and can be
|
|
132 |
** omitted if that module is not used.
|
|
133 |
*/
|
|
134 |
void sqlite3BtreeEnterCursor(BtCursor *pCur){
|
|
135 |
sqlite3BtreeEnter(pCur->pBtree);
|
|
136 |
}
|
|
137 |
void sqlite3BtreeLeaveCursor(BtCursor *pCur){
|
|
138 |
sqlite3BtreeLeave(pCur->pBtree);
|
|
139 |
}
|
|
140 |
#endif /* SQLITE_OMIT_INCRBLOB */
|
|
141 |
|
|
142 |
|
|
143 |
/*
|
|
144 |
** Enter the mutex on every Btree associated with a database
|
|
145 |
** connection. This is needed (for example) prior to parsing
|
|
146 |
** a statement since we will be comparing table and column names
|
|
147 |
** against all schemas and we do not want those schemas being
|
|
148 |
** reset out from under us.
|
|
149 |
**
|
|
150 |
** There is a corresponding leave-all procedures.
|
|
151 |
**
|
|
152 |
** Enter the mutexes in accending order by BtShared pointer address
|
|
153 |
** to avoid the possibility of deadlock when two threads with
|
|
154 |
** two or more btrees in common both try to lock all their btrees
|
|
155 |
** at the same instant.
|
|
156 |
*/
|
|
157 |
void sqlite3BtreeEnterAll(sqlite3 *db){
|
|
158 |
int i;
|
|
159 |
Btree *p, *pLater;
|
|
160 |
assert( sqlite3_mutex_held(db->mutex) );
|
|
161 |
for(i=0; i<db->nDb; i++){
|
|
162 |
p = db->aDb[i].pBt;
|
|
163 |
if( p && p->sharable ){
|
|
164 |
p->wantToLock++;
|
|
165 |
if( !p->locked ){
|
|
166 |
assert( p->wantToLock==1 );
|
|
167 |
while( p->pPrev ) p = p->pPrev;
|
|
168 |
while( p->locked && p->pNext ) p = p->pNext;
|
|
169 |
for(pLater = p->pNext; pLater; pLater=pLater->pNext){
|
|
170 |
if( pLater->locked ){
|
|
171 |
sqlite3_mutex_leave(pLater->pBt->mutex);
|
|
172 |
pLater->locked = 0;
|
|
173 |
}
|
|
174 |
}
|
|
175 |
while( p ){
|
|
176 |
sqlite3_mutex_enter(p->pBt->mutex);
|
|
177 |
p->locked++;
|
|
178 |
p = p->pNext;
|
|
179 |
}
|
|
180 |
}
|
|
181 |
}
|
|
182 |
}
|
|
183 |
}
|
|
184 |
void sqlite3BtreeLeaveAll(sqlite3 *db){
|
|
185 |
int i;
|
|
186 |
Btree *p;
|
|
187 |
assert( sqlite3_mutex_held(db->mutex) );
|
|
188 |
for(i=0; i<db->nDb; i++){
|
|
189 |
p = db->aDb[i].pBt;
|
|
190 |
if( p && p->sharable ){
|
|
191 |
assert( p->wantToLock>0 );
|
|
192 |
p->wantToLock--;
|
|
193 |
if( p->wantToLock==0 ){
|
|
194 |
assert( p->locked );
|
|
195 |
sqlite3_mutex_leave(p->pBt->mutex);
|
|
196 |
p->locked = 0;
|
|
197 |
}
|
|
198 |
}
|
|
199 |
}
|
|
200 |
}
|
|
201 |
|
|
202 |
#ifndef NDEBUG
|
|
203 |
/*
|
|
204 |
** Return true if the current thread holds the database connection
|
|
205 |
** mutex and all required BtShared mutexes.
|
|
206 |
**
|
|
207 |
** This routine is used inside assert() statements only.
|
|
208 |
*/
|
|
209 |
int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
|
|
210 |
int i;
|
|
211 |
if( !sqlite3_mutex_held(db->mutex) ){
|
|
212 |
return 0;
|
|
213 |
}
|
|
214 |
for(i=0; i<db->nDb; i++){
|
|
215 |
Btree *p;
|
|
216 |
p = db->aDb[i].pBt;
|
|
217 |
if( p && p->sharable &&
|
|
218 |
(p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
|
|
219 |
return 0;
|
|
220 |
}
|
|
221 |
}
|
|
222 |
return 1;
|
|
223 |
}
|
|
224 |
#endif /* NDEBUG */
|
|
225 |
|
|
226 |
/*
|
|
227 |
** Potentially dd a new Btree pointer to a BtreeMutexArray.
|
|
228 |
** Really only add the Btree if it can possibly be shared with
|
|
229 |
** another database connection.
|
|
230 |
**
|
|
231 |
** The Btrees are kept in sorted order by pBtree->pBt. That
|
|
232 |
** way when we go to enter all the mutexes, we can enter them
|
|
233 |
** in order without every having to backup and retry and without
|
|
234 |
** worrying about deadlock.
|
|
235 |
**
|
|
236 |
** The number of shared btrees will always be small (usually 0 or 1)
|
|
237 |
** so an insertion sort is an adequate algorithm here.
|
|
238 |
*/
|
|
239 |
void sqlite3BtreeMutexArrayInsert(BtreeMutexArray *pArray, Btree *pBtree){
|
|
240 |
int i, j;
|
|
241 |
BtShared *pBt;
|
|
242 |
if( pBtree==0 || pBtree->sharable==0 ) return;
|
|
243 |
#ifndef NDEBUG
|
|
244 |
{
|
|
245 |
for(i=0; i<pArray->nMutex; i++){
|
|
246 |
assert( pArray->aBtree[i]!=pBtree );
|
|
247 |
}
|
|
248 |
}
|
|
249 |
#endif
|
|
250 |
assert( pArray->nMutex>=0 );
|
|
251 |
assert( pArray->nMutex<sizeof(pArray->aBtree)/sizeof(pArray->aBtree[0])-1 );
|
|
252 |
pBt = pBtree->pBt;
|
|
253 |
for(i=0; i<pArray->nMutex; i++){
|
|
254 |
assert( pArray->aBtree[i]!=pBtree );
|
|
255 |
if( pArray->aBtree[i]->pBt>pBt ){
|
|
256 |
for(j=pArray->nMutex; j>i; j--){
|
|
257 |
pArray->aBtree[j] = pArray->aBtree[j-1];
|
|
258 |
}
|
|
259 |
pArray->aBtree[i] = pBtree;
|
|
260 |
pArray->nMutex++;
|
|
261 |
return;
|
|
262 |
}
|
|
263 |
}
|
|
264 |
pArray->aBtree[pArray->nMutex++] = pBtree;
|
|
265 |
}
|
|
266 |
|
|
267 |
/*
|
|
268 |
** Enter the mutex of every btree in the array. This routine is
|
|
269 |
** called at the beginning of sqlite3VdbeExec(). The mutexes are
|
|
270 |
** exited at the end of the same function.
|
|
271 |
*/
|
|
272 |
void sqlite3BtreeMutexArrayEnter(BtreeMutexArray *pArray){
|
|
273 |
int i;
|
|
274 |
for(i=0; i<pArray->nMutex; i++){
|
|
275 |
Btree *p = pArray->aBtree[i];
|
|
276 |
/* Some basic sanity checking */
|
|
277 |
assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
|
|
278 |
assert( !p->locked || p->wantToLock>0 );
|
|
279 |
|
|
280 |
/* We should already hold a lock on the database connection */
|
|
281 |
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
282 |
|
|
283 |
p->wantToLock++;
|
|
284 |
if( !p->locked && p->sharable ){
|
|
285 |
sqlite3_mutex_enter(p->pBt->mutex);
|
|
286 |
p->locked = 1;
|
|
287 |
}
|
|
288 |
}
|
|
289 |
}
|
|
290 |
|
|
291 |
/*
|
|
292 |
** Leave the mutex of every btree in the group.
|
|
293 |
*/
|
|
294 |
void sqlite3BtreeMutexArrayLeave(BtreeMutexArray *pArray){
|
|
295 |
int i;
|
|
296 |
for(i=0; i<pArray->nMutex; i++){
|
|
297 |
Btree *p = pArray->aBtree[i];
|
|
298 |
/* Some basic sanity checking */
|
|
299 |
assert( i==0 || pArray->aBtree[i-1]->pBt<p->pBt );
|
|
300 |
assert( p->locked || !p->sharable );
|
|
301 |
assert( p->wantToLock>0 );
|
|
302 |
|
|
303 |
/* We should already hold a lock on the database connection */
|
|
304 |
assert( sqlite3_mutex_held(p->db->mutex) );
|
|
305 |
|
|
306 |
p->wantToLock--;
|
|
307 |
if( p->wantToLock==0 && p->locked ){
|
|
308 |
sqlite3_mutex_leave(p->pBt->mutex);
|
|
309 |
p->locked = 0;
|
|
310 |
}
|
|
311 |
}
|
|
312 |
}
|
|
313 |
|
|
314 |
|
|
315 |
#endif /* SQLITE_THREADSAFE && !SQLITE_OMIT_SHARED_CACHE */
|