/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
/*
spaces
*/
#include <ode/common.h>
#include <ode/matrix.h>
#include <ode/collision_space.h>
#include <ode/collision.h>
#include "collision_kernel.h"
#include "collision_space_internal.h"
//****************************************************************************
// make the geom dirty by setting the GEOM_DIRTY and GEOM_BAD_AABB flags
// and moving it to the front of the space's list. all the parents of a
// dirty geom also become dirty.
void dGeomMoved (dxGeom *geom)
{
// if geom is offset, mark it as needing a calculate
if (geom->offset_posr) {
geom->gflags |= GEOM_POSR_BAD;
}
// from the bottom of the space heirarchy up, process all clean geoms
// turning them into dirty geoms.
dxSpace *parent = geom->parent_space;
while (parent && (geom->gflags & GEOM_DIRTY)==0) {
geom->gflags |= GEOM_DIRTY | GEOM_AABB_BAD;
parent->dirty (geom);
geom = parent;
parent = parent->parent_space;
}
// all the remaining dirty geoms must have their AABB_BAD flags set, to
// ensure that their AABBs get recomputed
while (geom) {
geom->gflags |= GEOM_DIRTY | GEOM_AABB_BAD;
geom = geom->parent_space;
}
}
#define GEOM_ENABLED(g) ((g)->gflags & GEOM_ENABLED)
//****************************************************************************
// dxSpace
dxSpace::dxSpace (dSpaceID _space) : dxGeom (_space,0)
{
count = 0;
first = 0;
cleanup = 1;
current_index = 0;
current_geom = 0;
lock_count = 0;
}
dxSpace::~dxSpace()
{
if (cleanup) {
// note that destroying each geom will call remove()
dxGeom *g,*n;
for (g = first; g; g=n) {
n = g->next;
dGeomDestroy (g);
}
}
else {
dxGeom *g,*n;
for (g = first; g; g=n) {
n = g->next;
remove (g);
}
}
}
void dxSpace::computeAABB()
{
if (first) {
int i;
dReal a[6];
a[0] = dInfinity;
a[1] = -dInfinity;
a[2] = dInfinity;
a[3] = -dInfinity;
a[4] = dInfinity;
a[5] = -dInfinity;
for (dxGeom *g=first; g; g=g->next) {
g->recomputeAABB();
for (i=0; i<6; i += 2) if (g->aabb[i] < a[i]) a[i] = g->aabb[i];
for (i=1; i<6; i += 2) if (g->aabb[i] > a[i]) a[i] = g->aabb[i];
}
memcpy(aabb,a,6*sizeof(dReal));
}
else {
dSetZero (aabb,6);
}
}
void dxSpace::setCleanup (int mode)
{
cleanup = (mode != 0);
}
int dxSpace::getCleanup()
{
return cleanup;
}
int dxSpace::query (dxGeom *geom)
{
return (geom->parent_space == this);
}
int dxSpace::getNumGeoms()
{
return count;
}
// the dirty geoms are numbered 0..k, the clean geoms are numbered k+1..count-1
dxGeom *dxSpace::getGeom (int i)
{
if (current_geom && current_index == i-1) {
current_geom = current_geom->next;
current_index = i;
return current_geom;
}
else {
dxGeom *g=first;
for (int j=0; j<i; j++) {
if (g) g = g->next; else return 0;
}
current_geom = g;
current_index = i;
return g;
}
}
void dxSpace::add (dxGeom *geom)
{
// add
geom->parent_space = this;
geom->spaceAdd (&first);
count++;
// enumerator has been invalidated
current_geom = 0;
// new geoms are added to the front of the list and are always
// considered to be dirty. as a consequence, this space and all its
// parents are dirty too.
geom->gflags |= GEOM_DIRTY | GEOM_AABB_BAD;
dGeomMoved (this);
}
void dxSpace::remove (dxGeom *geom)
{
// remove
geom->spaceRemove();
count--;
// safeguard
geom->next = 0;
geom->tome = 0;
geom->parent_space = 0;
// enumerator has been invalidated
current_geom = 0;
// the bounding box of this space (and that of all the parents) may have
// changed as a consequence of the removal.
dGeomMoved (this);
}
void dxSpace::dirty (dxGeom *geom)
{
geom->spaceRemove();
geom->spaceAdd (&first);
}
//****************************************************************************
// simple space - reports all n^2 object intersections
struct dxSimpleSpace : public dxSpace {
dxSimpleSpace (dSpaceID _space);
void cleanGeoms();
void collide (void *data, dNearCallback *callback);
void collide2 (void *data, dxGeom *geom, dNearCallback *callback);
};
dxSimpleSpace::dxSimpleSpace (dSpaceID _space) : dxSpace (_space)
{
type = dSimpleSpaceClass;
}
void dxSimpleSpace::cleanGeoms()
{
// compute the AABBs of all dirty geoms, and clear the dirty flags
lock_count++;
for (dxGeom *g=first; g && (g->gflags & GEOM_DIRTY); g=g->next) {
if (IS_SPACE(g)) {
((dxSpace*)g)->cleanGeoms();
}
g->recomputeAABB();
g->gflags &= (~(GEOM_DIRTY|GEOM_AABB_BAD));
}
lock_count--;
}
void dxSimpleSpace::collide (void *data, dNearCallback *callback)
{
lock_count++;
cleanGeoms();
// intersect all bounding boxes
for (dxGeom *g1=first; g1; g1=g1->next) {
if (GEOM_ENABLED(g1)){
for (dxGeom *g2=g1->next; g2; g2=g2->next) {
if (GEOM_ENABLED(g2)){
collideAABBs (g1,g2,data,callback);
}
}
}
}
lock_count--;
}
void dxSimpleSpace::collide2 (void *data, dxGeom *geom,
dNearCallback *callback)
{
lock_count++;
cleanGeoms();
geom->recomputeAABB();
// intersect bounding boxes
for (dxGeom *g=first; g; g=g->next) {
if (GEOM_ENABLED(g)){
collideAABBs (g,geom,data,callback);
}
}
lock_count--;
}
//****************************************************************************
// utility stuff for hash table space
// kind of silly, but oh well...
#ifndef MAXINT
#define MAXINT ((int)((((unsigned int)(-1)) << 1) >> 1))
#endif
// prime[i] is the largest prime smaller than 2^i
#define NUM_PRIMES 31
// an axis aligned bounding box in the hash table
struct dxAABB {
dxAABB *next; // next in the list of all AABBs
int level; // the level this is stored in (cell size = 2^level)
int dbounds[6]; // AABB bounds, discretized to cell size
dxGeom *geom; // corresponding geometry object (AABB stored here)
int index; // index of this AABB, starting from 0
};
// a hash table node that represents an AABB that intersects a particular cell
// at a particular level
struct Node {
Node *next; // next node in hash table collision list, 0 if none
int x,y,z; // cell position in space, discretized to cell size
dxAABB *aabb; // axis aligned bounding box that intersects this cell
};
//****************************************************************************
// space functions
EXPORT_C dxSpace *dSimpleSpaceCreate (dxSpace *space)
{
return new dxSimpleSpace (space);
}
EXPORT_C void dSpaceDestroy (dxSpace *space)
{
dGeomDestroy (space);
}
EXPORT_C void dSpaceSetCleanup (dxSpace *space, int mode)
{
space->setCleanup (mode);
}
EXPORT_C int dSpaceGetCleanup (dxSpace *space)
{
return space->getCleanup();
}
EXPORT_C void dSpaceAdd (dxSpace *space, dxGeom *g)
{
space->add (g);
}
EXPORT_C void dSpaceRemove (dxSpace *space, dxGeom *g)
{
space->remove (g);
}
EXPORT_C int dSpaceQuery (dxSpace *space, dxGeom *g)
{
return space->query (g);
}
EXPORT_C void dSpaceClean (dxSpace *space){
space->cleanGeoms();
}
EXPORT_C int dSpaceGetNumGeoms (dxSpace *space)
{
return space->getNumGeoms();
}
EXPORT_C dGeomID dSpaceGetGeom (dxSpace *space, int i)
{
return space->getGeom (i);
}
EXPORT_C void dSpaceCollide (dxSpace *space, void *data, dNearCallback *callback)
{
space->collide (data,callback);
}
EXPORT_C void dSpaceCollide2 (dxGeom *g1, dxGeom *g2, void *data,
dNearCallback *callback)
{
dxSpace *s1,*s2;
// see if either geom is a space
if (IS_SPACE(g1)) s1 = (dxSpace*) g1; else s1 = 0;
if (IS_SPACE(g2)) s2 = (dxSpace*) g2; else s2 = 0;
// handle the four space/geom cases
if (s1) {
if (s2) {
// g1 and g2 are spaces.
if (s1==s2) {
// collide a space with itself --> interior collision
s1->collide (data,callback);
}
else {
// iterate through the space that has the fewest geoms, calling
// collide2 in the other space for each one.
if (s1->count < s2->count) {
for (dxGeom *g = s1->first; g; g=g->next) {
s2->collide2 (data,g,callback);
}
}
else {
for (dxGeom *g = s2->first; g; g=g->next) {
s1->collide2 (data,g,callback);
}
}
}
}
else {
// g1 is a space, g2 is a geom
s1->collide2 (data,g2,callback);
}
}
else {
if (s2) {
// g1 is a geom, g2 is a space
s2->collide2 (data,g1,callback);
}
else {
// g1 and g2 are geoms, call the callback directly
callback (data,g1,g2);
}
}
}