0
|
1 |
/****************************************************************************
|
|
2 |
**
|
|
3 |
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
4 |
** All rights reserved.
|
|
5 |
** Contact: Nokia Corporation (qt-info@nokia.com)
|
|
6 |
**
|
|
7 |
** This file is part of the QtGui module of the Qt Toolkit.
|
|
8 |
**
|
|
9 |
** $QT_BEGIN_LICENSE:LGPL$
|
|
10 |
** No Commercial Usage
|
|
11 |
** This file contains pre-release code and may not be distributed.
|
|
12 |
** You may use this file in accordance with the terms and conditions
|
|
13 |
** contained in the Technology Preview License Agreement accompanying
|
|
14 |
** this package.
|
|
15 |
**
|
|
16 |
** GNU Lesser General Public License Usage
|
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
18 |
** General Public License version 2.1 as published by the Free Software
|
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the
|
|
20 |
** packaging of this file. Please review the following information to
|
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements
|
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
23 |
**
|
|
24 |
** In addition, as a special exception, Nokia gives you certain additional
|
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception
|
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
27 |
**
|
|
28 |
** If you have questions regarding the use of this file, please contact
|
|
29 |
** Nokia at qt-info@nokia.com.
|
|
30 |
**
|
|
31 |
**
|
|
32 |
**
|
|
33 |
**
|
|
34 |
**
|
|
35 |
**
|
|
36 |
**
|
|
37 |
**
|
|
38 |
** $QT_END_LICENSE$
|
|
39 |
**
|
|
40 |
****************************************************************************/
|
|
41 |
|
|
42 |
#include "private/qstroker_p.h"
|
|
43 |
#include "private/qbezier_p.h"
|
|
44 |
#include "private/qmath_p.h"
|
|
45 |
#include "qline.h"
|
|
46 |
#include "qtransform.h"
|
|
47 |
#include <qmath.h>
|
|
48 |
|
|
49 |
QT_BEGIN_NAMESPACE
|
|
50 |
|
|
51 |
// #define QPP_STROKE_DEBUG
|
|
52 |
|
|
53 |
class QSubpathForwardIterator
|
|
54 |
{
|
|
55 |
public:
|
|
56 |
QSubpathForwardIterator(const QDataBuffer<QStrokerOps::Element> *path)
|
|
57 |
: m_path(path), m_pos(0) { }
|
|
58 |
inline int position() const { return m_pos; }
|
|
59 |
inline bool hasNext() const { return m_pos < m_path->size(); }
|
|
60 |
inline QStrokerOps::Element next() { Q_ASSERT(hasNext()); return m_path->at(m_pos++); }
|
|
61 |
|
|
62 |
private:
|
|
63 |
const QDataBuffer<QStrokerOps::Element> *m_path;
|
|
64 |
int m_pos;
|
|
65 |
};
|
|
66 |
|
|
67 |
class QSubpathBackwardIterator
|
|
68 |
{
|
|
69 |
public:
|
|
70 |
QSubpathBackwardIterator(const QDataBuffer<QStrokerOps::Element> *path)
|
|
71 |
: m_path(path), m_pos(path->size() - 1) { }
|
|
72 |
|
|
73 |
inline int position() const { return m_pos; }
|
|
74 |
|
|
75 |
inline bool hasNext() const { return m_pos >= 0; }
|
|
76 |
|
|
77 |
inline QStrokerOps::Element next()
|
|
78 |
{
|
|
79 |
Q_ASSERT(hasNext());
|
|
80 |
|
|
81 |
QStrokerOps::Element ce = m_path->at(m_pos); // current element
|
|
82 |
|
|
83 |
if (m_pos == m_path->size() - 1) {
|
|
84 |
--m_pos;
|
|
85 |
ce.type = QPainterPath::MoveToElement;
|
|
86 |
return ce;
|
|
87 |
}
|
|
88 |
|
|
89 |
const QStrokerOps::Element &pe = m_path->at(m_pos + 1); // previous element
|
|
90 |
|
|
91 |
switch (pe.type) {
|
|
92 |
case QPainterPath::LineToElement:
|
|
93 |
ce.type = QPainterPath::LineToElement;
|
|
94 |
break;
|
|
95 |
case QPainterPath::CurveToDataElement:
|
|
96 |
// First control point?
|
|
97 |
if (ce.type == QPainterPath::CurveToElement) {
|
|
98 |
ce.type = QPainterPath::CurveToDataElement;
|
|
99 |
} else { // Second control point then
|
|
100 |
ce.type = QPainterPath::CurveToElement;
|
|
101 |
}
|
|
102 |
break;
|
|
103 |
case QPainterPath::CurveToElement:
|
|
104 |
ce.type = QPainterPath::CurveToDataElement;
|
|
105 |
break;
|
|
106 |
default:
|
|
107 |
qWarning("QSubpathReverseIterator::next: Case %d unhandled", ce.type);
|
|
108 |
break;
|
|
109 |
}
|
|
110 |
--m_pos;
|
|
111 |
|
|
112 |
return ce;
|
|
113 |
}
|
|
114 |
|
|
115 |
private:
|
|
116 |
const QDataBuffer<QStrokerOps::Element> *m_path;
|
|
117 |
int m_pos;
|
|
118 |
};
|
|
119 |
|
|
120 |
class QSubpathFlatIterator
|
|
121 |
{
|
|
122 |
public:
|
|
123 |
QSubpathFlatIterator(const QDataBuffer<QStrokerOps::Element> *path)
|
|
124 |
: m_path(path), m_pos(0), m_curve_index(-1) { }
|
|
125 |
|
|
126 |
inline bool hasNext() const { return m_curve_index >= 0 || m_pos < m_path->size(); }
|
|
127 |
|
|
128 |
QStrokerOps::Element next()
|
|
129 |
{
|
|
130 |
Q_ASSERT(hasNext());
|
|
131 |
|
|
132 |
if (m_curve_index >= 0) {
|
|
133 |
QStrokerOps::Element e = { QPainterPath::LineToElement,
|
|
134 |
qt_real_to_fixed(m_curve.at(m_curve_index).x()),
|
|
135 |
qt_real_to_fixed(m_curve.at(m_curve_index).y())
|
|
136 |
};
|
|
137 |
++m_curve_index;
|
|
138 |
if (m_curve_index >= m_curve.size())
|
|
139 |
m_curve_index = -1;
|
|
140 |
return e;
|
|
141 |
}
|
|
142 |
|
|
143 |
QStrokerOps::Element e = m_path->at(m_pos);
|
|
144 |
if (e.isCurveTo()) {
|
|
145 |
Q_ASSERT(m_pos > 0);
|
|
146 |
Q_ASSERT(m_pos < m_path->size());
|
|
147 |
|
|
148 |
m_curve = QBezier::fromPoints(QPointF(qt_fixed_to_real(m_path->at(m_pos-1).x),
|
|
149 |
qt_fixed_to_real(m_path->at(m_pos-1).y)),
|
|
150 |
QPointF(qt_fixed_to_real(e.x),
|
|
151 |
qt_fixed_to_real(e.y)),
|
|
152 |
QPointF(qt_fixed_to_real(m_path->at(m_pos+1).x),
|
|
153 |
qt_fixed_to_real(m_path->at(m_pos+1).y)),
|
|
154 |
QPointF(qt_fixed_to_real(m_path->at(m_pos+2).x),
|
|
155 |
qt_fixed_to_real(m_path->at(m_pos+2).y))).toPolygon();
|
|
156 |
m_curve_index = 1;
|
|
157 |
e.type = QPainterPath::LineToElement;
|
|
158 |
e.x = m_curve.at(0).x();
|
|
159 |
e.y = m_curve.at(0).y();
|
|
160 |
m_pos += 2;
|
|
161 |
}
|
|
162 |
Q_ASSERT(e.isLineTo() || e.isMoveTo());
|
|
163 |
++m_pos;
|
|
164 |
return e;
|
|
165 |
}
|
|
166 |
|
|
167 |
private:
|
|
168 |
const QDataBuffer<QStrokerOps::Element> *m_path;
|
|
169 |
int m_pos;
|
|
170 |
QPolygonF m_curve;
|
|
171 |
int m_curve_index;
|
|
172 |
};
|
|
173 |
|
|
174 |
template <class Iterator> bool qt_stroke_side(Iterator *it, QStroker *stroker,
|
|
175 |
bool capFirst, QLineF *startTangent);
|
|
176 |
|
|
177 |
/*******************************************************************************
|
|
178 |
* QLineF::angle gives us the smalles angle between two lines. Here we
|
|
179 |
* want to identify the line's angle direction on the unit circle.
|
|
180 |
*/
|
|
181 |
static inline qreal adapted_angle_on_x(const QLineF &line)
|
|
182 |
{
|
|
183 |
qreal angle = line.angle(QLineF(0, 0, 1, 0));
|
|
184 |
if (line.dy() > 0)
|
|
185 |
angle = 360 - angle;
|
|
186 |
return angle;
|
|
187 |
}
|
|
188 |
|
|
189 |
QStrokerOps::QStrokerOps()
|
|
190 |
: m_customData(0), m_moveTo(0), m_lineTo(0), m_cubicTo(0)
|
|
191 |
{
|
|
192 |
}
|
|
193 |
|
|
194 |
QStrokerOps::~QStrokerOps()
|
|
195 |
{
|
|
196 |
}
|
|
197 |
|
|
198 |
|
|
199 |
/*!
|
|
200 |
Prepares the stroker. Call this function once before starting a
|
|
201 |
stroke by calling moveTo, lineTo or cubicTo.
|
|
202 |
|
|
203 |
The \a customData is passed back through that callback functions
|
|
204 |
and can be used by the user to for instance maintain state
|
|
205 |
information.
|
|
206 |
*/
|
|
207 |
void QStrokerOps::begin(void *customData)
|
|
208 |
{
|
|
209 |
m_customData = customData;
|
|
210 |
m_elements.reset();
|
|
211 |
}
|
|
212 |
|
|
213 |
|
|
214 |
/*!
|
|
215 |
Finishes the stroke. Call this function once when an entire
|
|
216 |
primitive has been stroked.
|
|
217 |
*/
|
|
218 |
void QStrokerOps::end()
|
|
219 |
{
|
|
220 |
if (m_elements.size() > 1)
|
|
221 |
processCurrentSubpath();
|
|
222 |
m_customData = 0;
|
|
223 |
}
|
|
224 |
|
|
225 |
/*!
|
|
226 |
Convenience function that decomposes \a path into begin(),
|
|
227 |
moveTo(), lineTo(), curevTo() and end() calls.
|
|
228 |
|
|
229 |
The \a customData parameter is used in the callback functions
|
|
230 |
|
|
231 |
The \a matrix is used to transform the points before input to the
|
|
232 |
stroker.
|
|
233 |
|
|
234 |
\sa begin()
|
|
235 |
*/
|
|
236 |
void QStrokerOps::strokePath(const QPainterPath &path, void *customData, const QTransform &matrix)
|
|
237 |
{
|
|
238 |
if (path.isEmpty())
|
|
239 |
return;
|
|
240 |
|
|
241 |
begin(customData);
|
|
242 |
int count = path.elementCount();
|
|
243 |
if (matrix.isIdentity()) {
|
|
244 |
for (int i=0; i<count; ++i) {
|
|
245 |
const QPainterPath::Element &e = path.elementAt(i);
|
|
246 |
switch (e.type) {
|
|
247 |
case QPainterPath::MoveToElement:
|
|
248 |
moveTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y));
|
|
249 |
break;
|
|
250 |
case QPainterPath::LineToElement:
|
|
251 |
lineTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y));
|
|
252 |
break;
|
|
253 |
case QPainterPath::CurveToElement:
|
|
254 |
{
|
|
255 |
const QPainterPath::Element &cp2 = path.elementAt(++i);
|
|
256 |
const QPainterPath::Element &ep = path.elementAt(++i);
|
|
257 |
cubicTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y),
|
|
258 |
qt_real_to_fixed(cp2.x), qt_real_to_fixed(cp2.y),
|
|
259 |
qt_real_to_fixed(ep.x), qt_real_to_fixed(ep.y));
|
|
260 |
}
|
|
261 |
break;
|
|
262 |
default:
|
|
263 |
break;
|
|
264 |
}
|
|
265 |
}
|
|
266 |
} else {
|
|
267 |
for (int i=0; i<count; ++i) {
|
|
268 |
const QPainterPath::Element &e = path.elementAt(i);
|
|
269 |
QPointF pt = QPointF(e.x, e.y) * matrix;
|
|
270 |
switch (e.type) {
|
|
271 |
case QPainterPath::MoveToElement:
|
|
272 |
moveTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()));
|
|
273 |
break;
|
|
274 |
case QPainterPath::LineToElement:
|
|
275 |
lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()));
|
|
276 |
break;
|
|
277 |
case QPainterPath::CurveToElement:
|
|
278 |
{
|
|
279 |
QPointF cp2 = ((QPointF) path.elementAt(++i)) * matrix;
|
|
280 |
QPointF ep = ((QPointF) path.elementAt(++i)) * matrix;
|
|
281 |
cubicTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()),
|
|
282 |
qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()),
|
|
283 |
qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y()));
|
|
284 |
}
|
|
285 |
break;
|
|
286 |
default:
|
|
287 |
break;
|
|
288 |
}
|
|
289 |
}
|
|
290 |
}
|
|
291 |
end();
|
|
292 |
}
|
|
293 |
|
|
294 |
/*!
|
|
295 |
Convenience function for stroking a polygon of the \a pointCount
|
|
296 |
first points in \a points. If \a implicit_close is set to true a
|
|
297 |
line is implictly drawn between the first and last point in the
|
|
298 |
polygon. Typically true for polygons and false for polylines.
|
|
299 |
|
|
300 |
The \a matrix is used to transform the points before they enter the
|
|
301 |
stroker.
|
|
302 |
|
|
303 |
\sa begin()
|
|
304 |
*/
|
|
305 |
|
|
306 |
void QStrokerOps::strokePolygon(const QPointF *points, int pointCount, bool implicit_close,
|
|
307 |
void *data, const QTransform &matrix)
|
|
308 |
{
|
|
309 |
if (!pointCount)
|
|
310 |
return;
|
|
311 |
begin(data);
|
|
312 |
if (matrix.isIdentity()) {
|
|
313 |
moveTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y()));
|
|
314 |
for (int i=1; i<pointCount; ++i)
|
|
315 |
lineTo(qt_real_to_fixed(points[i].x()),
|
|
316 |
qt_real_to_fixed(points[i].y()));
|
|
317 |
if (implicit_close)
|
|
318 |
lineTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y()));
|
|
319 |
} else {
|
|
320 |
QPointF start = points[0] * matrix;
|
|
321 |
moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y()));
|
|
322 |
for (int i=1; i<pointCount; ++i) {
|
|
323 |
QPointF pt = points[i] * matrix;
|
|
324 |
lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()));
|
|
325 |
}
|
|
326 |
if (implicit_close)
|
|
327 |
lineTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y()));
|
|
328 |
}
|
|
329 |
end();
|
|
330 |
}
|
|
331 |
|
|
332 |
/*!
|
|
333 |
Convenience function for stroking an ellipse with bounding rect \a
|
|
334 |
rect. The \a matrix is used to transform the coordinates before
|
|
335 |
they enter the stroker.
|
|
336 |
*/
|
|
337 |
void QStrokerOps::strokeEllipse(const QRectF &rect, void *data, const QTransform &matrix)
|
|
338 |
{
|
|
339 |
int count = 0;
|
|
340 |
QPointF pts[12];
|
|
341 |
QPointF start = qt_curves_for_arc(rect, 0, -360, pts, &count);
|
|
342 |
Q_ASSERT(count == 12); // a perfect circle..
|
|
343 |
|
|
344 |
if (!matrix.isIdentity()) {
|
|
345 |
start = start * matrix;
|
|
346 |
for (int i=0; i<12; ++i) {
|
|
347 |
pts[i] = pts[i] * matrix;
|
|
348 |
}
|
|
349 |
}
|
|
350 |
|
|
351 |
begin(data);
|
|
352 |
moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y()));
|
|
353 |
for (int i=0; i<12; i+=3) {
|
|
354 |
cubicTo(qt_real_to_fixed(pts[i].x()), qt_real_to_fixed(pts[i].y()),
|
|
355 |
qt_real_to_fixed(pts[i+1].x()), qt_real_to_fixed(pts[i+1].y()),
|
|
356 |
qt_real_to_fixed(pts[i+2].x()), qt_real_to_fixed(pts[i+2].y()));
|
|
357 |
}
|
|
358 |
end();
|
|
359 |
}
|
|
360 |
|
|
361 |
|
|
362 |
QStroker::QStroker()
|
|
363 |
: m_capStyle(SquareJoin), m_joinStyle(FlatJoin),
|
|
364 |
m_back1X(0), m_back1Y(0),
|
|
365 |
m_back2X(0), m_back2Y(0)
|
|
366 |
{
|
|
367 |
m_strokeWidth = qt_real_to_fixed(1);
|
|
368 |
m_miterLimit = qt_real_to_fixed(2);
|
|
369 |
m_curveThreshold = qt_real_to_fixed(0.25);
|
|
370 |
}
|
|
371 |
|
|
372 |
QStroker::~QStroker()
|
|
373 |
{
|
|
374 |
|
|
375 |
}
|
|
376 |
|
|
377 |
Qt::PenCapStyle QStroker::capForJoinMode(LineJoinMode mode)
|
|
378 |
{
|
|
379 |
if (mode == FlatJoin) return Qt::FlatCap;
|
|
380 |
else if (mode == SquareJoin) return Qt::SquareCap;
|
|
381 |
else return Qt::RoundCap;
|
|
382 |
}
|
|
383 |
|
|
384 |
QStroker::LineJoinMode QStroker::joinModeForCap(Qt::PenCapStyle style)
|
|
385 |
{
|
|
386 |
if (style == Qt::FlatCap) return FlatJoin;
|
|
387 |
else if (style == Qt::SquareCap) return SquareJoin;
|
|
388 |
else return RoundCap;
|
|
389 |
}
|
|
390 |
|
|
391 |
Qt::PenJoinStyle QStroker::joinForJoinMode(LineJoinMode mode)
|
|
392 |
{
|
|
393 |
if (mode == FlatJoin) return Qt::BevelJoin;
|
|
394 |
else if (mode == MiterJoin) return Qt::MiterJoin;
|
|
395 |
else if (mode == SvgMiterJoin) return Qt::SvgMiterJoin;
|
|
396 |
else return Qt::RoundJoin;
|
|
397 |
}
|
|
398 |
|
|
399 |
QStroker::LineJoinMode QStroker::joinModeForJoin(Qt::PenJoinStyle joinStyle)
|
|
400 |
{
|
|
401 |
if (joinStyle == Qt::BevelJoin) return FlatJoin;
|
|
402 |
else if (joinStyle == Qt::MiterJoin) return MiterJoin;
|
|
403 |
else if (joinStyle == Qt::SvgMiterJoin) return SvgMiterJoin;
|
|
404 |
else return RoundJoin;
|
|
405 |
}
|
|
406 |
|
|
407 |
|
|
408 |
/*!
|
|
409 |
This function is called to stroke the currently built up
|
|
410 |
subpath. The subpath is cleared when the function completes.
|
|
411 |
*/
|
|
412 |
void QStroker::processCurrentSubpath()
|
|
413 |
{
|
|
414 |
Q_ASSERT(!m_elements.isEmpty());
|
|
415 |
Q_ASSERT(m_elements.first().type == QPainterPath::MoveToElement);
|
|
416 |
Q_ASSERT(m_elements.size() > 1);
|
|
417 |
|
|
418 |
QSubpathForwardIterator fwit(&m_elements);
|
|
419 |
QSubpathBackwardIterator bwit(&m_elements);
|
|
420 |
|
|
421 |
QLineF fwStartTangent, bwStartTangent;
|
|
422 |
|
|
423 |
bool fwclosed = qt_stroke_side(&fwit, this, false, &fwStartTangent);
|
|
424 |
bool bwclosed = qt_stroke_side(&bwit, this, !fwclosed, &bwStartTangent);
|
|
425 |
|
|
426 |
if (!bwclosed)
|
|
427 |
joinPoints(m_elements.at(0).x, m_elements.at(0).y, fwStartTangent, m_capStyle);
|
|
428 |
}
|
|
429 |
|
|
430 |
|
|
431 |
/*!
|
|
432 |
\internal
|
|
433 |
*/
|
|
434 |
void QStroker::joinPoints(qfixed focal_x, qfixed focal_y, const QLineF &nextLine, LineJoinMode join)
|
|
435 |
{
|
|
436 |
#ifdef QPP_STROKE_DEBUG
|
|
437 |
printf(" -----> joinPoints: around=(%.0f, %.0f), next_p1=(%.0f, %.f) next_p2=(%.0f, %.f)\n",
|
|
438 |
qt_fixed_to_real(focal_x),
|
|
439 |
qt_fixed_to_real(focal_y),
|
|
440 |
nextLine.x1(), nextLine.y1(), nextLine.x2(), nextLine.y2());
|
|
441 |
#endif
|
|
442 |
// points connected already, don't join
|
|
443 |
|
|
444 |
#if !defined (QFIXED_26_6) && !defined (Q_FIXED_32_32)
|
|
445 |
if (qFuzzyCompare(m_back1X, nextLine.x1()) && qFuzzyCompare(m_back1Y, nextLine.y1()))
|
|
446 |
return;
|
|
447 |
#else
|
|
448 |
if (m_back1X == qt_real_to_fixed(nextLine.x1())
|
|
449 |
&& m_back1Y == qt_real_to_fixed(nextLine.y1())) {
|
|
450 |
return;
|
|
451 |
}
|
|
452 |
#endif
|
|
453 |
|
|
454 |
if (join == FlatJoin) {
|
|
455 |
emitLineTo(qt_real_to_fixed(nextLine.x1()),
|
|
456 |
qt_real_to_fixed(nextLine.y1()));
|
|
457 |
|
|
458 |
} else {
|
|
459 |
QLineF prevLine(qt_fixed_to_real(m_back2X), qt_fixed_to_real(m_back2Y),
|
|
460 |
qt_fixed_to_real(m_back1X), qt_fixed_to_real(m_back1Y));
|
|
461 |
|
|
462 |
QPointF isect;
|
|
463 |
QLineF::IntersectType type = prevLine.intersect(nextLine, &isect);
|
|
464 |
|
|
465 |
if (join == MiterJoin) {
|
|
466 |
qreal appliedMiterLimit = qt_fixed_to_real(m_strokeWidth * m_miterLimit);
|
|
467 |
|
|
468 |
// If we are on the inside, do the short cut...
|
|
469 |
QLineF shortCut(prevLine.p2(), nextLine.p1());
|
|
470 |
qreal angle = shortCut.angleTo(prevLine);
|
|
471 |
|
|
472 |
if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) {
|
|
473 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
|
474 |
return;
|
|
475 |
}
|
|
476 |
QLineF miterLine(QPointF(qt_fixed_to_real(m_back1X),
|
|
477 |
qt_fixed_to_real(m_back1Y)), isect);
|
|
478 |
if (type == QLineF::NoIntersection || miterLine.length() > appliedMiterLimit) {
|
|
479 |
QLineF l1(prevLine);
|
|
480 |
l1.setLength(appliedMiterLimit);
|
|
481 |
l1.translate(prevLine.dx(), prevLine.dy());
|
|
482 |
|
|
483 |
QLineF l2(nextLine);
|
|
484 |
l2.setLength(appliedMiterLimit);
|
|
485 |
l2.translate(-l2.dx(), -l2.dy());
|
|
486 |
|
|
487 |
emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2()));
|
|
488 |
emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1()));
|
|
489 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
|
490 |
} else {
|
|
491 |
emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y()));
|
|
492 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
|
493 |
}
|
|
494 |
|
|
495 |
} else if (join == SquareJoin) {
|
|
496 |
qfixed offset = m_strokeWidth / 2;
|
|
497 |
|
|
498 |
QLineF l1(prevLine);
|
|
499 |
l1.translate(l1.dx(), l1.dy());
|
|
500 |
l1.setLength(qt_fixed_to_real(offset));
|
|
501 |
QLineF l2(nextLine.p2(), nextLine.p1());
|
|
502 |
l2.translate(l2.dx(), l2.dy());
|
|
503 |
l2.setLength(qt_fixed_to_real(offset));
|
|
504 |
emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2()));
|
|
505 |
emitLineTo(qt_real_to_fixed(l2.x2()), qt_real_to_fixed(l2.y2()));
|
|
506 |
emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1()));
|
|
507 |
|
|
508 |
} else if (join == RoundJoin) {
|
|
509 |
qfixed offset = m_strokeWidth / 2;
|
|
510 |
|
|
511 |
QLineF shortCut(prevLine.p2(), nextLine.p1());
|
|
512 |
qreal angle = prevLine.angle(shortCut);
|
|
513 |
if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) {
|
|
514 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
|
515 |
return;
|
|
516 |
}
|
|
517 |
qreal l1_on_x = adapted_angle_on_x(prevLine);
|
|
518 |
qreal l2_on_x = adapted_angle_on_x(nextLine);
|
|
519 |
|
|
520 |
qreal sweepLength = qAbs(l2_on_x - l1_on_x);
|
|
521 |
|
|
522 |
int point_count;
|
|
523 |
QPointF curves[15];
|
|
524 |
|
|
525 |
QPointF curve_start =
|
|
526 |
qt_curves_for_arc(QRectF(qt_fixed_to_real(focal_x - offset),
|
|
527 |
qt_fixed_to_real(focal_y - offset),
|
|
528 |
qt_fixed_to_real(offset * 2),
|
|
529 |
qt_fixed_to_real(offset * 2)),
|
|
530 |
l1_on_x + 90, -sweepLength,
|
|
531 |
curves, &point_count);
|
|
532 |
|
|
533 |
// // line to the beginning of the arc segment, (should not be needed).
|
|
534 |
// emitLineTo(qt_real_to_fixed(curve_start.x()), qt_real_to_fixed(curve_start.y()));
|
|
535 |
|
|
536 |
for (int i=0; i<point_count; i+=3) {
|
|
537 |
emitCubicTo(qt_real_to_fixed(curves[i].x()),
|
|
538 |
qt_real_to_fixed(curves[i].y()),
|
|
539 |
qt_real_to_fixed(curves[i+1].x()),
|
|
540 |
qt_real_to_fixed(curves[i+1].y()),
|
|
541 |
qt_real_to_fixed(curves[i+2].x()),
|
|
542 |
qt_real_to_fixed(curves[i+2].y()));
|
|
543 |
}
|
|
544 |
|
|
545 |
// line to the end of the arc segment, (should also not be needed).
|
|
546 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
|
547 |
|
|
548 |
// Same as round join except we know its 180 degrees. Can also optimize this
|
|
549 |
// later based on the addEllipse logic
|
|
550 |
} else if (join == RoundCap) {
|
|
551 |
qfixed offset = m_strokeWidth / 2;
|
|
552 |
|
|
553 |
// first control line
|
|
554 |
QLineF l1 = prevLine;
|
|
555 |
l1.translate(l1.dx(), l1.dy());
|
|
556 |
l1.setLength(QT_PATH_KAPPA * offset);
|
|
557 |
|
|
558 |
// second control line, find through normal between prevLine and focal.
|
|
559 |
QLineF l2(qt_fixed_to_real(focal_x), qt_fixed_to_real(focal_y),
|
|
560 |
prevLine.x2(), prevLine.y2());
|
|
561 |
l2.translate(-l2.dy(), l2.dx());
|
|
562 |
l2.setLength(QT_PATH_KAPPA * offset);
|
|
563 |
|
|
564 |
emitCubicTo(qt_real_to_fixed(l1.x2()),
|
|
565 |
qt_real_to_fixed(l1.y2()),
|
|
566 |
qt_real_to_fixed(l2.x2()),
|
|
567 |
qt_real_to_fixed(l2.y2()),
|
|
568 |
qt_real_to_fixed(l2.x1()),
|
|
569 |
qt_real_to_fixed(l2.y1()));
|
|
570 |
|
|
571 |
// move so that it matches
|
|
572 |
l2 = QLineF(l2.x1(), l2.y1(), l2.x1()-l2.dx(), l2.y1()-l2.dy());
|
|
573 |
|
|
574 |
// last line is parallel to l1 so just shift it down.
|
|
575 |
l1.translate(nextLine.x1() - l1.x1(), nextLine.y1() - l1.y1());
|
|
576 |
|
|
577 |
emitCubicTo(qt_real_to_fixed(l2.x2()),
|
|
578 |
qt_real_to_fixed(l2.y2()),
|
|
579 |
qt_real_to_fixed(l1.x2()),
|
|
580 |
qt_real_to_fixed(l1.y2()),
|
|
581 |
qt_real_to_fixed(l1.x1()),
|
|
582 |
qt_real_to_fixed(l1.y1()));
|
|
583 |
} else if (join == SvgMiterJoin) {
|
|
584 |
QLineF miterLine(QPointF(qt_fixed_to_real(focal_x),
|
|
585 |
qt_fixed_to_real(focal_y)), isect);
|
|
586 |
if (miterLine.length() > qt_fixed_to_real(m_strokeWidth * m_miterLimit) / 2) {
|
|
587 |
emitLineTo(qt_real_to_fixed(nextLine.x1()),
|
|
588 |
qt_real_to_fixed(nextLine.y1()));
|
|
589 |
} else {
|
|
590 |
emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y()));
|
|
591 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1()));
|
|
592 |
}
|
|
593 |
} else {
|
|
594 |
Q_ASSERT(!"QStroker::joinPoints(), bad join style...");
|
|
595 |
}
|
|
596 |
}
|
|
597 |
}
|
|
598 |
|
|
599 |
|
|
600 |
/*
|
|
601 |
Strokes a subpath side using the \a it as source. Results are put into
|
|
602 |
\a stroke. The function returns true if the subpath side was closed.
|
|
603 |
If \a capFirst is true, we will use capPoints instead of joinPoints to
|
|
604 |
connect the first segment, other segments will be joined using joinPoints.
|
|
605 |
This is to put capping in order...
|
|
606 |
*/
|
|
607 |
template <class Iterator> bool qt_stroke_side(Iterator *it,
|
|
608 |
QStroker *stroker,
|
|
609 |
bool capFirst,
|
|
610 |
QLineF *startTangent)
|
|
611 |
{
|
|
612 |
// Used in CurveToElement section below.
|
|
613 |
const int MAX_OFFSET = 16;
|
|
614 |
QBezier offsetCurves[MAX_OFFSET];
|
|
615 |
|
|
616 |
Q_ASSERT(it->hasNext()); // The initaial move to
|
|
617 |
QStrokerOps::Element first_element = it->next();
|
|
618 |
Q_ASSERT(first_element.isMoveTo());
|
|
619 |
|
|
620 |
qfixed2d start = first_element;
|
|
621 |
|
|
622 |
#ifdef QPP_STROKE_DEBUG
|
|
623 |
qDebug(" -> (side) [%.2f, %.2f], startPos=%d",
|
|
624 |
qt_fixed_to_real(start.x),
|
|
625 |
qt_fixed_to_real(start.y));
|
|
626 |
#endif
|
|
627 |
|
|
628 |
qfixed2d prev = start;
|
|
629 |
|
|
630 |
bool first = true;
|
|
631 |
|
|
632 |
qfixed offset = stroker->strokeWidth() / 2;
|
|
633 |
|
|
634 |
while (it->hasNext()) {
|
|
635 |
QStrokerOps::Element e = it->next();
|
|
636 |
|
|
637 |
// LineToElement
|
|
638 |
if (e.isLineTo()) {
|
|
639 |
#ifdef QPP_STROKE_DEBUG
|
|
640 |
qDebug("\n ---> (side) lineto [%.2f, %.2f]", e.x, e.y);
|
|
641 |
#endif
|
|
642 |
QLineF line(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y),
|
|
643 |
qt_fixed_to_real(e.x), qt_fixed_to_real(e.y));
|
|
644 |
QLineF normal = line.normalVector();
|
|
645 |
normal.setLength(offset);
|
|
646 |
line.translate(normal.dx(), normal.dy());
|
|
647 |
|
|
648 |
// If we are starting a new subpath, move to correct starting point.
|
|
649 |
if (first) {
|
|
650 |
if (capFirst)
|
|
651 |
stroker->joinPoints(prev.x, prev.y, line, stroker->capStyleMode());
|
|
652 |
else
|
|
653 |
stroker->emitMoveTo(qt_real_to_fixed(line.x1()), qt_real_to_fixed(line.y1()));
|
|
654 |
*startTangent = line;
|
|
655 |
first = false;
|
|
656 |
} else {
|
|
657 |
stroker->joinPoints(prev.x, prev.y, line, stroker->joinStyleMode());
|
|
658 |
}
|
|
659 |
|
|
660 |
// Add the stroke for this line.
|
|
661 |
stroker->emitLineTo(qt_real_to_fixed(line.x2()),
|
|
662 |
qt_real_to_fixed(line.y2()));
|
|
663 |
prev = e;
|
|
664 |
|
|
665 |
// CurveToElement
|
|
666 |
} else if (e.isCurveTo()) {
|
|
667 |
QStrokerOps::Element cp2 = it->next(); // control point 2
|
|
668 |
QStrokerOps::Element ep = it->next(); // end point
|
|
669 |
|
|
670 |
#ifdef QPP_STROKE_DEBUG
|
|
671 |
qDebug("\n ---> (side) cubicTo [%.2f, %.2f]",
|
|
672 |
qt_fixed_to_real(ep.x),
|
|
673 |
qt_fixed_to_real(ep.y));
|
|
674 |
#endif
|
|
675 |
|
|
676 |
QBezier bezier =
|
|
677 |
QBezier::fromPoints(QPointF(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y)),
|
|
678 |
QPointF(qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)),
|
|
679 |
QPointF(qt_fixed_to_real(cp2.x), qt_fixed_to_real(cp2.y)),
|
|
680 |
QPointF(qt_fixed_to_real(ep.x), qt_fixed_to_real(ep.y)));
|
|
681 |
|
|
682 |
int count = bezier.shifted(offsetCurves,
|
|
683 |
MAX_OFFSET,
|
|
684 |
offset,
|
|
685 |
stroker->curveThreshold());
|
|
686 |
|
|
687 |
if (count) {
|
|
688 |
// If we are starting a new subpath, move to correct starting point
|
|
689 |
QLineF tangent = bezier.startTangent();
|
|
690 |
tangent.translate(offsetCurves[0].pt1() - bezier.pt1());
|
|
691 |
if (first) {
|
|
692 |
QPointF pt = offsetCurves[0].pt1();
|
|
693 |
if (capFirst) {
|
|
694 |
stroker->joinPoints(prev.x, prev.y,
|
|
695 |
tangent,
|
|
696 |
stroker->capStyleMode());
|
|
697 |
} else {
|
|
698 |
stroker->emitMoveTo(qt_real_to_fixed(pt.x()),
|
|
699 |
qt_real_to_fixed(pt.y()));
|
|
700 |
}
|
|
701 |
*startTangent = tangent;
|
|
702 |
first = false;
|
|
703 |
} else {
|
|
704 |
stroker->joinPoints(prev.x, prev.y,
|
|
705 |
tangent,
|
|
706 |
stroker->joinStyleMode());
|
|
707 |
}
|
|
708 |
|
|
709 |
// Add these beziers
|
|
710 |
for (int i=0; i<count; ++i) {
|
|
711 |
QPointF cp1 = offsetCurves[i].pt2();
|
|
712 |
QPointF cp2 = offsetCurves[i].pt3();
|
|
713 |
QPointF ep = offsetCurves[i].pt4();
|
|
714 |
stroker->emitCubicTo(qt_real_to_fixed(cp1.x()), qt_real_to_fixed(cp1.y()),
|
|
715 |
qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()),
|
|
716 |
qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y()));
|
|
717 |
}
|
|
718 |
}
|
|
719 |
|
|
720 |
prev = ep;
|
|
721 |
}
|
|
722 |
}
|
|
723 |
|
|
724 |
if (start == prev) {
|
|
725 |
// closed subpath, join first and last point
|
|
726 |
#ifdef QPP_STROKE_DEBUG
|
|
727 |
qDebug("\n ---> (side) closed subpath");
|
|
728 |
#endif
|
|
729 |
stroker->joinPoints(prev.x, prev.y, *startTangent, stroker->joinStyleMode());
|
|
730 |
return true;
|
|
731 |
} else {
|
|
732 |
#ifdef QPP_STROKE_DEBUG
|
|
733 |
qDebug("\n ---> (side) open subpath");
|
|
734 |
#endif
|
|
735 |
return false;
|
|
736 |
}
|
|
737 |
}
|
|
738 |
|
|
739 |
/*!
|
|
740 |
\internal
|
|
741 |
|
|
742 |
For a given angle in the range [0 .. 90], finds the corresponding parameter t
|
|
743 |
of the prototype cubic bezier arc segment
|
|
744 |
b = fromPoints(QPointF(1, 0), QPointF(1, KAPPA), QPointF(KAPPA, 1), QPointF(0, 1));
|
|
745 |
|
|
746 |
From the bezier equation:
|
|
747 |
b.pointAt(t).x() = (1-t)^3 + t*(1-t)^2 + t^2*(1-t)*KAPPA
|
|
748 |
b.pointAt(t).y() = t*(1-t)^2 * KAPPA + t^2*(1-t) + t^3
|
|
749 |
|
|
750 |
Third degree coefficients:
|
|
751 |
b.pointAt(t).x() = at^3 + bt^2 + ct + d
|
|
752 |
where a = 2-3*KAPPA, b = 3*(KAPPA-1), c = 0, d = 1
|
|
753 |
|
|
754 |
b.pointAt(t).y() = at^3 + bt^2 + ct + d
|
|
755 |
where a = 3*KAPPA-2, b = 6*KAPPA+3, c = 3*KAPPA, d = 0
|
|
756 |
|
|
757 |
Newton's method to find the zero of a function:
|
|
758 |
given a function f(x) and initial guess x_0
|
|
759 |
x_1 = f(x_0) / f'(x_0)
|
|
760 |
x_2 = f(x_1) / f'(x_1)
|
|
761 |
etc...
|
|
762 |
*/
|
|
763 |
|
|
764 |
qreal qt_t_for_arc_angle(qreal angle)
|
|
765 |
{
|
|
766 |
if (qFuzzyIsNull(angle))
|
|
767 |
return 0;
|
|
768 |
|
|
769 |
if (qFuzzyCompare(angle, qreal(90)))
|
|
770 |
return 1;
|
|
771 |
|
|
772 |
qreal radians = Q_PI * angle / 180;
|
|
773 |
qreal cosAngle = qCos(radians);
|
|
774 |
qreal sinAngle = qSin(radians);
|
|
775 |
|
|
776 |
// initial guess
|
|
777 |
qreal tc = angle / 90;
|
|
778 |
// do some iterations of newton's method to approximate cosAngle
|
|
779 |
// finds the zero of the function b.pointAt(tc).x() - cosAngle
|
|
780 |
tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value
|
|
781 |
/ (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative
|
|
782 |
tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value
|
|
783 |
/ (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative
|
|
784 |
|
|
785 |
// initial guess
|
|
786 |
qreal ts = tc;
|
|
787 |
// do some iterations of newton's method to approximate sinAngle
|
|
788 |
// finds the zero of the function b.pointAt(tc).y() - sinAngle
|
|
789 |
ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle)
|
|
790 |
/ (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA);
|
|
791 |
ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle)
|
|
792 |
/ (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA);
|
|
793 |
|
|
794 |
// use the average of the t that best approximates cosAngle
|
|
795 |
// and the t that best approximates sinAngle
|
|
796 |
qreal t = 0.5 * (tc + ts);
|
|
797 |
|
|
798 |
#if 0
|
|
799 |
printf("angle: %f, t: %f\n", angle, t);
|
|
800 |
qreal a, b, c, d;
|
|
801 |
bezierCoefficients(t, a, b, c, d);
|
|
802 |
printf("cosAngle: %.10f, value: %.10f\n", cosAngle, a + b + c * QT_PATH_KAPPA);
|
|
803 |
printf("sinAngle: %.10f, value: %.10f\n", sinAngle, b * QT_PATH_KAPPA + c + d);
|
|
804 |
#endif
|
|
805 |
|
|
806 |
return t;
|
|
807 |
}
|
|
808 |
|
|
809 |
void qt_find_ellipse_coords(const QRectF &r, qreal angle, qreal length,
|
|
810 |
QPointF* startPoint, QPointF *endPoint);
|
|
811 |
|
|
812 |
/*!
|
|
813 |
\internal
|
|
814 |
|
|
815 |
Creates a number of curves for a given arc definition. The arc is
|
|
816 |
defined an arc along the ellipses that fits into \a rect starting
|
|
817 |
at \a startAngle and an arc length of \a sweepLength.
|
|
818 |
|
|
819 |
The function has three out parameters. The return value is the
|
|
820 |
starting point of the arc. The \a curves array represents the list
|
|
821 |
of cubicTo elements up to a maximum of \a point_count. There are of course
|
|
822 |
3 points pr curve.
|
|
823 |
*/
|
|
824 |
QPointF qt_curves_for_arc(const QRectF &rect, qreal startAngle, qreal sweepLength,
|
|
825 |
QPointF *curves, int *point_count)
|
|
826 |
{
|
|
827 |
Q_ASSERT(point_count);
|
|
828 |
Q_ASSERT(curves);
|
|
829 |
|
|
830 |
*point_count = 0;
|
|
831 |
if (qt_is_nan(rect.x()) || qt_is_nan(rect.y()) || qt_is_nan(rect.width()) || qt_is_nan(rect.height())
|
|
832 |
|| qt_is_nan(startAngle) || qt_is_nan(sweepLength)) {
|
|
833 |
qWarning("QPainterPath::arcTo: Adding arc where a parameter is NaN, results are undefined");
|
|
834 |
return QPointF();
|
|
835 |
}
|
|
836 |
|
|
837 |
if (rect.isNull()) {
|
|
838 |
return QPointF();
|
|
839 |
}
|
|
840 |
|
|
841 |
qreal x = rect.x();
|
|
842 |
qreal y = rect.y();
|
|
843 |
|
|
844 |
qreal w = rect.width();
|
|
845 |
qreal w2 = rect.width() / 2;
|
|
846 |
qreal w2k = w2 * QT_PATH_KAPPA;
|
|
847 |
|
|
848 |
qreal h = rect.height();
|
|
849 |
qreal h2 = rect.height() / 2;
|
|
850 |
qreal h2k = h2 * QT_PATH_KAPPA;
|
|
851 |
|
|
852 |
QPointF points[16] =
|
|
853 |
{
|
|
854 |
// start point
|
|
855 |
QPointF(x + w, y + h2),
|
|
856 |
|
|
857 |
// 0 -> 270 degrees
|
|
858 |
QPointF(x + w, y + h2 + h2k),
|
|
859 |
QPointF(x + w2 + w2k, y + h),
|
|
860 |
QPointF(x + w2, y + h),
|
|
861 |
|
|
862 |
// 270 -> 180 degrees
|
|
863 |
QPointF(x + w2 - w2k, y + h),
|
|
864 |
QPointF(x, y + h2 + h2k),
|
|
865 |
QPointF(x, y + h2),
|
|
866 |
|
|
867 |
// 180 -> 90 degrees
|
|
868 |
QPointF(x, y + h2 - h2k),
|
|
869 |
QPointF(x + w2 - w2k, y),
|
|
870 |
QPointF(x + w2, y),
|
|
871 |
|
|
872 |
// 90 -> 0 degrees
|
|
873 |
QPointF(x + w2 + w2k, y),
|
|
874 |
QPointF(x + w, y + h2 - h2k),
|
|
875 |
QPointF(x + w, y + h2)
|
|
876 |
};
|
|
877 |
|
|
878 |
if (sweepLength > 360) sweepLength = 360;
|
|
879 |
else if (sweepLength < -360) sweepLength = -360;
|
|
880 |
|
|
881 |
// Special case fast paths
|
|
882 |
if (startAngle == 0.0) {
|
|
883 |
if (sweepLength == 360.0) {
|
|
884 |
for (int i = 11; i >= 0; --i)
|
|
885 |
curves[(*point_count)++] = points[i];
|
|
886 |
return points[12];
|
|
887 |
} else if (sweepLength == -360.0) {
|
|
888 |
for (int i = 1; i <= 12; ++i)
|
|
889 |
curves[(*point_count)++] = points[i];
|
|
890 |
return points[0];
|
|
891 |
}
|
|
892 |
}
|
|
893 |
|
|
894 |
int startSegment = int(floor(startAngle / 90));
|
|
895 |
int endSegment = int(floor((startAngle + sweepLength) / 90));
|
|
896 |
|
|
897 |
qreal startT = (startAngle - startSegment * 90) / 90;
|
|
898 |
qreal endT = (startAngle + sweepLength - endSegment * 90) / 90;
|
|
899 |
|
|
900 |
int delta = sweepLength > 0 ? 1 : -1;
|
|
901 |
if (delta < 0) {
|
|
902 |
startT = 1 - startT;
|
|
903 |
endT = 1 - endT;
|
|
904 |
}
|
|
905 |
|
|
906 |
// avoid empty start segment
|
|
907 |
if (qFuzzyIsNull(startT - qreal(1))) {
|
|
908 |
startT = 0;
|
|
909 |
startSegment += delta;
|
|
910 |
}
|
|
911 |
|
|
912 |
// avoid empty end segment
|
|
913 |
if (qFuzzyIsNull(endT)) {
|
|
914 |
endT = 1;
|
|
915 |
endSegment -= delta;
|
|
916 |
}
|
|
917 |
|
|
918 |
startT = qt_t_for_arc_angle(startT * 90);
|
|
919 |
endT = qt_t_for_arc_angle(endT * 90);
|
|
920 |
|
|
921 |
const bool splitAtStart = !qFuzzyIsNull(startT);
|
|
922 |
const bool splitAtEnd = !qFuzzyIsNull(endT - qreal(1));
|
|
923 |
|
|
924 |
const int end = endSegment + delta;
|
|
925 |
|
|
926 |
// empty arc?
|
|
927 |
if (startSegment == end) {
|
|
928 |
const int quadrant = 3 - ((startSegment % 4) + 4) % 4;
|
|
929 |
const int j = 3 * quadrant;
|
|
930 |
return delta > 0 ? points[j + 3] : points[j];
|
|
931 |
}
|
|
932 |
|
|
933 |
QPointF startPoint, endPoint;
|
|
934 |
qt_find_ellipse_coords(rect, startAngle, sweepLength, &startPoint, &endPoint);
|
|
935 |
|
|
936 |
for (int i = startSegment; i != end; i += delta) {
|
|
937 |
const int quadrant = 3 - ((i % 4) + 4) % 4;
|
|
938 |
const int j = 3 * quadrant;
|
|
939 |
|
|
940 |
QBezier b;
|
|
941 |
if (delta > 0)
|
|
942 |
b = QBezier::fromPoints(points[j + 3], points[j + 2], points[j + 1], points[j]);
|
|
943 |
else
|
|
944 |
b = QBezier::fromPoints(points[j], points[j + 1], points[j + 2], points[j + 3]);
|
|
945 |
|
|
946 |
// empty arc?
|
|
947 |
if (startSegment == endSegment && qFuzzyCompare(startT, endT))
|
|
948 |
return startPoint;
|
|
949 |
|
|
950 |
if (i == startSegment) {
|
|
951 |
if (i == endSegment && splitAtEnd)
|
|
952 |
b = b.bezierOnInterval(startT, endT);
|
|
953 |
else if (splitAtStart)
|
|
954 |
b = b.bezierOnInterval(startT, 1);
|
|
955 |
} else if (i == endSegment && splitAtEnd) {
|
|
956 |
b = b.bezierOnInterval(0, endT);
|
|
957 |
}
|
|
958 |
|
|
959 |
// push control points
|
|
960 |
curves[(*point_count)++] = b.pt2();
|
|
961 |
curves[(*point_count)++] = b.pt3();
|
|
962 |
curves[(*point_count)++] = b.pt4();
|
|
963 |
}
|
|
964 |
|
|
965 |
Q_ASSERT(*point_count > 0);
|
|
966 |
curves[*(point_count)-1] = endPoint;
|
|
967 |
|
|
968 |
return startPoint;
|
|
969 |
}
|
|
970 |
|
|
971 |
|
|
972 |
static inline void qdashstroker_moveTo(qfixed x, qfixed y, void *data) {
|
|
973 |
((QStroker *) data)->moveTo(x, y);
|
|
974 |
}
|
|
975 |
|
|
976 |
static inline void qdashstroker_lineTo(qfixed x, qfixed y, void *data) {
|
|
977 |
((QStroker *) data)->lineTo(x, y);
|
|
978 |
}
|
|
979 |
|
|
980 |
static inline void qdashstroker_cubicTo(qfixed, qfixed, qfixed, qfixed, qfixed, qfixed, void *) {
|
|
981 |
Q_ASSERT(0);
|
|
982 |
// ((QStroker *) data)->cubicTo(c1x, c1y, c2x, c2y, ex, ey);
|
|
983 |
}
|
|
984 |
|
|
985 |
|
|
986 |
/*******************************************************************************
|
|
987 |
* QDashStroker members
|
|
988 |
*/
|
|
989 |
QDashStroker::QDashStroker(QStroker *stroker)
|
|
990 |
: m_stroker(stroker), m_dashOffset(0), m_stroke_width(1), m_miter_limit(1)
|
|
991 |
{
|
|
992 |
if (m_stroker) {
|
|
993 |
setMoveToHook(qdashstroker_moveTo);
|
|
994 |
setLineToHook(qdashstroker_lineTo);
|
|
995 |
setCubicToHook(qdashstroker_cubicTo);
|
|
996 |
}
|
|
997 |
}
|
|
998 |
|
|
999 |
QVector<qfixed> QDashStroker::patternForStyle(Qt::PenStyle style)
|
|
1000 |
{
|
|
1001 |
const qfixed space = 2;
|
|
1002 |
const qfixed dot = 1;
|
|
1003 |
const qfixed dash = 4;
|
|
1004 |
|
|
1005 |
QVector<qfixed> pattern;
|
|
1006 |
|
|
1007 |
switch (style) {
|
|
1008 |
case Qt::DashLine:
|
|
1009 |
pattern << dash << space;
|
|
1010 |
break;
|
|
1011 |
case Qt::DotLine:
|
|
1012 |
pattern << dot << space;
|
|
1013 |
break;
|
|
1014 |
case Qt::DashDotLine:
|
|
1015 |
pattern << dash << space << dot << space;
|
|
1016 |
break;
|
|
1017 |
case Qt::DashDotDotLine:
|
|
1018 |
pattern << dash << space << dot << space << dot << space;
|
|
1019 |
break;
|
|
1020 |
default:
|
|
1021 |
break;
|
|
1022 |
}
|
|
1023 |
|
|
1024 |
return pattern;
|
|
1025 |
}
|
|
1026 |
|
|
1027 |
|
|
1028 |
void QDashStroker::processCurrentSubpath()
|
|
1029 |
{
|
|
1030 |
int dashCount = qMin(m_dashPattern.size(), 32);
|
|
1031 |
qfixed dashes[32];
|
|
1032 |
|
|
1033 |
if (m_stroker) {
|
|
1034 |
m_customData = m_stroker;
|
|
1035 |
m_stroke_width = m_stroker->strokeWidth();
|
|
1036 |
m_miter_limit = m_stroker->miterLimit();
|
|
1037 |
}
|
|
1038 |
|
|
1039 |
qreal longestLength = 0;
|
|
1040 |
qreal sumLength = 0;
|
|
1041 |
for (int i=0; i<dashCount; ++i) {
|
|
1042 |
dashes[i] = qMax(m_dashPattern.at(i), qreal(0)) * m_stroke_width;
|
|
1043 |
sumLength += dashes[i];
|
|
1044 |
if (dashes[i] > longestLength)
|
|
1045 |
longestLength = dashes[i];
|
|
1046 |
}
|
|
1047 |
|
|
1048 |
if (qFuzzyIsNull(sumLength))
|
|
1049 |
return;
|
|
1050 |
|
|
1051 |
Q_ASSERT(dashCount > 0);
|
|
1052 |
|
|
1053 |
dashCount = (dashCount / 2) * 2; // Round down to even number
|
|
1054 |
|
|
1055 |
int idash = 0; // Index to current dash
|
|
1056 |
qreal pos = 0; // The position on the curve, 0 <= pos <= path.length
|
|
1057 |
qreal elen = 0; // element length
|
|
1058 |
qreal doffset = m_dashOffset * m_stroke_width;
|
|
1059 |
|
|
1060 |
// make sure doffset is in range [0..sumLength)
|
|
1061 |
doffset -= qFloor(doffset / sumLength) * sumLength;
|
|
1062 |
|
|
1063 |
while (doffset >= dashes[idash]) {
|
|
1064 |
doffset -= dashes[idash];
|
|
1065 |
idash = (idash + 1) % dashCount;
|
|
1066 |
}
|
|
1067 |
|
|
1068 |
qreal estart = 0; // The elements starting position
|
|
1069 |
qreal estop = 0; // The element stop position
|
|
1070 |
|
|
1071 |
QLineF cline;
|
|
1072 |
|
|
1073 |
QPainterPath dashPath;
|
|
1074 |
|
|
1075 |
QSubpathFlatIterator it(&m_elements);
|
|
1076 |
qfixed2d prev = it.next();
|
|
1077 |
|
|
1078 |
bool clipping = !m_clip_rect.isEmpty();
|
|
1079 |
qfixed2d move_to_pos = prev;
|
|
1080 |
qfixed2d line_to_pos;
|
|
1081 |
|
|
1082 |
// Pad to avoid clipping the borders of thick pens.
|
|
1083 |
qfixed padding = qt_real_to_fixed(qMax(m_stroke_width, m_miter_limit) * longestLength);
|
|
1084 |
qfixed2d clip_tl = { qt_real_to_fixed(m_clip_rect.left()) - padding,
|
|
1085 |
qt_real_to_fixed(m_clip_rect.top()) - padding };
|
|
1086 |
qfixed2d clip_br = { qt_real_to_fixed(m_clip_rect.right()) + padding ,
|
|
1087 |
qt_real_to_fixed(m_clip_rect.bottom()) + padding };
|
|
1088 |
|
|
1089 |
bool hasMoveTo = false;
|
|
1090 |
while (it.hasNext()) {
|
|
1091 |
QStrokerOps::Element e = it.next();
|
|
1092 |
|
|
1093 |
Q_ASSERT(e.isLineTo());
|
|
1094 |
cline = QLineF(qt_fixed_to_real(prev.x),
|
|
1095 |
qt_fixed_to_real(prev.y),
|
|
1096 |
qt_fixed_to_real(e.x),
|
|
1097 |
qt_fixed_to_real(e.y));
|
|
1098 |
elen = cline.length();
|
|
1099 |
|
|
1100 |
estop = estart + elen;
|
|
1101 |
|
|
1102 |
bool done = pos >= estop;
|
|
1103 |
// Dash away...
|
|
1104 |
while (!done) {
|
|
1105 |
QPointF p2;
|
|
1106 |
|
|
1107 |
int idash_incr = 0;
|
|
1108 |
bool has_offset = doffset > 0;
|
|
1109 |
qreal dpos = pos + dashes[idash] - doffset - estart;
|
|
1110 |
|
|
1111 |
Q_ASSERT(dpos >= 0);
|
|
1112 |
|
|
1113 |
if (dpos > elen) { // dash extends this line
|
|
1114 |
doffset = dashes[idash] - (dpos - elen); // subtract the part already used
|
|
1115 |
pos = estop; // move pos to next path element
|
|
1116 |
done = true;
|
|
1117 |
p2 = cline.p2();
|
|
1118 |
} else { // Dash is on this line
|
|
1119 |
p2 = cline.pointAt(dpos/elen);
|
|
1120 |
pos = dpos + estart;
|
|
1121 |
done = pos >= estop;
|
|
1122 |
idash_incr = 1;
|
|
1123 |
doffset = 0; // full segment so no offset on next.
|
|
1124 |
}
|
|
1125 |
|
|
1126 |
if (idash % 2 == 0) {
|
|
1127 |
line_to_pos.x = qt_real_to_fixed(p2.x());
|
|
1128 |
line_to_pos.y = qt_real_to_fixed(p2.y());
|
|
1129 |
|
|
1130 |
// If we have an offset, we're continuing a dash
|
|
1131 |
// from a previous element and should only
|
|
1132 |
// continue the current dash, without starting a
|
|
1133 |
// new subpath.
|
|
1134 |
if (!has_offset || !hasMoveTo) {
|
|
1135 |
emitMoveTo(move_to_pos.x, move_to_pos.y);
|
|
1136 |
hasMoveTo = true;
|
|
1137 |
}
|
|
1138 |
|
|
1139 |
if (!clipping
|
|
1140 |
// if move_to is inside...
|
|
1141 |
|| (move_to_pos.x > clip_tl.x && move_to_pos.x < clip_br.x
|
|
1142 |
&& move_to_pos.y > clip_tl.y && move_to_pos.y < clip_br.y)
|
|
1143 |
// Or if line_to is inside...
|
|
1144 |
|| (line_to_pos.x > clip_tl.x && line_to_pos.x < clip_br.x
|
|
1145 |
&& line_to_pos.y > clip_tl.y && line_to_pos.y < clip_br.y))
|
|
1146 |
{
|
|
1147 |
emitLineTo(line_to_pos.x, line_to_pos.y);
|
|
1148 |
}
|
|
1149 |
} else {
|
|
1150 |
move_to_pos.x = qt_real_to_fixed(p2.x());
|
|
1151 |
move_to_pos.y = qt_real_to_fixed(p2.y());
|
|
1152 |
}
|
|
1153 |
|
|
1154 |
idash = (idash + idash_incr) % dashCount;
|
|
1155 |
}
|
|
1156 |
|
|
1157 |
// Shuffle to the next cycle...
|
|
1158 |
estart = estop;
|
|
1159 |
prev = e;
|
|
1160 |
}
|
|
1161 |
|
|
1162 |
}
|
|
1163 |
|
|
1164 |
QT_END_NAMESPACE
|