0
|
1 |
/****************************************************************************
|
|
2 |
**
|
|
3 |
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
4 |
** All rights reserved.
|
|
5 |
** Contact: Nokia Corporation (qt-info@nokia.com)
|
|
6 |
**
|
|
7 |
** This file is part of the QtGui module of the Qt Toolkit.
|
|
8 |
**
|
|
9 |
** $QT_BEGIN_LICENSE:LGPL$
|
|
10 |
** No Commercial Usage
|
|
11 |
** This file contains pre-release code and may not be distributed.
|
|
12 |
** You may use this file in accordance with the terms and conditions
|
|
13 |
** contained in the Technology Preview License Agreement accompanying
|
|
14 |
** this package.
|
|
15 |
**
|
|
16 |
** GNU Lesser General Public License Usage
|
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
18 |
** General Public License version 2.1 as published by the Free Software
|
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the
|
|
20 |
** packaging of this file. Please review the following information to
|
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements
|
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
23 |
**
|
|
24 |
** In addition, as a special exception, Nokia gives you certain additional
|
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception
|
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
27 |
**
|
|
28 |
** If you have questions regarding the use of this file, please contact
|
|
29 |
** Nokia at qt-info@nokia.com.
|
|
30 |
**
|
|
31 |
**
|
|
32 |
**
|
|
33 |
**
|
|
34 |
**
|
|
35 |
**
|
|
36 |
**
|
|
37 |
**
|
|
38 |
** $QT_END_LICENSE$
|
|
39 |
**
|
|
40 |
****************************************************************************/
|
|
41 |
|
|
42 |
#include "qbezier_p.h"
|
|
43 |
#include <qdebug.h>
|
|
44 |
#include <qline.h>
|
|
45 |
#include <qpolygon.h>
|
|
46 |
#include <qvector.h>
|
|
47 |
#include <qlist.h>
|
|
48 |
#include <qmath.h>
|
|
49 |
|
|
50 |
#include <private/qnumeric_p.h>
|
|
51 |
#include <private/qmath_p.h>
|
|
52 |
|
|
53 |
QT_BEGIN_NAMESPACE
|
|
54 |
|
|
55 |
//#define QDEBUG_BEZIER
|
|
56 |
|
|
57 |
#ifdef FLOAT_ACCURACY
|
|
58 |
#define INV_EPS (1L<<23)
|
|
59 |
#else
|
|
60 |
/* The value of 1.0 / (1L<<14) is enough for most applications */
|
|
61 |
#define INV_EPS (1L<<14)
|
|
62 |
#endif
|
|
63 |
|
|
64 |
#ifndef M_SQRT2
|
|
65 |
#define M_SQRT2 1.41421356237309504880
|
|
66 |
#endif
|
|
67 |
|
|
68 |
#define log2(x) (qLn(x)/qLn(2.))
|
|
69 |
|
|
70 |
static inline qreal log4(qreal x)
|
|
71 |
{
|
|
72 |
return qreal(0.5) * log2(x);
|
|
73 |
}
|
|
74 |
|
|
75 |
/*!
|
|
76 |
\internal
|
|
77 |
*/
|
|
78 |
QBezier QBezier::fromPoints(const QPointF &p1, const QPointF &p2,
|
|
79 |
const QPointF &p3, const QPointF &p4)
|
|
80 |
{
|
|
81 |
QBezier b;
|
|
82 |
b.x1 = p1.x();
|
|
83 |
b.y1 = p1.y();
|
|
84 |
b.x2 = p2.x();
|
|
85 |
b.y2 = p2.y();
|
|
86 |
b.x3 = p3.x();
|
|
87 |
b.y3 = p3.y();
|
|
88 |
b.x4 = p4.x();
|
|
89 |
b.y4 = p4.y();
|
|
90 |
return b;
|
|
91 |
}
|
|
92 |
|
|
93 |
/*!
|
|
94 |
\internal
|
|
95 |
*/
|
|
96 |
QPolygonF QBezier::toPolygon() const
|
|
97 |
{
|
|
98 |
// flattening is done by splitting the bezier until we can replace the segment by a straight
|
|
99 |
// line. We split further until the control points are close enough to the line connecting the
|
|
100 |
// boundary points.
|
|
101 |
//
|
|
102 |
// the Distance of a point p from a line given by the points (a,b) is given by:
|
|
103 |
//
|
|
104 |
// d = abs( (bx - ax)(ay - py) - (by - ay)(ax - px) ) / line_length
|
|
105 |
//
|
|
106 |
// We can stop splitting if both control points are close enough to the line.
|
|
107 |
// To make the algorithm faster we use the manhattan length of the line.
|
|
108 |
|
|
109 |
QPolygonF polygon;
|
|
110 |
polygon.append(QPointF(x1, y1));
|
|
111 |
addToPolygon(&polygon);
|
|
112 |
return polygon;
|
|
113 |
}
|
|
114 |
|
|
115 |
//0.5 is really low
|
|
116 |
static const qreal flatness = 0.5;
|
|
117 |
|
|
118 |
//based on "Fast, precise flattening of cubic Bezier path and offset curves"
|
|
119 |
// by T. F. Hain, A. L. Ahmad, S. V. R. Racherla and D. D. Langan
|
|
120 |
static inline void flattenBezierWithoutInflections(QBezier &bez,
|
|
121 |
QPolygonF *&p)
|
|
122 |
{
|
|
123 |
QBezier left;
|
|
124 |
|
|
125 |
while (1) {
|
|
126 |
qreal dx = bez.x2 - bez.x1;
|
|
127 |
qreal dy = bez.y2 - bez.y1;
|
|
128 |
|
|
129 |
qreal normalized = qSqrt(dx * dx + dy * dy);
|
|
130 |
if (qFuzzyIsNull(normalized))
|
|
131 |
break;
|
|
132 |
|
|
133 |
qreal d = qAbs(dx * (bez.y3 - bez.y2) - dy * (bez.x3 - bez.x2));
|
|
134 |
|
|
135 |
qreal t = qSqrt(4. / 3. * normalized * flatness / d);
|
|
136 |
if (t > 1 || qFuzzyIsNull(t - (qreal)1.))
|
|
137 |
break;
|
|
138 |
bez.parameterSplitLeft(t, &left);
|
|
139 |
p->append(bez.pt1());
|
|
140 |
}
|
|
141 |
}
|
|
142 |
|
|
143 |
|
|
144 |
static inline int quadraticRoots(qreal a, qreal b, qreal c,
|
|
145 |
qreal *x1, qreal *x2)
|
|
146 |
{
|
|
147 |
if (qFuzzyIsNull(a)) {
|
|
148 |
if (qFuzzyIsNull(b))
|
|
149 |
return 0;
|
|
150 |
*x1 = *x2 = (-c / b);
|
|
151 |
return 1;
|
|
152 |
} else {
|
|
153 |
const qreal det = b * b - 4 * a * c;
|
|
154 |
if (qFuzzyIsNull(det)) {
|
|
155 |
*x1 = *x2 = -b / (2 * a);
|
|
156 |
return 1;
|
|
157 |
}
|
|
158 |
if (det > 0) {
|
|
159 |
if (qFuzzyIsNull(b)) {
|
|
160 |
*x2 = qSqrt(-c / a);
|
|
161 |
*x1 = -(*x2);
|
|
162 |
return 2;
|
|
163 |
}
|
|
164 |
const qreal stableA = b / (2 * a);
|
|
165 |
const qreal stableB = c / (a * stableA * stableA);
|
|
166 |
const qreal stableC = -1 - qSqrt(1 - stableB);
|
|
167 |
*x2 = stableA * stableC;
|
|
168 |
*x1 = (stableA * stableB) / stableC;
|
|
169 |
return 2;
|
|
170 |
} else
|
|
171 |
return 0;
|
|
172 |
}
|
|
173 |
}
|
|
174 |
|
|
175 |
static inline bool findInflections(qreal a, qreal b, qreal c,
|
|
176 |
qreal *t1 , qreal *t2, qreal *tCups)
|
|
177 |
{
|
|
178 |
qreal r1 = 0, r2 = 0;
|
|
179 |
|
|
180 |
short rootsCount = quadraticRoots(a, b, c, &r1, &r2);
|
|
181 |
|
|
182 |
if (rootsCount >= 1) {
|
|
183 |
if (r1 < r2) {
|
|
184 |
*t1 = r1;
|
|
185 |
*t2 = r2;
|
|
186 |
} else {
|
|
187 |
*t1 = r2;
|
|
188 |
*t2 = r1;
|
|
189 |
}
|
|
190 |
if (!qFuzzyIsNull(a))
|
|
191 |
*tCups = 0.5 * (-b / a);
|
|
192 |
else
|
|
193 |
*tCups = 2;
|
|
194 |
|
|
195 |
return true;
|
|
196 |
}
|
|
197 |
|
|
198 |
return false;
|
|
199 |
}
|
|
200 |
|
|
201 |
|
|
202 |
void QBezier::addToPolygon(QPolygonF *polygon) const
|
|
203 |
{
|
|
204 |
QBezier beziers[32];
|
|
205 |
beziers[0] = *this;
|
|
206 |
QBezier *b = beziers;
|
|
207 |
|
|
208 |
while (b >= beziers) {
|
|
209 |
// check if we can pop the top bezier curve from the stack
|
|
210 |
qreal y4y1 = b->y4 - b->y1;
|
|
211 |
qreal x4x1 = b->x4 - b->x1;
|
|
212 |
qreal l = qAbs(x4x1) + qAbs(y4y1);
|
|
213 |
qreal d;
|
|
214 |
if (l > 1.) {
|
|
215 |
d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
|
|
216 |
+ qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
|
|
217 |
} else {
|
|
218 |
d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
|
|
219 |
qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
|
|
220 |
l = 1.;
|
|
221 |
}
|
|
222 |
if (d < flatness*l || b == beziers + 31) {
|
|
223 |
// good enough, we pop it off and add the endpoint
|
|
224 |
polygon->append(QPointF(b->x4, b->y4));
|
|
225 |
--b;
|
|
226 |
} else {
|
|
227 |
// split, second half of the polygon goes lower into the stack
|
|
228 |
b->split(b+1, b);
|
|
229 |
++b;
|
|
230 |
}
|
|
231 |
}
|
|
232 |
}
|
|
233 |
|
|
234 |
void QBezier::addToPolygonMixed(QPolygonF *polygon) const
|
|
235 |
{
|
|
236 |
qreal ax = -x1 + 3*x2 - 3*x3 + x4;
|
|
237 |
qreal ay = -y1 + 3*y2 - 3*y3 + y4;
|
|
238 |
qreal bx = 3*x1 - 6*x2 + 3*x3;
|
|
239 |
qreal by = 3*y1 - 6*y2 + 3*y3;
|
|
240 |
qreal cx = -3*x1 + 3*x2;
|
|
241 |
qreal cy = -3*y1 + 2*y2;
|
|
242 |
qreal a = 6 * (ay * bx - ax * by);
|
|
243 |
qreal b = 6 * (ay * cx - ax * cy);
|
|
244 |
qreal c = 2 * (by * cx - bx * cy);
|
|
245 |
|
|
246 |
if ((qFuzzyIsNull(a) && qFuzzyIsNull(b)) ||
|
|
247 |
(b * b - 4 * a *c) < 0) {
|
|
248 |
QBezier bez(*this);
|
|
249 |
flattenBezierWithoutInflections(bez, polygon);
|
|
250 |
polygon->append(QPointF(x4, y4));
|
|
251 |
} else {
|
|
252 |
QBezier beziers[32];
|
|
253 |
beziers[0] = *this;
|
|
254 |
QBezier *b = beziers;
|
|
255 |
|
|
256 |
while (b >= beziers) {
|
|
257 |
// check if we can pop the top bezier curve from the stack
|
|
258 |
qreal y4y1 = b->y4 - b->y1;
|
|
259 |
qreal x4x1 = b->x4 - b->x1;
|
|
260 |
qreal l = qAbs(x4x1) + qAbs(y4y1);
|
|
261 |
qreal d;
|
|
262 |
if (l > 1.) {
|
|
263 |
d = qAbs( (x4x1)*(b->y1 - b->y2) - (y4y1)*(b->x1 - b->x2) )
|
|
264 |
+ qAbs( (x4x1)*(b->y1 - b->y3) - (y4y1)*(b->x1 - b->x3) );
|
|
265 |
} else {
|
|
266 |
d = qAbs(b->x1 - b->x2) + qAbs(b->y1 - b->y2) +
|
|
267 |
qAbs(b->x1 - b->x3) + qAbs(b->y1 - b->y3);
|
|
268 |
l = 1.;
|
|
269 |
}
|
|
270 |
if (d < .5*l || b == beziers + 31) {
|
|
271 |
// good enough, we pop it off and add the endpoint
|
|
272 |
polygon->append(QPointF(b->x4, b->y4));
|
|
273 |
--b;
|
|
274 |
} else {
|
|
275 |
// split, second half of the polygon goes lower into the stack
|
|
276 |
b->split(b+1, b);
|
|
277 |
++b;
|
|
278 |
}
|
|
279 |
}
|
|
280 |
}
|
|
281 |
}
|
|
282 |
|
|
283 |
QRectF QBezier::bounds() const
|
|
284 |
{
|
|
285 |
qreal xmin = x1;
|
|
286 |
qreal xmax = x1;
|
|
287 |
if (x2 < xmin)
|
|
288 |
xmin = x2;
|
|
289 |
else if (x2 > xmax)
|
|
290 |
xmax = x2;
|
|
291 |
if (x3 < xmin)
|
|
292 |
xmin = x3;
|
|
293 |
else if (x3 > xmax)
|
|
294 |
xmax = x3;
|
|
295 |
if (x4 < xmin)
|
|
296 |
xmin = x4;
|
|
297 |
else if (x4 > xmax)
|
|
298 |
xmax = x4;
|
|
299 |
|
|
300 |
qreal ymin = y1;
|
|
301 |
qreal ymax = y1;
|
|
302 |
if (y2 < ymin)
|
|
303 |
ymin = y2;
|
|
304 |
else if (y2 > ymax)
|
|
305 |
ymax = y2;
|
|
306 |
if (y3 < ymin)
|
|
307 |
ymin = y3;
|
|
308 |
else if (y3 > ymax)
|
|
309 |
ymax = y3;
|
|
310 |
if (y4 < ymin)
|
|
311 |
ymin = y4;
|
|
312 |
else if (y4 > ymax)
|
|
313 |
ymax = y4;
|
|
314 |
return QRectF(xmin, ymin, xmax-xmin, ymax-ymin);
|
|
315 |
}
|
|
316 |
|
|
317 |
|
|
318 |
enum ShiftResult {
|
|
319 |
Ok,
|
|
320 |
Discard,
|
|
321 |
Split,
|
|
322 |
Circle
|
|
323 |
};
|
|
324 |
|
|
325 |
static ShiftResult good_offset(const QBezier *b1, const QBezier *b2, qreal offset, qreal threshold)
|
|
326 |
{
|
|
327 |
const qreal o2 = offset*offset;
|
|
328 |
const qreal max_dist_line = threshold*offset*offset;
|
|
329 |
const qreal max_dist_normal = threshold*offset;
|
|
330 |
const qreal spacing = 0.25;
|
|
331 |
for (qreal i = spacing; i < 0.99; i += spacing) {
|
|
332 |
QPointF p1 = b1->pointAt(i);
|
|
333 |
QPointF p2 = b2->pointAt(i);
|
|
334 |
qreal d = (p1.x() - p2.x())*(p1.x() - p2.x()) + (p1.y() - p2.y())*(p1.y() - p2.y());
|
|
335 |
if (qAbs(d - o2) > max_dist_line)
|
|
336 |
return Split;
|
|
337 |
|
|
338 |
QPointF normalPoint = b1->normalVector(i);
|
|
339 |
qreal l = qAbs(normalPoint.x()) + qAbs(normalPoint.y());
|
|
340 |
if (l != 0.) {
|
|
341 |
d = qAbs( normalPoint.x()*(p1.y() - p2.y()) - normalPoint.y()*(p1.x() - p2.x()) ) / l;
|
|
342 |
if (d > max_dist_normal)
|
|
343 |
return Split;
|
|
344 |
}
|
|
345 |
}
|
|
346 |
return Ok;
|
|
347 |
}
|
|
348 |
|
|
349 |
static inline QLineF qline_shifted(const QPointF &p1, const QPointF &p2, qreal offset)
|
|
350 |
{
|
|
351 |
QLineF l(p1, p2);
|
|
352 |
QLineF ln = l.normalVector().unitVector();
|
|
353 |
l.translate(ln.dx() * offset, ln.dy() * offset);
|
|
354 |
return l;
|
|
355 |
}
|
|
356 |
|
|
357 |
static bool qbezier_is_line(QPointF *points, int pointCount)
|
|
358 |
{
|
|
359 |
Q_ASSERT(pointCount > 2);
|
|
360 |
|
|
361 |
qreal dx13 = points[2].x() - points[0].x();
|
|
362 |
qreal dy13 = points[2].y() - points[0].y();
|
|
363 |
|
|
364 |
qreal dx12 = points[1].x() - points[0].x();
|
|
365 |
qreal dy12 = points[1].y() - points[0].y();
|
|
366 |
|
|
367 |
if (pointCount == 3) {
|
|
368 |
return qFuzzyCompare(dx12 * dy13, dx13 * dy12);
|
|
369 |
} else if (pointCount == 4) {
|
|
370 |
qreal dx14 = points[3].x() - points[0].x();
|
|
371 |
qreal dy14 = points[3].y() - points[0].y();
|
|
372 |
|
|
373 |
return (qFuzzyCompare(dx12 * dy13, dx13 * dy12) && qFuzzyCompare(dx12 * dy14, dx14 * dy12));
|
|
374 |
}
|
|
375 |
|
|
376 |
return false;
|
|
377 |
}
|
|
378 |
|
|
379 |
static ShiftResult shift(const QBezier *orig, QBezier *shifted, qreal offset, qreal threshold)
|
|
380 |
{
|
|
381 |
int map[4];
|
|
382 |
bool p1_p2_equal = (orig->x1 == orig->x2 && orig->y1 == orig->y2);
|
|
383 |
bool p2_p3_equal = (orig->x2 == orig->x3 && orig->y2 == orig->y3);
|
|
384 |
bool p3_p4_equal = (orig->x3 == orig->x4 && orig->y3 == orig->y4);
|
|
385 |
|
|
386 |
QPointF points[4];
|
|
387 |
int np = 0;
|
|
388 |
points[np] = QPointF(orig->x1, orig->y1);
|
|
389 |
map[0] = 0;
|
|
390 |
++np;
|
|
391 |
if (!p1_p2_equal) {
|
|
392 |
points[np] = QPointF(orig->x2, orig->y2);
|
|
393 |
++np;
|
|
394 |
}
|
|
395 |
map[1] = np - 1;
|
|
396 |
if (!p2_p3_equal) {
|
|
397 |
points[np] = QPointF(orig->x3, orig->y3);
|
|
398 |
++np;
|
|
399 |
}
|
|
400 |
map[2] = np - 1;
|
|
401 |
if (!p3_p4_equal) {
|
|
402 |
points[np] = QPointF(orig->x4, orig->y4);
|
|
403 |
++np;
|
|
404 |
}
|
|
405 |
map[3] = np - 1;
|
|
406 |
if (np == 1)
|
|
407 |
return Discard;
|
|
408 |
|
|
409 |
// We need to specialcase lines of 3 or 4 points due to numerical
|
|
410 |
// instability in intersections below
|
|
411 |
if (np > 2 && qbezier_is_line(points, np)) {
|
|
412 |
if (points[0] == points[np-1])
|
|
413 |
return Discard;
|
|
414 |
|
|
415 |
QLineF l = qline_shifted(points[0], points[np-1], offset);
|
|
416 |
*shifted = QBezier::fromPoints(l.p1(), l.pointAt(qreal(0.33)), l.pointAt(qreal(0.66)), l.p2());
|
|
417 |
return Ok;
|
|
418 |
}
|
|
419 |
|
|
420 |
QRectF b = orig->bounds();
|
|
421 |
if (np == 4 && b.width() < .1*offset && b.height() < .1*offset) {
|
|
422 |
qreal l = (orig->x1 - orig->x2)*(orig->x1 - orig->x2) +
|
|
423 |
(orig->y1 - orig->y2)*(orig->y1 - orig->y1) *
|
|
424 |
(orig->x3 - orig->x4)*(orig->x3 - orig->x4) +
|
|
425 |
(orig->y3 - orig->y4)*(orig->y3 - orig->y4);
|
|
426 |
qreal dot = (orig->x1 - orig->x2)*(orig->x3 - orig->x4) +
|
|
427 |
(orig->y1 - orig->y2)*(orig->y3 - orig->y4);
|
|
428 |
if (dot < 0 && dot*dot < 0.8*l)
|
|
429 |
// the points are close and reverse dirction. Approximate the whole
|
|
430 |
// thing by a semi circle
|
|
431 |
return Circle;
|
|
432 |
}
|
|
433 |
|
|
434 |
QPointF points_shifted[4];
|
|
435 |
|
|
436 |
QLineF prev = QLineF(QPointF(), points[1] - points[0]);
|
|
437 |
QPointF prev_normal = prev.normalVector().unitVector().p2();
|
|
438 |
|
|
439 |
points_shifted[0] = points[0] + offset * prev_normal;
|
|
440 |
|
|
441 |
for (int i = 1; i < np - 1; ++i) {
|
|
442 |
QLineF next = QLineF(QPointF(), points[i + 1] - points[i]);
|
|
443 |
QPointF next_normal = next.normalVector().unitVector().p2();
|
|
444 |
|
|
445 |
QPointF normal_sum = prev_normal + next_normal;
|
|
446 |
|
|
447 |
qreal r = 1.0 + prev_normal.x() * next_normal.x()
|
|
448 |
+ prev_normal.y() * next_normal.y();
|
|
449 |
|
|
450 |
if (qFuzzyIsNull(r)) {
|
|
451 |
points_shifted[i] = points[i] + offset * prev_normal;
|
|
452 |
} else {
|
|
453 |
qreal k = offset / r;
|
|
454 |
points_shifted[i] = points[i] + k * normal_sum;
|
|
455 |
}
|
|
456 |
|
|
457 |
prev_normal = next_normal;
|
|
458 |
}
|
|
459 |
|
|
460 |
points_shifted[np - 1] = points[np - 1] + offset * prev_normal;
|
|
461 |
|
|
462 |
*shifted = QBezier::fromPoints(points_shifted[map[0]], points_shifted[map[1]],
|
|
463 |
points_shifted[map[2]], points_shifted[map[3]]);
|
|
464 |
|
|
465 |
return good_offset(orig, shifted, offset, threshold);
|
|
466 |
}
|
|
467 |
|
|
468 |
// This value is used to determine the length of control point vectors
|
|
469 |
// when approximating arc segments as curves. The factor is multiplied
|
|
470 |
// with the radius of the circle.
|
|
471 |
#define KAPPA 0.5522847498
|
|
472 |
|
|
473 |
|
|
474 |
static bool addCircle(const QBezier *b, qreal offset, QBezier *o)
|
|
475 |
{
|
|
476 |
QPointF normals[3];
|
|
477 |
|
|
478 |
normals[0] = QPointF(b->y2 - b->y1, b->x1 - b->x2);
|
|
479 |
qreal dist = qSqrt(normals[0].x()*normals[0].x() + normals[0].y()*normals[0].y());
|
|
480 |
if (qFuzzyIsNull(dist))
|
|
481 |
return false;
|
|
482 |
normals[0] /= dist;
|
|
483 |
normals[2] = QPointF(b->y4 - b->y3, b->x3 - b->x4);
|
|
484 |
dist = qSqrt(normals[2].x()*normals[2].x() + normals[2].y()*normals[2].y());
|
|
485 |
if (qFuzzyIsNull(dist))
|
|
486 |
return false;
|
|
487 |
normals[2] /= dist;
|
|
488 |
|
|
489 |
normals[1] = QPointF(b->x1 - b->x2 - b->x3 + b->x4, b->y1 - b->y2 - b->y3 + b->y4);
|
|
490 |
normals[1] /= -1*qSqrt(normals[1].x()*normals[1].x() + normals[1].y()*normals[1].y());
|
|
491 |
|
|
492 |
qreal angles[2];
|
|
493 |
qreal sign = 1.;
|
|
494 |
for (int i = 0; i < 2; ++i) {
|
|
495 |
qreal cos_a = normals[i].x()*normals[i+1].x() + normals[i].y()*normals[i+1].y();
|
|
496 |
if (cos_a > 1.)
|
|
497 |
cos_a = 1.;
|
|
498 |
if (cos_a < -1.)
|
|
499 |
cos_a = -1;
|
|
500 |
angles[i] = acos(cos_a)/Q_PI;
|
|
501 |
}
|
|
502 |
|
|
503 |
if (angles[0] + angles[1] > 1.) {
|
|
504 |
// more than 180 degrees
|
|
505 |
normals[1] = -normals[1];
|
|
506 |
angles[0] = 1. - angles[0];
|
|
507 |
angles[1] = 1. - angles[1];
|
|
508 |
sign = -1.;
|
|
509 |
|
|
510 |
}
|
|
511 |
|
|
512 |
QPointF circle[3];
|
|
513 |
circle[0] = QPointF(b->x1, b->y1) + normals[0]*offset;
|
|
514 |
circle[1] = QPointF(0.5*(b->x1 + b->x4), 0.5*(b->y1 + b->y4)) + normals[1]*offset;
|
|
515 |
circle[2] = QPointF(b->x4, b->y4) + normals[2]*offset;
|
|
516 |
|
|
517 |
for (int i = 0; i < 2; ++i) {
|
|
518 |
qreal kappa = 2.*KAPPA * sign * offset * angles[i];
|
|
519 |
|
|
520 |
o->x1 = circle[i].x();
|
|
521 |
o->y1 = circle[i].y();
|
|
522 |
o->x2 = circle[i].x() - normals[i].y()*kappa;
|
|
523 |
o->y2 = circle[i].y() + normals[i].x()*kappa;
|
|
524 |
o->x3 = circle[i+1].x() + normals[i+1].y()*kappa;
|
|
525 |
o->y3 = circle[i+1].y() - normals[i+1].x()*kappa;
|
|
526 |
o->x4 = circle[i+1].x();
|
|
527 |
o->y4 = circle[i+1].y();
|
|
528 |
|
|
529 |
++o;
|
|
530 |
}
|
|
531 |
return true;
|
|
532 |
}
|
|
533 |
|
|
534 |
int QBezier::shifted(QBezier *curveSegments, int maxSegments, qreal offset, float threshold) const
|
|
535 |
{
|
|
536 |
Q_ASSERT(curveSegments);
|
|
537 |
Q_ASSERT(maxSegments > 0);
|
|
538 |
|
|
539 |
if (x1 == x2 && x1 == x3 && x1 == x4 &&
|
|
540 |
y1 == y2 && y1 == y3 && y1 == y4)
|
|
541 |
return 0;
|
|
542 |
|
|
543 |
--maxSegments;
|
|
544 |
QBezier beziers[10];
|
|
545 |
redo:
|
|
546 |
beziers[0] = *this;
|
|
547 |
QBezier *b = beziers;
|
|
548 |
QBezier *o = curveSegments;
|
|
549 |
|
|
550 |
while (b >= beziers) {
|
|
551 |
int stack_segments = b - beziers + 1;
|
|
552 |
if ((stack_segments == 10) || (o - curveSegments == maxSegments - stack_segments)) {
|
|
553 |
threshold *= 1.5;
|
|
554 |
if (threshold > 2.)
|
|
555 |
goto give_up;
|
|
556 |
goto redo;
|
|
557 |
}
|
|
558 |
ShiftResult res = shift(b, o, offset, threshold);
|
|
559 |
if (res == Discard) {
|
|
560 |
--b;
|
|
561 |
} else if (res == Ok) {
|
|
562 |
++o;
|
|
563 |
--b;
|
|
564 |
continue;
|
|
565 |
} else if (res == Circle && maxSegments - (o - curveSegments) >= 2) {
|
|
566 |
// add semi circle
|
|
567 |
if (addCircle(b, offset, o))
|
|
568 |
o += 2;
|
|
569 |
--b;
|
|
570 |
} else {
|
|
571 |
b->split(b+1, b);
|
|
572 |
++b;
|
|
573 |
}
|
|
574 |
}
|
|
575 |
|
|
576 |
give_up:
|
|
577 |
while (b >= beziers) {
|
|
578 |
ShiftResult res = shift(b, o, offset, threshold);
|
|
579 |
|
|
580 |
// if res isn't Ok or Split then *o is undefined
|
|
581 |
if (res == Ok || res == Split)
|
|
582 |
++o;
|
|
583 |
|
|
584 |
--b;
|
|
585 |
}
|
|
586 |
|
|
587 |
Q_ASSERT(o - curveSegments <= maxSegments);
|
|
588 |
return o - curveSegments;
|
|
589 |
}
|
|
590 |
|
|
591 |
#if 0
|
|
592 |
static inline bool IntersectBB(const QBezier &a, const QBezier &b)
|
|
593 |
{
|
|
594 |
return a.bounds().intersects(b.bounds());
|
|
595 |
}
|
|
596 |
#else
|
|
597 |
static int IntersectBB(const QBezier &a, const QBezier &b)
|
|
598 |
{
|
|
599 |
// Compute bounding box for a
|
|
600 |
qreal minax, maxax, minay, maxay;
|
|
601 |
if (a.x1 > a.x4) // These are the most likely to be extremal
|
|
602 |
minax = a.x4, maxax = a.x1;
|
|
603 |
else
|
|
604 |
minax = a.x1, maxax = a.x4;
|
|
605 |
|
|
606 |
if (a.x3 < minax)
|
|
607 |
minax = a.x3;
|
|
608 |
else if (a.x3 > maxax)
|
|
609 |
maxax = a.x3;
|
|
610 |
|
|
611 |
if (a.x2 < minax)
|
|
612 |
minax = a.x2;
|
|
613 |
else if (a.x2 > maxax)
|
|
614 |
maxax = a.x2;
|
|
615 |
|
|
616 |
if (a.y1 > a.y4)
|
|
617 |
minay = a.y4, maxay = a.y1;
|
|
618 |
else
|
|
619 |
minay = a.y1, maxay = a.y4;
|
|
620 |
|
|
621 |
if (a.y3 < minay)
|
|
622 |
minay = a.y3;
|
|
623 |
else if (a.y3 > maxay)
|
|
624 |
maxay = a.y3;
|
|
625 |
|
|
626 |
if (a.y2 < minay)
|
|
627 |
minay = a.y2;
|
|
628 |
else if (a.y2 > maxay)
|
|
629 |
maxay = a.y2;
|
|
630 |
|
|
631 |
// Compute bounding box for b
|
|
632 |
qreal minbx, maxbx, minby, maxby;
|
|
633 |
if (b.x1 > b.x4)
|
|
634 |
minbx = b.x4, maxbx = b.x1;
|
|
635 |
else
|
|
636 |
minbx = b.x1, maxbx = b.x4;
|
|
637 |
|
|
638 |
if (b.x3 < minbx)
|
|
639 |
minbx = b.x3;
|
|
640 |
else if (b.x3 > maxbx)
|
|
641 |
maxbx = b.x3;
|
|
642 |
|
|
643 |
if (b.x2 < minbx)
|
|
644 |
minbx = b.x2;
|
|
645 |
else if (b.x2 > maxbx)
|
|
646 |
maxbx = b.x2;
|
|
647 |
|
|
648 |
if (b.y1 > b.y4)
|
|
649 |
minby = b.y4, maxby = b.y1;
|
|
650 |
else
|
|
651 |
minby = b.y1, maxby = b.y4;
|
|
652 |
|
|
653 |
if (b.y3 < minby)
|
|
654 |
minby = b.y3;
|
|
655 |
else if (b.y3 > maxby)
|
|
656 |
maxby = b.y3;
|
|
657 |
|
|
658 |
if (b.y2 < minby)
|
|
659 |
minby = b.y2;
|
|
660 |
else if (b.y2 > maxby)
|
|
661 |
maxby = b.y2;
|
|
662 |
|
|
663 |
// Test bounding box of b against bounding box of a
|
|
664 |
if ((minax > maxbx) || (minay > maxby) // Not >= : need boundary case
|
|
665 |
|| (minbx > maxax) || (minby > maxay))
|
|
666 |
return 0; // they don't intersect
|
|
667 |
else
|
|
668 |
return 1; // they intersect
|
|
669 |
}
|
|
670 |
#endif
|
|
671 |
|
|
672 |
|
|
673 |
#ifdef QDEBUG_BEZIER
|
|
674 |
static QDebug operator<<(QDebug dbg, const QBezier &bz)
|
|
675 |
{
|
|
676 |
dbg << '[' << bz.x1<< ", " << bz.y1 << "], "
|
|
677 |
<< '[' << bz.x2 <<", " << bz.y2 << "], "
|
|
678 |
<< '[' << bz.x3 <<", " << bz.y3 << "], "
|
|
679 |
<< '[' << bz.x4 <<", " << bz.y4 << ']';
|
|
680 |
return dbg;
|
|
681 |
}
|
|
682 |
#endif
|
|
683 |
|
|
684 |
static bool RecursivelyIntersect(const QBezier &a, qreal t0, qreal t1, int deptha,
|
|
685 |
const QBezier &b, qreal u0, qreal u1, int depthb,
|
|
686 |
QVector<QPair<qreal, qreal> > *t)
|
|
687 |
{
|
|
688 |
#ifdef QDEBUG_BEZIER
|
|
689 |
static int I = 0;
|
|
690 |
int currentD = I;
|
|
691 |
fprintf(stderr, "%d) t0 = %lf, t1 = %lf, deptha = %d\n"
|
|
692 |
"u0 = %lf, u1 = %lf, depthb = %d\n", I++, t0, t1, deptha,
|
|
693 |
u0, u1, depthb);
|
|
694 |
#endif
|
|
695 |
if (deptha > 0) {
|
|
696 |
QBezier A[2];
|
|
697 |
a.split(&A[0], &A[1]);
|
|
698 |
qreal tmid = (t0+t1)*0.5;
|
|
699 |
//qDebug()<<"\t1)"<<A[0];
|
|
700 |
//qDebug()<<"\t2)"<<A[1];
|
|
701 |
deptha--;
|
|
702 |
if (depthb > 0) {
|
|
703 |
QBezier B[2];
|
|
704 |
b.split(&B[0], &B[1]);
|
|
705 |
//qDebug()<<"\t3)"<<B[0];
|
|
706 |
//qDebug()<<"\t4)"<<B[1];
|
|
707 |
qreal umid = (u0+u1)*0.5;
|
|
708 |
depthb--;
|
|
709 |
if (IntersectBB(A[0], B[0])) {
|
|
710 |
//fprintf(stderr, "\t 1 from %d\n", currentD);
|
|
711 |
if (RecursivelyIntersect(A[0], t0, tmid, deptha,
|
|
712 |
B[0], u0, umid, depthb,
|
|
713 |
t) && !t)
|
|
714 |
return true;
|
|
715 |
}
|
|
716 |
if (IntersectBB(A[1], B[0])) {
|
|
717 |
//fprintf(stderr, "\t 2 from %d\n", currentD);
|
|
718 |
if (RecursivelyIntersect(A[1], tmid, t1, deptha,
|
|
719 |
B[0], u0, umid, depthb,
|
|
720 |
t) && !t)
|
|
721 |
return true;
|
|
722 |
}
|
|
723 |
if (IntersectBB(A[0], B[1])) {
|
|
724 |
//fprintf(stderr, "\t 3 from %d\n", currentD);
|
|
725 |
if (RecursivelyIntersect(A[0], t0, tmid, deptha,
|
|
726 |
B[1], umid, u1, depthb,
|
|
727 |
t) && !t)
|
|
728 |
return true;
|
|
729 |
}
|
|
730 |
if (IntersectBB(A[1], B[1])) {
|
|
731 |
//fprintf(stderr, "\t 4 from %d\n", currentD);
|
|
732 |
if (RecursivelyIntersect(A[1], tmid, t1, deptha,
|
|
733 |
B[1], umid, u1, depthb,
|
|
734 |
t) && !t)
|
|
735 |
return true;
|
|
736 |
}
|
|
737 |
return t ? !t->isEmpty() : false;
|
|
738 |
} else {
|
|
739 |
if (IntersectBB(A[0], b)) {
|
|
740 |
//fprintf(stderr, "\t 5 from %d\n", currentD);
|
|
741 |
if (RecursivelyIntersect(A[0], t0, tmid, deptha,
|
|
742 |
b, u0, u1, depthb,
|
|
743 |
t) && !t)
|
|
744 |
return true;
|
|
745 |
}
|
|
746 |
if (IntersectBB(A[1], b)) {
|
|
747 |
//fprintf(stderr, "\t 6 from %d\n", currentD);
|
|
748 |
if (RecursivelyIntersect(A[1], tmid, t1, deptha,
|
|
749 |
b, u0, u1, depthb,
|
|
750 |
t) && !t)
|
|
751 |
return true;
|
|
752 |
}
|
|
753 |
return t ? !t->isEmpty() : false;
|
|
754 |
}
|
|
755 |
} else {
|
|
756 |
if (depthb > 0) {
|
|
757 |
QBezier B[2];
|
|
758 |
b.split(&B[0], &B[1]);
|
|
759 |
qreal umid = (u0 + u1)*0.5;
|
|
760 |
depthb--;
|
|
761 |
if (IntersectBB(a, B[0])) {
|
|
762 |
//fprintf(stderr, "\t 7 from %d\n", currentD);
|
|
763 |
if (RecursivelyIntersect(a, t0, t1, deptha,
|
|
764 |
B[0], u0, umid, depthb,
|
|
765 |
t) && !t)
|
|
766 |
return true;
|
|
767 |
}
|
|
768 |
if (IntersectBB(a, B[1])) {
|
|
769 |
//fprintf(stderr, "\t 8 from %d\n", currentD);
|
|
770 |
if (RecursivelyIntersect(a, t0, t1, deptha,
|
|
771 |
B[1], umid, u1, depthb,
|
|
772 |
t) && !t)
|
|
773 |
return true;
|
|
774 |
}
|
|
775 |
return t ? !t->isEmpty() : false;
|
|
776 |
}
|
|
777 |
else {
|
|
778 |
// Both segments are fully subdivided; now do line segments
|
|
779 |
qreal xlk = a.x4 - a.x1;
|
|
780 |
qreal ylk = a.y4 - a.y1;
|
|
781 |
qreal xnm = b.x4 - b.x1;
|
|
782 |
qreal ynm = b.y4 - b.y1;
|
|
783 |
qreal xmk = b.x1 - a.x1;
|
|
784 |
qreal ymk = b.y1 - a.y1;
|
|
785 |
qreal det = xnm * ylk - ynm * xlk;
|
|
786 |
if (1.0 + det == 1.0) {
|
|
787 |
return false;
|
|
788 |
} else {
|
|
789 |
qreal detinv = 1.0 / det;
|
|
790 |
qreal rs = (xnm * ymk - ynm *xmk) * detinv;
|
|
791 |
qreal rt = (xlk * ymk - ylk * xmk) * detinv;
|
|
792 |
if ((rs < 0.0) || (rs > 1.0) || (rt < 0.0) || (rt > 1.0))
|
|
793 |
return false;
|
|
794 |
|
|
795 |
if (t) {
|
|
796 |
const qreal alpha_a = t0 + rs * (t1 - t0);
|
|
797 |
const qreal alpha_b = u0 + rt * (u1 - u0);
|
|
798 |
|
|
799 |
*t << qMakePair(alpha_a, alpha_b);
|
|
800 |
}
|
|
801 |
|
|
802 |
return true;
|
|
803 |
}
|
|
804 |
}
|
|
805 |
}
|
|
806 |
}
|
|
807 |
|
|
808 |
QVector< QPair<qreal, qreal> > QBezier::findIntersections(const QBezier &a, const QBezier &b)
|
|
809 |
{
|
|
810 |
QVector< QPair<qreal, qreal> > v(2);
|
|
811 |
findIntersections(a, b, &v);
|
|
812 |
return v;
|
|
813 |
}
|
|
814 |
|
|
815 |
bool QBezier::findIntersections(const QBezier &a, const QBezier &b,
|
|
816 |
QVector<QPair<qreal, qreal> > *t)
|
|
817 |
{
|
|
818 |
if (IntersectBB(a, b)) {
|
|
819 |
QPointF la1(fabs((a.x3 - a.x2) - (a.x2 - a.x1)),
|
|
820 |
fabs((a.y3 - a.y2) - (a.y2 - a.y1)));
|
|
821 |
QPointF la2(fabs((a.x4 - a.x3) - (a.x3 - a.x2)),
|
|
822 |
fabs((a.y4 - a.y3) - (a.y3 - a.y2)));
|
|
823 |
QPointF la;
|
|
824 |
if (la1.x() > la2.x()) la.setX(la1.x()); else la.setX(la2.x());
|
|
825 |
if (la1.y() > la2.y()) la.setY(la1.y()); else la.setY(la2.y());
|
|
826 |
QPointF lb1(fabs((b.x3 - b.x2) - (b.x2 - b.x1)),
|
|
827 |
fabs((b.y3 - b.y2) - (b.y2 - b.y1)));
|
|
828 |
QPointF lb2(fabs((b.x4 - b.x3) - (b.x3 - b.x2)),
|
|
829 |
fabs((b.y4 - b.y3) - (b.y3 - b.y2)));
|
|
830 |
QPointF lb;
|
|
831 |
if (lb1.x() > lb2.x()) lb.setX(lb1.x()); else lb.setX(lb2.x());
|
|
832 |
if (lb1.y() > lb2.y()) lb.setY(lb1.y()); else lb.setY(lb2.y());
|
|
833 |
qreal l0;
|
|
834 |
if (la.x() > la.y())
|
|
835 |
l0 = la.x();
|
|
836 |
else
|
|
837 |
l0 = la.y();
|
|
838 |
int ra;
|
|
839 |
if (l0 * 0.75 * M_SQRT2 + 1.0 == 1.0)
|
|
840 |
ra = 0;
|
|
841 |
else
|
|
842 |
ra = qCeil(log4(M_SQRT2 * 6.0 / 8.0 * INV_EPS * l0));
|
|
843 |
if (lb.x() > lb.y())
|
|
844 |
l0 = lb.x();
|
|
845 |
else
|
|
846 |
l0 = lb.y();
|
|
847 |
int rb;
|
|
848 |
if (l0 * 0.75 * M_SQRT2 + 1.0 == 1.0)
|
|
849 |
rb = 0;
|
|
850 |
else
|
|
851 |
rb = qCeil(log4(M_SQRT2 * 6.0 / 8.0 * INV_EPS * l0));
|
|
852 |
|
|
853 |
// if qreal is float then halve the number of subdivisions
|
|
854 |
if (sizeof(qreal) == 4) {
|
|
855 |
ra /= 2;
|
|
856 |
rb /= 2;
|
|
857 |
}
|
|
858 |
|
|
859 |
return RecursivelyIntersect(a, 0., 1., ra, b, 0., 1., rb, t);
|
|
860 |
}
|
|
861 |
|
|
862 |
//Don't sort here because it breaks the orders of corresponding
|
|
863 |
// intersections points. this way t's at the same locations correspond
|
|
864 |
// to the same intersection point.
|
|
865 |
//qSort(parameters[0].begin(), parameters[0].end(), qLess<qreal>());
|
|
866 |
//qSort(parameters[1].begin(), parameters[1].end(), qLess<qreal>());
|
|
867 |
|
|
868 |
return false;
|
|
869 |
}
|
|
870 |
|
|
871 |
static inline void splitBezierAt(const QBezier &bez, qreal t,
|
|
872 |
QBezier *left, QBezier *right)
|
|
873 |
{
|
|
874 |
left->x1 = bez.x1;
|
|
875 |
left->y1 = bez.y1;
|
|
876 |
|
|
877 |
left->x2 = bez.x1 + t * ( bez.x2 - bez.x1 );
|
|
878 |
left->y2 = bez.y1 + t * ( bez.y2 - bez.y1 );
|
|
879 |
|
|
880 |
left->x3 = bez.x2 + t * ( bez.x3 - bez.x2 ); // temporary holding spot
|
|
881 |
left->y3 = bez.y2 + t * ( bez.y3 - bez.y2 ); // temporary holding spot
|
|
882 |
|
|
883 |
right->x3 = bez.x3 + t * ( bez.x4 - bez.x3 );
|
|
884 |
right->y3 = bez.y3 + t * ( bez.y4 - bez.y3 );
|
|
885 |
|
|
886 |
right->x2 = left->x3 + t * ( right->x3 - left->x3);
|
|
887 |
right->y2 = left->y3 + t * ( right->y3 - left->y3);
|
|
888 |
|
|
889 |
left->x3 = left->x2 + t * ( left->x3 - left->x2 );
|
|
890 |
left->y3 = left->y2 + t * ( left->y3 - left->y2 );
|
|
891 |
|
|
892 |
left->x4 = right->x1 = left->x3 + t * (right->x2 - left->x3);
|
|
893 |
left->y4 = right->y1 = left->y3 + t * (right->y2 - left->y3);
|
|
894 |
|
|
895 |
right->x4 = bez.x4;
|
|
896 |
right->y4 = bez.y4;
|
|
897 |
}
|
|
898 |
|
|
899 |
QVector< QList<QBezier> > QBezier::splitAtIntersections(QBezier &b)
|
|
900 |
{
|
|
901 |
QVector< QList<QBezier> > curves(2);
|
|
902 |
|
|
903 |
QVector< QPair<qreal, qreal> > allInters = findIntersections(*this, b);
|
|
904 |
|
|
905 |
QList<qreal> inters1;
|
|
906 |
QList<qreal> inters2;
|
|
907 |
|
|
908 |
for (int i = 0; i < allInters.size(); ++i) {
|
|
909 |
inters1 << allInters[i].first;
|
|
910 |
inters2 << allInters[i].second;
|
|
911 |
}
|
|
912 |
|
|
913 |
qSort(inters1.begin(), inters1.end(), qLess<qreal>());
|
|
914 |
qSort(inters2.begin(), inters2.end(), qLess<qreal>());
|
|
915 |
|
|
916 |
Q_ASSERT(inters1.count() == inters2.count());
|
|
917 |
|
|
918 |
int i;
|
|
919 |
for (i = 0; i < inters1.count(); ++i) {
|
|
920 |
qreal t1 = inters1.at(i);
|
|
921 |
qreal t2 = inters2.at(i);
|
|
922 |
|
|
923 |
QBezier curve1, curve2;
|
|
924 |
parameterSplitLeft(t1, &curve1);
|
|
925 |
b.parameterSplitLeft(t2, &curve2);
|
|
926 |
curves[0].append(curve1);
|
|
927 |
curves[0].append(curve2);
|
|
928 |
}
|
|
929 |
curves[0].append(*this);
|
|
930 |
curves[1].append(b);
|
|
931 |
|
|
932 |
return curves;
|
|
933 |
}
|
|
934 |
|
|
935 |
qreal QBezier::length(qreal error) const
|
|
936 |
{
|
|
937 |
qreal length = 0.0;
|
|
938 |
|
|
939 |
addIfClose(&length, error);
|
|
940 |
|
|
941 |
return length;
|
|
942 |
}
|
|
943 |
|
|
944 |
void QBezier::addIfClose(qreal *length, qreal error) const
|
|
945 |
{
|
|
946 |
QBezier left, right; /* bez poly splits */
|
|
947 |
|
|
948 |
qreal len = 0.0; /* arc length */
|
|
949 |
qreal chord; /* chord length */
|
|
950 |
|
|
951 |
len = len + QLineF(QPointF(x1, y1),QPointF(x2, y2)).length();
|
|
952 |
len = len + QLineF(QPointF(x2, y2),QPointF(x3, y3)).length();
|
|
953 |
len = len + QLineF(QPointF(x3, y3),QPointF(x4, y4)).length();
|
|
954 |
|
|
955 |
chord = QLineF(QPointF(x1, y1),QPointF(x4, y4)).length();
|
|
956 |
|
|
957 |
if((len-chord) > error) {
|
|
958 |
split(&left, &right); /* split in two */
|
|
959 |
left.addIfClose(length, error); /* try left side */
|
|
960 |
right.addIfClose(length, error); /* try right side */
|
|
961 |
return;
|
|
962 |
}
|
|
963 |
|
|
964 |
*length = *length + len;
|
|
965 |
|
|
966 |
return;
|
|
967 |
}
|
|
968 |
|
|
969 |
qreal QBezier::tForY(qreal t0, qreal t1, qreal y) const
|
|
970 |
{
|
|
971 |
qreal py0 = pointAt(t0).y();
|
|
972 |
qreal py1 = pointAt(t1).y();
|
|
973 |
|
|
974 |
if (py0 > py1) {
|
|
975 |
qSwap(py0, py1);
|
|
976 |
qSwap(t0, t1);
|
|
977 |
}
|
|
978 |
|
|
979 |
Q_ASSERT(py0 <= py1);
|
|
980 |
|
|
981 |
if (py0 >= y)
|
|
982 |
return t0;
|
|
983 |
else if (py1 <= y)
|
|
984 |
return t1;
|
|
985 |
|
|
986 |
Q_ASSERT(py0 < y && y < py1);
|
|
987 |
|
|
988 |
qreal lt = t0;
|
|
989 |
qreal dt;
|
|
990 |
do {
|
|
991 |
qreal t = 0.5 * (t0 + t1);
|
|
992 |
|
|
993 |
qreal a, b, c, d;
|
|
994 |
QBezier::coefficients(t, a, b, c, d);
|
|
995 |
qreal yt = a * y1 + b * y2 + c * y3 + d * y4;
|
|
996 |
|
|
997 |
if (yt < y) {
|
|
998 |
t0 = t;
|
|
999 |
py0 = yt;
|
|
1000 |
} else {
|
|
1001 |
t1 = t;
|
|
1002 |
py1 = yt;
|
|
1003 |
}
|
|
1004 |
dt = lt - t;
|
|
1005 |
lt = t;
|
|
1006 |
} while (qAbs(dt) > 1e-7);
|
|
1007 |
|
|
1008 |
return t0;
|
|
1009 |
}
|
|
1010 |
|
|
1011 |
int QBezier::stationaryYPoints(qreal &t0, qreal &t1) const
|
|
1012 |
{
|
|
1013 |
// y(t) = (1 - t)^3 * y1 + 3 * (1 - t)^2 * t * y2 + 3 * (1 - t) * t^2 * y3 + t^3 * y4
|
|
1014 |
// y'(t) = 3 * (-(1-2t+t^2) * y1 + (1 - 4 * t + 3 * t^2) * y2 + (2 * t - 3 * t^2) * y3 + t^2 * y4)
|
|
1015 |
// y'(t) = 3 * ((-y1 + 3 * y2 - 3 * y3 + y4)t^2 + (2 * y1 - 4 * y2 + 2 * y3)t + (-y1 + y2))
|
|
1016 |
|
|
1017 |
const qreal a = -y1 + 3 * y2 - 3 * y3 + y4;
|
|
1018 |
const qreal b = 2 * y1 - 4 * y2 + 2 * y3;
|
|
1019 |
const qreal c = -y1 + y2;
|
|
1020 |
|
|
1021 |
qreal reciprocal = b * b - 4 * a * c;
|
|
1022 |
|
|
1023 |
QList<qreal> result;
|
|
1024 |
|
|
1025 |
if (qFuzzyIsNull(reciprocal)) {
|
|
1026 |
t0 = -b / (2 * a);
|
|
1027 |
return 1;
|
|
1028 |
} else if (reciprocal > 0) {
|
|
1029 |
qreal temp = qSqrt(reciprocal);
|
|
1030 |
|
|
1031 |
t0 = (-b - temp)/(2*a);
|
|
1032 |
t1 = (-b + temp)/(2*a);
|
|
1033 |
|
|
1034 |
if (t1 < t0)
|
|
1035 |
qSwap(t0, t1);
|
|
1036 |
|
|
1037 |
int count = 0;
|
|
1038 |
qreal t[2] = { 0, 1 };
|
|
1039 |
|
|
1040 |
if (t0 > 0 && t0 < 1)
|
|
1041 |
t[count++] = t0;
|
|
1042 |
if (t1 > 0 && t1 < 1)
|
|
1043 |
t[count++] = t1;
|
|
1044 |
|
|
1045 |
t0 = t[0];
|
|
1046 |
t1 = t[1];
|
|
1047 |
|
|
1048 |
return count;
|
|
1049 |
}
|
|
1050 |
|
|
1051 |
return 0;
|
|
1052 |
}
|
|
1053 |
|
|
1054 |
qreal QBezier::tAtLength(qreal l) const
|
|
1055 |
{
|
|
1056 |
qreal len = length();
|
|
1057 |
qreal t = 1.0;
|
|
1058 |
const qreal error = (qreal)0.01;
|
|
1059 |
if (l > len || qFuzzyCompare(l, len))
|
|
1060 |
return t;
|
|
1061 |
|
|
1062 |
t *= 0.5;
|
|
1063 |
//int iters = 0;
|
|
1064 |
//qDebug()<<"LEN is "<<l<<len;
|
|
1065 |
qreal lastBigger = 1.;
|
|
1066 |
while (1) {
|
|
1067 |
//qDebug()<<"\tt is "<<t;
|
|
1068 |
QBezier right = *this;
|
|
1069 |
QBezier left;
|
|
1070 |
right.parameterSplitLeft(t, &left);
|
|
1071 |
qreal lLen = left.length();
|
|
1072 |
if (qAbs(lLen - l) < error)
|
|
1073 |
break;
|
|
1074 |
|
|
1075 |
if (lLen < l) {
|
|
1076 |
t += (lastBigger - t)*.5;
|
|
1077 |
} else {
|
|
1078 |
lastBigger = t;
|
|
1079 |
t -= t*.5;
|
|
1080 |
}
|
|
1081 |
//++iters;
|
|
1082 |
}
|
|
1083 |
//qDebug()<<"number of iters is "<<iters;
|
|
1084 |
return t;
|
|
1085 |
}
|
|
1086 |
|
|
1087 |
QBezier QBezier::bezierOnInterval(qreal t0, qreal t1) const
|
|
1088 |
{
|
|
1089 |
if (t0 == 0 && t1 == 1)
|
|
1090 |
return *this;
|
|
1091 |
|
|
1092 |
QBezier bezier = *this;
|
|
1093 |
|
|
1094 |
QBezier result;
|
|
1095 |
bezier.parameterSplitLeft(t0, &result);
|
|
1096 |
qreal trueT = (t1-t0)/(1-t0);
|
|
1097 |
bezier.parameterSplitLeft(trueT, &result);
|
|
1098 |
|
|
1099 |
return result;
|
|
1100 |
}
|
|
1101 |
|
|
1102 |
|
|
1103 |
static inline void bindInflectionPoint(const QBezier &bez, const qreal t,
|
|
1104 |
qreal *tMinus , qreal *tPlus)
|
|
1105 |
{
|
|
1106 |
if (t <= 0) {
|
|
1107 |
*tMinus = *tPlus = -1;
|
|
1108 |
return;
|
|
1109 |
} else if (t >= 1) {
|
|
1110 |
*tMinus = *tPlus = 2;
|
|
1111 |
return;
|
|
1112 |
}
|
|
1113 |
|
|
1114 |
QBezier left, right;
|
|
1115 |
splitBezierAt(bez, t, &left, &right);
|
|
1116 |
|
|
1117 |
qreal ax = -right.x1 + 3*right.x2 - 3*right.x3 + right.x4;
|
|
1118 |
qreal ay = -right.y1 + 3*right.y2 - 3*right.y3 + right.y4;
|
|
1119 |
qreal ex = 3 * (right.x2 - right.x3);
|
|
1120 |
qreal ey = 3 * (right.y2 - right.y3);
|
|
1121 |
|
|
1122 |
qreal s4 = qAbs(6 * (ey * ax - ex * ay) / qSqrt(ex * ex + ey * ey)) + 0.00001f;
|
|
1123 |
qreal tf = pow(qreal(9 * flatness / s4), qreal(1./3.));
|
|
1124 |
*tMinus = t - (1 - t) * tf;
|
|
1125 |
*tPlus = t + (1 - t) * tf;
|
|
1126 |
}
|
|
1127 |
|
|
1128 |
void QBezier::addToPolygonIterative(QPolygonF *p) const
|
|
1129 |
{
|
|
1130 |
qreal t1, t2, tcusp;
|
|
1131 |
qreal t1min, t1plus, t2min, t2plus;
|
|
1132 |
|
|
1133 |
qreal ax = -x1 + 3*x2 - 3*x3 + x4;
|
|
1134 |
qreal ay = -y1 + 3*y2 - 3*y3 + y4;
|
|
1135 |
qreal bx = 3*x1 - 6*x2 + 3*x3;
|
|
1136 |
qreal by = 3*y1 - 6*y2 + 3*y3;
|
|
1137 |
qreal cx = -3*x1 + 3*x2;
|
|
1138 |
qreal cy = -3*y1 + 2*y2;
|
|
1139 |
|
|
1140 |
if (findInflections(6 * (ay * bx - ax * by),
|
|
1141 |
6 * (ay * cx - ax * cy),
|
|
1142 |
2 * (by * cx - bx * cy),
|
|
1143 |
&t1, &t2, &tcusp)) {
|
|
1144 |
bindInflectionPoint(*this, t1, &t1min, &t1plus);
|
|
1145 |
bindInflectionPoint(*this, t2, &t2min, &t2plus);
|
|
1146 |
|
|
1147 |
QBezier tmpBez = *this;
|
|
1148 |
QBezier left, right, bez1, bez2, bez3;
|
|
1149 |
if (t1min > 0) {
|
|
1150 |
if (t1min >= 1) {
|
|
1151 |
flattenBezierWithoutInflections(tmpBez, p);
|
|
1152 |
} else {
|
|
1153 |
splitBezierAt(tmpBez, t1min, &left, &right);
|
|
1154 |
flattenBezierWithoutInflections(left, p);
|
|
1155 |
p->append(tmpBez.pointAt(t1min));
|
|
1156 |
|
|
1157 |
if (t2min < t1plus) {
|
|
1158 |
if (tcusp < 1) {
|
|
1159 |
p->append(tmpBez.pointAt(tcusp));
|
|
1160 |
}
|
|
1161 |
if (t2plus < 1) {
|
|
1162 |
splitBezierAt(tmpBez, t2plus, &left, &right);
|
|
1163 |
flattenBezierWithoutInflections(right, p);
|
|
1164 |
}
|
|
1165 |
} else if (t1plus < 1) {
|
|
1166 |
if (t2min < 1) {
|
|
1167 |
splitBezierAt(tmpBez, t2min, &bez3, &right);
|
|
1168 |
splitBezierAt(bez3, t1plus, &left, &bez2);
|
|
1169 |
|
|
1170 |
flattenBezierWithoutInflections(bez2, p);
|
|
1171 |
p->append(tmpBez.pointAt(t2min));
|
|
1172 |
|
|
1173 |
if (t2plus < 1) {
|
|
1174 |
splitBezierAt(tmpBez, t2plus, &left, &bez2);
|
|
1175 |
flattenBezierWithoutInflections(bez2, p);
|
|
1176 |
}
|
|
1177 |
} else {
|
|
1178 |
splitBezierAt(tmpBez, t1plus, &left, &bez2);
|
|
1179 |
flattenBezierWithoutInflections(bez2, p);
|
|
1180 |
}
|
|
1181 |
}
|
|
1182 |
}
|
|
1183 |
} else if (t1plus > 0) {
|
|
1184 |
p->append(QPointF(x1, y1));
|
|
1185 |
if (t2min < t1plus) {
|
|
1186 |
if (tcusp < 1) {
|
|
1187 |
p->append(tmpBez.pointAt(tcusp));
|
|
1188 |
}
|
|
1189 |
if (t2plus < 1) {
|
|
1190 |
splitBezierAt(tmpBez, t2plus, &left, &bez2);
|
|
1191 |
flattenBezierWithoutInflections(bez2, p);
|
|
1192 |
}
|
|
1193 |
} else if (t1plus < 1) {
|
|
1194 |
if (t2min < 1) {
|
|
1195 |
splitBezierAt(tmpBez, t2min, &bez3, &right);
|
|
1196 |
splitBezierAt(bez3, t1plus, &left, &bez2);
|
|
1197 |
|
|
1198 |
flattenBezierWithoutInflections(bez2, p);
|
|
1199 |
|
|
1200 |
p->append(tmpBez.pointAt(t2min));
|
|
1201 |
if (t2plus < 1) {
|
|
1202 |
splitBezierAt(tmpBez, t2plus, &left, &bez2);
|
|
1203 |
flattenBezierWithoutInflections(bez2, p);
|
|
1204 |
}
|
|
1205 |
} else {
|
|
1206 |
splitBezierAt(tmpBez, t1plus, &left, &bez2);
|
|
1207 |
flattenBezierWithoutInflections(bez2, p);
|
|
1208 |
}
|
|
1209 |
}
|
|
1210 |
} else if (t2min > 0) {
|
|
1211 |
if (t2min < 1) {
|
|
1212 |
splitBezierAt(tmpBez, t2min, &bez1, &right);
|
|
1213 |
flattenBezierWithoutInflections(bez1, p);
|
|
1214 |
p->append(tmpBez.pointAt(t2min));
|
|
1215 |
|
|
1216 |
if (t2plus < 1) {
|
|
1217 |
splitBezierAt(tmpBez, t2plus, &left, &bez2);
|
|
1218 |
flattenBezierWithoutInflections(bez2, p);
|
|
1219 |
}
|
|
1220 |
} else {
|
|
1221 |
//### in here we should check whether the area of the
|
|
1222 |
// triangle formed between pt1/pt2/pt3 is smaller
|
|
1223 |
// or equal to 0 and then do iterative flattening
|
|
1224 |
// if not we should fallback and do the recursive
|
|
1225 |
// flattening.
|
|
1226 |
flattenBezierWithoutInflections(tmpBez, p);
|
|
1227 |
}
|
|
1228 |
} else if (t2plus > 0) {
|
|
1229 |
p->append(QPointF(x1, y1));
|
|
1230 |
if (t2plus < 1) {
|
|
1231 |
splitBezierAt(tmpBez, t2plus, &left, &bez2);
|
|
1232 |
flattenBezierWithoutInflections(bez2, p);
|
|
1233 |
}
|
|
1234 |
} else {
|
|
1235 |
flattenBezierWithoutInflections(tmpBez, p);
|
|
1236 |
}
|
|
1237 |
} else {
|
|
1238 |
QBezier bez = *this;
|
|
1239 |
flattenBezierWithoutInflections(bez, p);
|
|
1240 |
}
|
|
1241 |
|
|
1242 |
p->append(QPointF(x4, y4));
|
|
1243 |
}
|
|
1244 |
|
|
1245 |
QT_END_NAMESPACE
|