author | Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com> |
Tue, 02 Feb 2010 00:43:10 +0200 | |
changeset 3 | 41300fa6a67c |
parent 0 | 1918ee327afb |
child 4 | 3b1da2848fc7 |
permissions | -rw-r--r-- |
0 | 1 |
/**************************************************************************** |
2 |
** |
|
3 |
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies). |
|
4 |
** All rights reserved. |
|
5 |
** Contact: Nokia Corporation (qt-info@nokia.com) |
|
6 |
** |
|
7 |
** This file is part of the QtGui module of the Qt Toolkit. |
|
8 |
** |
|
9 |
** $QT_BEGIN_LICENSE:LGPL$ |
|
10 |
** No Commercial Usage |
|
11 |
** This file contains pre-release code and may not be distributed. |
|
12 |
** You may use this file in accordance with the terms and conditions |
|
13 |
** contained in the Technology Preview License Agreement accompanying |
|
14 |
** this package. |
|
15 |
** |
|
16 |
** GNU Lesser General Public License Usage |
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser |
|
18 |
** General Public License version 2.1 as published by the Free Software |
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the |
|
20 |
** packaging of this file. Please review the following information to |
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements |
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. |
|
23 |
** |
|
24 |
** In addition, as a special exception, Nokia gives you certain additional |
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception |
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package. |
|
27 |
** |
|
28 |
** If you have questions regarding the use of this file, please contact |
|
29 |
** Nokia at qt-info@nokia.com. |
|
30 |
** |
|
31 |
** |
|
32 |
** |
|
33 |
** |
|
34 |
** |
|
35 |
** |
|
36 |
** |
|
37 |
** |
|
38 |
** $QT_END_LICENSE$ |
|
39 |
** |
|
40 |
****************************************************************************/ |
|
41 |
||
42 |
#include "private/qstroker_p.h" |
|
43 |
#include "private/qbezier_p.h" |
|
44 |
#include "private/qmath_p.h" |
|
45 |
#include "qline.h" |
|
46 |
#include "qtransform.h" |
|
47 |
#include <qmath.h> |
|
48 |
||
49 |
QT_BEGIN_NAMESPACE |
|
50 |
||
51 |
// #define QPP_STROKE_DEBUG |
|
52 |
||
53 |
class QSubpathForwardIterator |
|
54 |
{ |
|
55 |
public: |
|
56 |
QSubpathForwardIterator(const QDataBuffer<QStrokerOps::Element> *path) |
|
57 |
: m_path(path), m_pos(0) { } |
|
58 |
inline int position() const { return m_pos; } |
|
59 |
inline bool hasNext() const { return m_pos < m_path->size(); } |
|
60 |
inline QStrokerOps::Element next() { Q_ASSERT(hasNext()); return m_path->at(m_pos++); } |
|
61 |
||
62 |
private: |
|
63 |
const QDataBuffer<QStrokerOps::Element> *m_path; |
|
64 |
int m_pos; |
|
65 |
}; |
|
66 |
||
67 |
class QSubpathBackwardIterator |
|
68 |
{ |
|
69 |
public: |
|
70 |
QSubpathBackwardIterator(const QDataBuffer<QStrokerOps::Element> *path) |
|
71 |
: m_path(path), m_pos(path->size() - 1) { } |
|
72 |
||
73 |
inline int position() const { return m_pos; } |
|
74 |
||
75 |
inline bool hasNext() const { return m_pos >= 0; } |
|
76 |
||
77 |
inline QStrokerOps::Element next() |
|
78 |
{ |
|
79 |
Q_ASSERT(hasNext()); |
|
80 |
||
81 |
QStrokerOps::Element ce = m_path->at(m_pos); // current element |
|
82 |
||
83 |
if (m_pos == m_path->size() - 1) { |
|
84 |
--m_pos; |
|
85 |
ce.type = QPainterPath::MoveToElement; |
|
86 |
return ce; |
|
87 |
} |
|
88 |
||
89 |
const QStrokerOps::Element &pe = m_path->at(m_pos + 1); // previous element |
|
90 |
||
91 |
switch (pe.type) { |
|
92 |
case QPainterPath::LineToElement: |
|
93 |
ce.type = QPainterPath::LineToElement; |
|
94 |
break; |
|
95 |
case QPainterPath::CurveToDataElement: |
|
96 |
// First control point? |
|
97 |
if (ce.type == QPainterPath::CurveToElement) { |
|
98 |
ce.type = QPainterPath::CurveToDataElement; |
|
99 |
} else { // Second control point then |
|
100 |
ce.type = QPainterPath::CurveToElement; |
|
101 |
} |
|
102 |
break; |
|
103 |
case QPainterPath::CurveToElement: |
|
104 |
ce.type = QPainterPath::CurveToDataElement; |
|
105 |
break; |
|
106 |
default: |
|
107 |
qWarning("QSubpathReverseIterator::next: Case %d unhandled", ce.type); |
|
108 |
break; |
|
109 |
} |
|
110 |
--m_pos; |
|
111 |
||
112 |
return ce; |
|
113 |
} |
|
114 |
||
115 |
private: |
|
116 |
const QDataBuffer<QStrokerOps::Element> *m_path; |
|
117 |
int m_pos; |
|
118 |
}; |
|
119 |
||
120 |
class QSubpathFlatIterator |
|
121 |
{ |
|
122 |
public: |
|
123 |
QSubpathFlatIterator(const QDataBuffer<QStrokerOps::Element> *path) |
|
124 |
: m_path(path), m_pos(0), m_curve_index(-1) { } |
|
125 |
||
126 |
inline bool hasNext() const { return m_curve_index >= 0 || m_pos < m_path->size(); } |
|
127 |
||
128 |
QStrokerOps::Element next() |
|
129 |
{ |
|
130 |
Q_ASSERT(hasNext()); |
|
131 |
||
132 |
if (m_curve_index >= 0) { |
|
133 |
QStrokerOps::Element e = { QPainterPath::LineToElement, |
|
134 |
qt_real_to_fixed(m_curve.at(m_curve_index).x()), |
|
135 |
qt_real_to_fixed(m_curve.at(m_curve_index).y()) |
|
136 |
}; |
|
137 |
++m_curve_index; |
|
138 |
if (m_curve_index >= m_curve.size()) |
|
139 |
m_curve_index = -1; |
|
140 |
return e; |
|
141 |
} |
|
142 |
||
143 |
QStrokerOps::Element e = m_path->at(m_pos); |
|
144 |
if (e.isCurveTo()) { |
|
145 |
Q_ASSERT(m_pos > 0); |
|
146 |
Q_ASSERT(m_pos < m_path->size()); |
|
147 |
||
148 |
m_curve = QBezier::fromPoints(QPointF(qt_fixed_to_real(m_path->at(m_pos-1).x), |
|
149 |
qt_fixed_to_real(m_path->at(m_pos-1).y)), |
|
150 |
QPointF(qt_fixed_to_real(e.x), |
|
151 |
qt_fixed_to_real(e.y)), |
|
152 |
QPointF(qt_fixed_to_real(m_path->at(m_pos+1).x), |
|
153 |
qt_fixed_to_real(m_path->at(m_pos+1).y)), |
|
154 |
QPointF(qt_fixed_to_real(m_path->at(m_pos+2).x), |
|
155 |
qt_fixed_to_real(m_path->at(m_pos+2).y))).toPolygon(); |
|
156 |
m_curve_index = 1; |
|
157 |
e.type = QPainterPath::LineToElement; |
|
158 |
e.x = m_curve.at(0).x(); |
|
159 |
e.y = m_curve.at(0).y(); |
|
160 |
m_pos += 2; |
|
161 |
} |
|
162 |
Q_ASSERT(e.isLineTo() || e.isMoveTo()); |
|
163 |
++m_pos; |
|
164 |
return e; |
|
165 |
} |
|
166 |
||
167 |
private: |
|
168 |
const QDataBuffer<QStrokerOps::Element> *m_path; |
|
169 |
int m_pos; |
|
170 |
QPolygonF m_curve; |
|
171 |
int m_curve_index; |
|
172 |
}; |
|
173 |
||
174 |
template <class Iterator> bool qt_stroke_side(Iterator *it, QStroker *stroker, |
|
175 |
bool capFirst, QLineF *startTangent); |
|
176 |
||
177 |
/******************************************************************************* |
|
178 |
* QLineF::angle gives us the smalles angle between two lines. Here we |
|
179 |
* want to identify the line's angle direction on the unit circle. |
|
180 |
*/ |
|
181 |
static inline qreal adapted_angle_on_x(const QLineF &line) |
|
182 |
{ |
|
183 |
qreal angle = line.angle(QLineF(0, 0, 1, 0)); |
|
184 |
if (line.dy() > 0) |
|
185 |
angle = 360 - angle; |
|
186 |
return angle; |
|
187 |
} |
|
188 |
||
189 |
QStrokerOps::QStrokerOps() |
|
190 |
: m_customData(0), m_moveTo(0), m_lineTo(0), m_cubicTo(0) |
|
191 |
{ |
|
192 |
} |
|
193 |
||
194 |
QStrokerOps::~QStrokerOps() |
|
195 |
{ |
|
196 |
} |
|
197 |
||
198 |
||
199 |
/*! |
|
200 |
Prepares the stroker. Call this function once before starting a |
|
201 |
stroke by calling moveTo, lineTo or cubicTo. |
|
202 |
||
203 |
The \a customData is passed back through that callback functions |
|
204 |
and can be used by the user to for instance maintain state |
|
205 |
information. |
|
206 |
*/ |
|
207 |
void QStrokerOps::begin(void *customData) |
|
208 |
{ |
|
209 |
m_customData = customData; |
|
210 |
m_elements.reset(); |
|
211 |
} |
|
212 |
||
213 |
||
214 |
/*! |
|
215 |
Finishes the stroke. Call this function once when an entire |
|
216 |
primitive has been stroked. |
|
217 |
*/ |
|
218 |
void QStrokerOps::end() |
|
219 |
{ |
|
220 |
if (m_elements.size() > 1) |
|
221 |
processCurrentSubpath(); |
|
222 |
m_customData = 0; |
|
223 |
} |
|
224 |
||
225 |
/*! |
|
226 |
Convenience function that decomposes \a path into begin(), |
|
227 |
moveTo(), lineTo(), curevTo() and end() calls. |
|
228 |
||
229 |
The \a customData parameter is used in the callback functions |
|
230 |
||
231 |
The \a matrix is used to transform the points before input to the |
|
232 |
stroker. |
|
233 |
||
234 |
\sa begin() |
|
235 |
*/ |
|
236 |
void QStrokerOps::strokePath(const QPainterPath &path, void *customData, const QTransform &matrix) |
|
237 |
{ |
|
238 |
if (path.isEmpty()) |
|
239 |
return; |
|
240 |
||
241 |
begin(customData); |
|
242 |
int count = path.elementCount(); |
|
243 |
if (matrix.isIdentity()) { |
|
244 |
for (int i=0; i<count; ++i) { |
|
245 |
const QPainterPath::Element &e = path.elementAt(i); |
|
246 |
switch (e.type) { |
|
247 |
case QPainterPath::MoveToElement: |
|
248 |
moveTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y)); |
|
249 |
break; |
|
250 |
case QPainterPath::LineToElement: |
|
251 |
lineTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y)); |
|
252 |
break; |
|
253 |
case QPainterPath::CurveToElement: |
|
254 |
{ |
|
255 |
const QPainterPath::Element &cp2 = path.elementAt(++i); |
|
256 |
const QPainterPath::Element &ep = path.elementAt(++i); |
|
257 |
cubicTo(qt_real_to_fixed(e.x), qt_real_to_fixed(e.y), |
|
258 |
qt_real_to_fixed(cp2.x), qt_real_to_fixed(cp2.y), |
|
259 |
qt_real_to_fixed(ep.x), qt_real_to_fixed(ep.y)); |
|
260 |
} |
|
261 |
break; |
|
262 |
default: |
|
263 |
break; |
|
264 |
} |
|
265 |
} |
|
266 |
} else { |
|
267 |
for (int i=0; i<count; ++i) { |
|
268 |
const QPainterPath::Element &e = path.elementAt(i); |
|
269 |
QPointF pt = QPointF(e.x, e.y) * matrix; |
|
270 |
switch (e.type) { |
|
271 |
case QPainterPath::MoveToElement: |
|
272 |
moveTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); |
|
273 |
break; |
|
274 |
case QPainterPath::LineToElement: |
|
275 |
lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); |
|
276 |
break; |
|
277 |
case QPainterPath::CurveToElement: |
|
278 |
{ |
|
279 |
QPointF cp2 = ((QPointF) path.elementAt(++i)) * matrix; |
|
280 |
QPointF ep = ((QPointF) path.elementAt(++i)) * matrix; |
|
281 |
cubicTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y()), |
|
282 |
qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()), |
|
283 |
qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y())); |
|
284 |
} |
|
285 |
break; |
|
286 |
default: |
|
287 |
break; |
|
288 |
} |
|
289 |
} |
|
290 |
} |
|
291 |
end(); |
|
292 |
} |
|
293 |
||
294 |
/*! |
|
295 |
Convenience function for stroking a polygon of the \a pointCount |
|
296 |
first points in \a points. If \a implicit_close is set to true a |
|
297 |
line is implictly drawn between the first and last point in the |
|
298 |
polygon. Typically true for polygons and false for polylines. |
|
299 |
||
300 |
The \a matrix is used to transform the points before they enter the |
|
301 |
stroker. |
|
302 |
||
303 |
\sa begin() |
|
304 |
*/ |
|
305 |
||
306 |
void QStrokerOps::strokePolygon(const QPointF *points, int pointCount, bool implicit_close, |
|
307 |
void *data, const QTransform &matrix) |
|
308 |
{ |
|
309 |
if (!pointCount) |
|
310 |
return; |
|
311 |
begin(data); |
|
312 |
if (matrix.isIdentity()) { |
|
313 |
moveTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y())); |
|
314 |
for (int i=1; i<pointCount; ++i) |
|
315 |
lineTo(qt_real_to_fixed(points[i].x()), |
|
316 |
qt_real_to_fixed(points[i].y())); |
|
317 |
if (implicit_close) |
|
318 |
lineTo(qt_real_to_fixed(points[0].x()), qt_real_to_fixed(points[0].y())); |
|
319 |
} else { |
|
320 |
QPointF start = points[0] * matrix; |
|
321 |
moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); |
|
322 |
for (int i=1; i<pointCount; ++i) { |
|
323 |
QPointF pt = points[i] * matrix; |
|
324 |
lineTo(qt_real_to_fixed(pt.x()), qt_real_to_fixed(pt.y())); |
|
325 |
} |
|
326 |
if (implicit_close) |
|
327 |
lineTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); |
|
328 |
} |
|
329 |
end(); |
|
330 |
} |
|
331 |
||
332 |
/*! |
|
333 |
Convenience function for stroking an ellipse with bounding rect \a |
|
334 |
rect. The \a matrix is used to transform the coordinates before |
|
335 |
they enter the stroker. |
|
336 |
*/ |
|
337 |
void QStrokerOps::strokeEllipse(const QRectF &rect, void *data, const QTransform &matrix) |
|
338 |
{ |
|
339 |
int count = 0; |
|
340 |
QPointF pts[12]; |
|
341 |
QPointF start = qt_curves_for_arc(rect, 0, -360, pts, &count); |
|
342 |
Q_ASSERT(count == 12); // a perfect circle.. |
|
343 |
||
344 |
if (!matrix.isIdentity()) { |
|
345 |
start = start * matrix; |
|
346 |
for (int i=0; i<12; ++i) { |
|
347 |
pts[i] = pts[i] * matrix; |
|
348 |
} |
|
349 |
} |
|
350 |
||
351 |
begin(data); |
|
352 |
moveTo(qt_real_to_fixed(start.x()), qt_real_to_fixed(start.y())); |
|
353 |
for (int i=0; i<12; i+=3) { |
|
354 |
cubicTo(qt_real_to_fixed(pts[i].x()), qt_real_to_fixed(pts[i].y()), |
|
355 |
qt_real_to_fixed(pts[i+1].x()), qt_real_to_fixed(pts[i+1].y()), |
|
356 |
qt_real_to_fixed(pts[i+2].x()), qt_real_to_fixed(pts[i+2].y())); |
|
357 |
} |
|
358 |
end(); |
|
359 |
} |
|
360 |
||
361 |
||
362 |
QStroker::QStroker() |
|
363 |
: m_capStyle(SquareJoin), m_joinStyle(FlatJoin), |
|
364 |
m_back1X(0), m_back1Y(0), |
|
365 |
m_back2X(0), m_back2Y(0) |
|
366 |
{ |
|
367 |
m_strokeWidth = qt_real_to_fixed(1); |
|
368 |
m_miterLimit = qt_real_to_fixed(2); |
|
369 |
m_curveThreshold = qt_real_to_fixed(0.25); |
|
370 |
} |
|
371 |
||
372 |
QStroker::~QStroker() |
|
373 |
{ |
|
374 |
||
375 |
} |
|
376 |
||
377 |
Qt::PenCapStyle QStroker::capForJoinMode(LineJoinMode mode) |
|
378 |
{ |
|
379 |
if (mode == FlatJoin) return Qt::FlatCap; |
|
380 |
else if (mode == SquareJoin) return Qt::SquareCap; |
|
381 |
else return Qt::RoundCap; |
|
382 |
} |
|
383 |
||
384 |
QStroker::LineJoinMode QStroker::joinModeForCap(Qt::PenCapStyle style) |
|
385 |
{ |
|
386 |
if (style == Qt::FlatCap) return FlatJoin; |
|
387 |
else if (style == Qt::SquareCap) return SquareJoin; |
|
388 |
else return RoundCap; |
|
389 |
} |
|
390 |
||
391 |
Qt::PenJoinStyle QStroker::joinForJoinMode(LineJoinMode mode) |
|
392 |
{ |
|
393 |
if (mode == FlatJoin) return Qt::BevelJoin; |
|
394 |
else if (mode == MiterJoin) return Qt::MiterJoin; |
|
395 |
else if (mode == SvgMiterJoin) return Qt::SvgMiterJoin; |
|
396 |
else return Qt::RoundJoin; |
|
397 |
} |
|
398 |
||
399 |
QStroker::LineJoinMode QStroker::joinModeForJoin(Qt::PenJoinStyle joinStyle) |
|
400 |
{ |
|
401 |
if (joinStyle == Qt::BevelJoin) return FlatJoin; |
|
402 |
else if (joinStyle == Qt::MiterJoin) return MiterJoin; |
|
403 |
else if (joinStyle == Qt::SvgMiterJoin) return SvgMiterJoin; |
|
404 |
else return RoundJoin; |
|
405 |
} |
|
406 |
||
407 |
||
408 |
/*! |
|
409 |
This function is called to stroke the currently built up |
|
410 |
subpath. The subpath is cleared when the function completes. |
|
411 |
*/ |
|
412 |
void QStroker::processCurrentSubpath() |
|
413 |
{ |
|
414 |
Q_ASSERT(!m_elements.isEmpty()); |
|
415 |
Q_ASSERT(m_elements.first().type == QPainterPath::MoveToElement); |
|
416 |
Q_ASSERT(m_elements.size() > 1); |
|
417 |
||
418 |
QSubpathForwardIterator fwit(&m_elements); |
|
419 |
QSubpathBackwardIterator bwit(&m_elements); |
|
420 |
||
421 |
QLineF fwStartTangent, bwStartTangent; |
|
422 |
||
423 |
bool fwclosed = qt_stroke_side(&fwit, this, false, &fwStartTangent); |
|
424 |
bool bwclosed = qt_stroke_side(&bwit, this, !fwclosed, &bwStartTangent); |
|
425 |
||
426 |
if (!bwclosed) |
|
427 |
joinPoints(m_elements.at(0).x, m_elements.at(0).y, fwStartTangent, m_capStyle); |
|
428 |
} |
|
429 |
||
430 |
||
431 |
/*! |
|
432 |
\internal |
|
433 |
*/ |
|
434 |
void QStroker::joinPoints(qfixed focal_x, qfixed focal_y, const QLineF &nextLine, LineJoinMode join) |
|
435 |
{ |
|
436 |
#ifdef QPP_STROKE_DEBUG |
|
437 |
printf(" -----> joinPoints: around=(%.0f, %.0f), next_p1=(%.0f, %.f) next_p2=(%.0f, %.f)\n", |
|
438 |
qt_fixed_to_real(focal_x), |
|
439 |
qt_fixed_to_real(focal_y), |
|
440 |
nextLine.x1(), nextLine.y1(), nextLine.x2(), nextLine.y2()); |
|
441 |
#endif |
|
442 |
// points connected already, don't join |
|
443 |
||
444 |
#if !defined (QFIXED_26_6) && !defined (Q_FIXED_32_32) |
|
445 |
if (qFuzzyCompare(m_back1X, nextLine.x1()) && qFuzzyCompare(m_back1Y, nextLine.y1())) |
|
446 |
return; |
|
447 |
#else |
|
448 |
if (m_back1X == qt_real_to_fixed(nextLine.x1()) |
|
449 |
&& m_back1Y == qt_real_to_fixed(nextLine.y1())) { |
|
450 |
return; |
|
451 |
} |
|
452 |
#endif |
|
453 |
||
454 |
if (join == FlatJoin) { |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
455 |
QLineF prevLine(qt_fixed_to_real(m_back2X), qt_fixed_to_real(m_back2Y), |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
456 |
qt_fixed_to_real(m_back1X), qt_fixed_to_real(m_back1Y)); |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
457 |
QPointF isect; |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
458 |
QLineF::IntersectType type = prevLine.intersect(nextLine, &isect); |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
459 |
QLineF shortCut(prevLine.p2(), nextLine.p1()); |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
460 |
qreal angle = shortCut.angleTo(prevLine); |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
461 |
if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) { |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
462 |
emitLineTo(focal_x, focal_y); |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
463 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
464 |
return; |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
465 |
} |
0 | 466 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), |
467 |
qt_real_to_fixed(nextLine.y1())); |
|
468 |
||
469 |
} else { |
|
470 |
QLineF prevLine(qt_fixed_to_real(m_back2X), qt_fixed_to_real(m_back2Y), |
|
471 |
qt_fixed_to_real(m_back1X), qt_fixed_to_real(m_back1Y)); |
|
472 |
||
473 |
QPointF isect; |
|
474 |
QLineF::IntersectType type = prevLine.intersect(nextLine, &isect); |
|
475 |
||
476 |
if (join == MiterJoin) { |
|
477 |
qreal appliedMiterLimit = qt_fixed_to_real(m_strokeWidth * m_miterLimit); |
|
478 |
||
479 |
// If we are on the inside, do the short cut... |
|
480 |
QLineF shortCut(prevLine.p2(), nextLine.p1()); |
|
481 |
qreal angle = shortCut.angleTo(prevLine); |
|
482 |
if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) { |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
483 |
emitLineTo(focal_x, focal_y); |
0 | 484 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
485 |
return; |
|
486 |
} |
|
487 |
QLineF miterLine(QPointF(qt_fixed_to_real(m_back1X), |
|
488 |
qt_fixed_to_real(m_back1Y)), isect); |
|
489 |
if (type == QLineF::NoIntersection || miterLine.length() > appliedMiterLimit) { |
|
490 |
QLineF l1(prevLine); |
|
491 |
l1.setLength(appliedMiterLimit); |
|
492 |
l1.translate(prevLine.dx(), prevLine.dy()); |
|
493 |
||
494 |
QLineF l2(nextLine); |
|
495 |
l2.setLength(appliedMiterLimit); |
|
496 |
l2.translate(-l2.dx(), -l2.dy()); |
|
497 |
||
498 |
emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2())); |
|
499 |
emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1())); |
|
500 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
|
501 |
} else { |
|
502 |
emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y())); |
|
503 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
|
504 |
} |
|
505 |
||
506 |
} else if (join == SquareJoin) { |
|
507 |
qfixed offset = m_strokeWidth / 2; |
|
508 |
||
509 |
QLineF l1(prevLine); |
|
510 |
l1.translate(l1.dx(), l1.dy()); |
|
511 |
l1.setLength(qt_fixed_to_real(offset)); |
|
512 |
QLineF l2(nextLine.p2(), nextLine.p1()); |
|
513 |
l2.translate(l2.dx(), l2.dy()); |
|
514 |
l2.setLength(qt_fixed_to_real(offset)); |
|
515 |
emitLineTo(qt_real_to_fixed(l1.x2()), qt_real_to_fixed(l1.y2())); |
|
516 |
emitLineTo(qt_real_to_fixed(l2.x2()), qt_real_to_fixed(l2.y2())); |
|
517 |
emitLineTo(qt_real_to_fixed(l2.x1()), qt_real_to_fixed(l2.y1())); |
|
518 |
||
519 |
} else if (join == RoundJoin) { |
|
520 |
qfixed offset = m_strokeWidth / 2; |
|
521 |
||
522 |
QLineF shortCut(prevLine.p2(), nextLine.p1()); |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
523 |
qreal angle = shortCut.angleTo(prevLine); |
0 | 524 |
if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) { |
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
525 |
emitLineTo(focal_x, focal_y); |
0 | 526 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
527 |
return; |
|
528 |
} |
|
529 |
qreal l1_on_x = adapted_angle_on_x(prevLine); |
|
530 |
qreal l2_on_x = adapted_angle_on_x(nextLine); |
|
531 |
||
532 |
qreal sweepLength = qAbs(l2_on_x - l1_on_x); |
|
533 |
||
534 |
int point_count; |
|
535 |
QPointF curves[15]; |
|
536 |
||
537 |
QPointF curve_start = |
|
538 |
qt_curves_for_arc(QRectF(qt_fixed_to_real(focal_x - offset), |
|
539 |
qt_fixed_to_real(focal_y - offset), |
|
540 |
qt_fixed_to_real(offset * 2), |
|
541 |
qt_fixed_to_real(offset * 2)), |
|
542 |
l1_on_x + 90, -sweepLength, |
|
543 |
curves, &point_count); |
|
544 |
||
545 |
// // line to the beginning of the arc segment, (should not be needed). |
|
546 |
// emitLineTo(qt_real_to_fixed(curve_start.x()), qt_real_to_fixed(curve_start.y())); |
|
547 |
||
548 |
for (int i=0; i<point_count; i+=3) { |
|
549 |
emitCubicTo(qt_real_to_fixed(curves[i].x()), |
|
550 |
qt_real_to_fixed(curves[i].y()), |
|
551 |
qt_real_to_fixed(curves[i+1].x()), |
|
552 |
qt_real_to_fixed(curves[i+1].y()), |
|
553 |
qt_real_to_fixed(curves[i+2].x()), |
|
554 |
qt_real_to_fixed(curves[i+2].y())); |
|
555 |
} |
|
556 |
||
557 |
// line to the end of the arc segment, (should also not be needed). |
|
558 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
|
559 |
||
560 |
// Same as round join except we know its 180 degrees. Can also optimize this |
|
561 |
// later based on the addEllipse logic |
|
562 |
} else if (join == RoundCap) { |
|
563 |
qfixed offset = m_strokeWidth / 2; |
|
564 |
||
565 |
// first control line |
|
566 |
QLineF l1 = prevLine; |
|
567 |
l1.translate(l1.dx(), l1.dy()); |
|
568 |
l1.setLength(QT_PATH_KAPPA * offset); |
|
569 |
||
570 |
// second control line, find through normal between prevLine and focal. |
|
571 |
QLineF l2(qt_fixed_to_real(focal_x), qt_fixed_to_real(focal_y), |
|
572 |
prevLine.x2(), prevLine.y2()); |
|
573 |
l2.translate(-l2.dy(), l2.dx()); |
|
574 |
l2.setLength(QT_PATH_KAPPA * offset); |
|
575 |
||
576 |
emitCubicTo(qt_real_to_fixed(l1.x2()), |
|
577 |
qt_real_to_fixed(l1.y2()), |
|
578 |
qt_real_to_fixed(l2.x2()), |
|
579 |
qt_real_to_fixed(l2.y2()), |
|
580 |
qt_real_to_fixed(l2.x1()), |
|
581 |
qt_real_to_fixed(l2.y1())); |
|
582 |
||
583 |
// move so that it matches |
|
584 |
l2 = QLineF(l2.x1(), l2.y1(), l2.x1()-l2.dx(), l2.y1()-l2.dy()); |
|
585 |
||
586 |
// last line is parallel to l1 so just shift it down. |
|
587 |
l1.translate(nextLine.x1() - l1.x1(), nextLine.y1() - l1.y1()); |
|
588 |
||
589 |
emitCubicTo(qt_real_to_fixed(l2.x2()), |
|
590 |
qt_real_to_fixed(l2.y2()), |
|
591 |
qt_real_to_fixed(l1.x2()), |
|
592 |
qt_real_to_fixed(l1.y2()), |
|
593 |
qt_real_to_fixed(l1.x1()), |
|
594 |
qt_real_to_fixed(l1.y1())); |
|
595 |
} else if (join == SvgMiterJoin) { |
|
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
596 |
QLineF shortCut(prevLine.p2(), nextLine.p1()); |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
597 |
qreal angle = shortCut.angleTo(prevLine); |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
598 |
if (type == QLineF::BoundedIntersection || (angle > 90 && !qFuzzyCompare(angle, (qreal)90))) { |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
599 |
emitLineTo(focal_x, focal_y); |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
600 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
601 |
return; |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
602 |
} |
0 | 603 |
QLineF miterLine(QPointF(qt_fixed_to_real(focal_x), |
604 |
qt_fixed_to_real(focal_y)), isect); |
|
605 |
if (miterLine.length() > qt_fixed_to_real(m_strokeWidth * m_miterLimit) / 2) { |
|
606 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), |
|
607 |
qt_real_to_fixed(nextLine.y1())); |
|
608 |
} else { |
|
609 |
emitLineTo(qt_real_to_fixed(isect.x()), qt_real_to_fixed(isect.y())); |
|
610 |
emitLineTo(qt_real_to_fixed(nextLine.x1()), qt_real_to_fixed(nextLine.y1())); |
|
611 |
} |
|
612 |
} else { |
|
613 |
Q_ASSERT(!"QStroker::joinPoints(), bad join style..."); |
|
614 |
} |
|
615 |
} |
|
616 |
} |
|
617 |
||
618 |
||
619 |
/* |
|
620 |
Strokes a subpath side using the \a it as source. Results are put into |
|
621 |
\a stroke. The function returns true if the subpath side was closed. |
|
622 |
If \a capFirst is true, we will use capPoints instead of joinPoints to |
|
623 |
connect the first segment, other segments will be joined using joinPoints. |
|
624 |
This is to put capping in order... |
|
625 |
*/ |
|
626 |
template <class Iterator> bool qt_stroke_side(Iterator *it, |
|
627 |
QStroker *stroker, |
|
628 |
bool capFirst, |
|
629 |
QLineF *startTangent) |
|
630 |
{ |
|
631 |
// Used in CurveToElement section below. |
|
632 |
const int MAX_OFFSET = 16; |
|
633 |
QBezier offsetCurves[MAX_OFFSET]; |
|
634 |
||
635 |
Q_ASSERT(it->hasNext()); // The initaial move to |
|
636 |
QStrokerOps::Element first_element = it->next(); |
|
637 |
Q_ASSERT(first_element.isMoveTo()); |
|
638 |
||
639 |
qfixed2d start = first_element; |
|
640 |
||
641 |
#ifdef QPP_STROKE_DEBUG |
|
642 |
qDebug(" -> (side) [%.2f, %.2f], startPos=%d", |
|
643 |
qt_fixed_to_real(start.x), |
|
644 |
qt_fixed_to_real(start.y)); |
|
645 |
#endif |
|
646 |
||
647 |
qfixed2d prev = start; |
|
648 |
||
649 |
bool first = true; |
|
650 |
||
651 |
qfixed offset = stroker->strokeWidth() / 2; |
|
652 |
||
653 |
while (it->hasNext()) { |
|
654 |
QStrokerOps::Element e = it->next(); |
|
655 |
||
656 |
// LineToElement |
|
657 |
if (e.isLineTo()) { |
|
658 |
#ifdef QPP_STROKE_DEBUG |
|
659 |
qDebug("\n ---> (side) lineto [%.2f, %.2f]", e.x, e.y); |
|
660 |
#endif |
|
661 |
QLineF line(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y), |
|
662 |
qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)); |
|
663 |
QLineF normal = line.normalVector(); |
|
664 |
normal.setLength(offset); |
|
665 |
line.translate(normal.dx(), normal.dy()); |
|
666 |
||
667 |
// If we are starting a new subpath, move to correct starting point. |
|
668 |
if (first) { |
|
669 |
if (capFirst) |
|
670 |
stroker->joinPoints(prev.x, prev.y, line, stroker->capStyleMode()); |
|
671 |
else |
|
672 |
stroker->emitMoveTo(qt_real_to_fixed(line.x1()), qt_real_to_fixed(line.y1())); |
|
673 |
*startTangent = line; |
|
674 |
first = false; |
|
675 |
} else { |
|
676 |
stroker->joinPoints(prev.x, prev.y, line, stroker->joinStyleMode()); |
|
677 |
} |
|
678 |
||
679 |
// Add the stroke for this line. |
|
680 |
stroker->emitLineTo(qt_real_to_fixed(line.x2()), |
|
681 |
qt_real_to_fixed(line.y2())); |
|
682 |
prev = e; |
|
683 |
||
684 |
// CurveToElement |
|
685 |
} else if (e.isCurveTo()) { |
|
686 |
QStrokerOps::Element cp2 = it->next(); // control point 2 |
|
687 |
QStrokerOps::Element ep = it->next(); // end point |
|
688 |
||
689 |
#ifdef QPP_STROKE_DEBUG |
|
690 |
qDebug("\n ---> (side) cubicTo [%.2f, %.2f]", |
|
691 |
qt_fixed_to_real(ep.x), |
|
692 |
qt_fixed_to_real(ep.y)); |
|
693 |
#endif |
|
694 |
||
695 |
QBezier bezier = |
|
696 |
QBezier::fromPoints(QPointF(qt_fixed_to_real(prev.x), qt_fixed_to_real(prev.y)), |
|
697 |
QPointF(qt_fixed_to_real(e.x), qt_fixed_to_real(e.y)), |
|
698 |
QPointF(qt_fixed_to_real(cp2.x), qt_fixed_to_real(cp2.y)), |
|
699 |
QPointF(qt_fixed_to_real(ep.x), qt_fixed_to_real(ep.y))); |
|
700 |
||
701 |
int count = bezier.shifted(offsetCurves, |
|
702 |
MAX_OFFSET, |
|
703 |
offset, |
|
704 |
stroker->curveThreshold()); |
|
705 |
||
706 |
if (count) { |
|
707 |
// If we are starting a new subpath, move to correct starting point |
|
708 |
QLineF tangent = bezier.startTangent(); |
|
709 |
tangent.translate(offsetCurves[0].pt1() - bezier.pt1()); |
|
710 |
if (first) { |
|
711 |
QPointF pt = offsetCurves[0].pt1(); |
|
712 |
if (capFirst) { |
|
713 |
stroker->joinPoints(prev.x, prev.y, |
|
714 |
tangent, |
|
715 |
stroker->capStyleMode()); |
|
716 |
} else { |
|
717 |
stroker->emitMoveTo(qt_real_to_fixed(pt.x()), |
|
718 |
qt_real_to_fixed(pt.y())); |
|
719 |
} |
|
720 |
*startTangent = tangent; |
|
721 |
first = false; |
|
722 |
} else { |
|
723 |
stroker->joinPoints(prev.x, prev.y, |
|
724 |
tangent, |
|
725 |
stroker->joinStyleMode()); |
|
726 |
} |
|
727 |
||
728 |
// Add these beziers |
|
729 |
for (int i=0; i<count; ++i) { |
|
730 |
QPointF cp1 = offsetCurves[i].pt2(); |
|
731 |
QPointF cp2 = offsetCurves[i].pt3(); |
|
732 |
QPointF ep = offsetCurves[i].pt4(); |
|
733 |
stroker->emitCubicTo(qt_real_to_fixed(cp1.x()), qt_real_to_fixed(cp1.y()), |
|
734 |
qt_real_to_fixed(cp2.x()), qt_real_to_fixed(cp2.y()), |
|
735 |
qt_real_to_fixed(ep.x()), qt_real_to_fixed(ep.y())); |
|
736 |
} |
|
737 |
} |
|
738 |
||
739 |
prev = ep; |
|
740 |
} |
|
741 |
} |
|
742 |
||
743 |
if (start == prev) { |
|
744 |
// closed subpath, join first and last point |
|
745 |
#ifdef QPP_STROKE_DEBUG |
|
746 |
qDebug("\n ---> (side) closed subpath"); |
|
747 |
#endif |
|
748 |
stroker->joinPoints(prev.x, prev.y, *startTangent, stroker->joinStyleMode()); |
|
749 |
return true; |
|
750 |
} else { |
|
751 |
#ifdef QPP_STROKE_DEBUG |
|
752 |
qDebug("\n ---> (side) open subpath"); |
|
753 |
#endif |
|
754 |
return false; |
|
755 |
} |
|
756 |
} |
|
757 |
||
758 |
/*! |
|
759 |
\internal |
|
760 |
||
761 |
For a given angle in the range [0 .. 90], finds the corresponding parameter t |
|
762 |
of the prototype cubic bezier arc segment |
|
763 |
b = fromPoints(QPointF(1, 0), QPointF(1, KAPPA), QPointF(KAPPA, 1), QPointF(0, 1)); |
|
764 |
||
765 |
From the bezier equation: |
|
766 |
b.pointAt(t).x() = (1-t)^3 + t*(1-t)^2 + t^2*(1-t)*KAPPA |
|
767 |
b.pointAt(t).y() = t*(1-t)^2 * KAPPA + t^2*(1-t) + t^3 |
|
768 |
||
769 |
Third degree coefficients: |
|
770 |
b.pointAt(t).x() = at^3 + bt^2 + ct + d |
|
771 |
where a = 2-3*KAPPA, b = 3*(KAPPA-1), c = 0, d = 1 |
|
772 |
||
773 |
b.pointAt(t).y() = at^3 + bt^2 + ct + d |
|
774 |
where a = 3*KAPPA-2, b = 6*KAPPA+3, c = 3*KAPPA, d = 0 |
|
775 |
||
776 |
Newton's method to find the zero of a function: |
|
777 |
given a function f(x) and initial guess x_0 |
|
778 |
x_1 = f(x_0) / f'(x_0) |
|
779 |
x_2 = f(x_1) / f'(x_1) |
|
780 |
etc... |
|
781 |
*/ |
|
782 |
||
783 |
qreal qt_t_for_arc_angle(qreal angle) |
|
784 |
{ |
|
785 |
if (qFuzzyIsNull(angle)) |
|
786 |
return 0; |
|
787 |
||
788 |
if (qFuzzyCompare(angle, qreal(90))) |
|
789 |
return 1; |
|
790 |
||
791 |
qreal radians = Q_PI * angle / 180; |
|
792 |
qreal cosAngle = qCos(radians); |
|
793 |
qreal sinAngle = qSin(radians); |
|
794 |
||
795 |
// initial guess |
|
796 |
qreal tc = angle / 90; |
|
797 |
// do some iterations of newton's method to approximate cosAngle |
|
798 |
// finds the zero of the function b.pointAt(tc).x() - cosAngle |
|
799 |
tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value |
|
800 |
/ (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative |
|
801 |
tc -= ((((2-3*QT_PATH_KAPPA) * tc + 3*(QT_PATH_KAPPA-1)) * tc) * tc + 1 - cosAngle) // value |
|
802 |
/ (((6-9*QT_PATH_KAPPA) * tc + 6*(QT_PATH_KAPPA-1)) * tc); // derivative |
|
803 |
||
804 |
// initial guess |
|
805 |
qreal ts = tc; |
|
806 |
// do some iterations of newton's method to approximate sinAngle |
|
807 |
// finds the zero of the function b.pointAt(tc).y() - sinAngle |
|
808 |
ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle) |
|
809 |
/ (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA); |
|
810 |
ts -= ((((3*QT_PATH_KAPPA-2) * ts - 6*QT_PATH_KAPPA + 3) * ts + 3*QT_PATH_KAPPA) * ts - sinAngle) |
|
811 |
/ (((9*QT_PATH_KAPPA-6) * ts + 12*QT_PATH_KAPPA - 6) * ts + 3*QT_PATH_KAPPA); |
|
812 |
||
813 |
// use the average of the t that best approximates cosAngle |
|
814 |
// and the t that best approximates sinAngle |
|
815 |
qreal t = 0.5 * (tc + ts); |
|
816 |
||
817 |
#if 0 |
|
818 |
printf("angle: %f, t: %f\n", angle, t); |
|
819 |
qreal a, b, c, d; |
|
820 |
bezierCoefficients(t, a, b, c, d); |
|
821 |
printf("cosAngle: %.10f, value: %.10f\n", cosAngle, a + b + c * QT_PATH_KAPPA); |
|
822 |
printf("sinAngle: %.10f, value: %.10f\n", sinAngle, b * QT_PATH_KAPPA + c + d); |
|
823 |
#endif |
|
824 |
||
825 |
return t; |
|
826 |
} |
|
827 |
||
828 |
void qt_find_ellipse_coords(const QRectF &r, qreal angle, qreal length, |
|
829 |
QPointF* startPoint, QPointF *endPoint); |
|
830 |
||
831 |
/*! |
|
832 |
\internal |
|
833 |
||
834 |
Creates a number of curves for a given arc definition. The arc is |
|
835 |
defined an arc along the ellipses that fits into \a rect starting |
|
836 |
at \a startAngle and an arc length of \a sweepLength. |
|
837 |
||
838 |
The function has three out parameters. The return value is the |
|
839 |
starting point of the arc. The \a curves array represents the list |
|
840 |
of cubicTo elements up to a maximum of \a point_count. There are of course |
|
841 |
3 points pr curve. |
|
842 |
*/ |
|
843 |
QPointF qt_curves_for_arc(const QRectF &rect, qreal startAngle, qreal sweepLength, |
|
844 |
QPointF *curves, int *point_count) |
|
845 |
{ |
|
846 |
Q_ASSERT(point_count); |
|
847 |
Q_ASSERT(curves); |
|
848 |
||
849 |
*point_count = 0; |
|
850 |
if (qt_is_nan(rect.x()) || qt_is_nan(rect.y()) || qt_is_nan(rect.width()) || qt_is_nan(rect.height()) |
|
851 |
|| qt_is_nan(startAngle) || qt_is_nan(sweepLength)) { |
|
852 |
qWarning("QPainterPath::arcTo: Adding arc where a parameter is NaN, results are undefined"); |
|
853 |
return QPointF(); |
|
854 |
} |
|
855 |
||
856 |
if (rect.isNull()) { |
|
857 |
return QPointF(); |
|
858 |
} |
|
859 |
||
860 |
qreal x = rect.x(); |
|
861 |
qreal y = rect.y(); |
|
862 |
||
863 |
qreal w = rect.width(); |
|
864 |
qreal w2 = rect.width() / 2; |
|
865 |
qreal w2k = w2 * QT_PATH_KAPPA; |
|
866 |
||
867 |
qreal h = rect.height(); |
|
868 |
qreal h2 = rect.height() / 2; |
|
869 |
qreal h2k = h2 * QT_PATH_KAPPA; |
|
870 |
||
871 |
QPointF points[16] = |
|
872 |
{ |
|
873 |
// start point |
|
874 |
QPointF(x + w, y + h2), |
|
875 |
||
876 |
// 0 -> 270 degrees |
|
877 |
QPointF(x + w, y + h2 + h2k), |
|
878 |
QPointF(x + w2 + w2k, y + h), |
|
879 |
QPointF(x + w2, y + h), |
|
880 |
||
881 |
// 270 -> 180 degrees |
|
882 |
QPointF(x + w2 - w2k, y + h), |
|
883 |
QPointF(x, y + h2 + h2k), |
|
884 |
QPointF(x, y + h2), |
|
885 |
||
886 |
// 180 -> 90 degrees |
|
887 |
QPointF(x, y + h2 - h2k), |
|
888 |
QPointF(x + w2 - w2k, y), |
|
889 |
QPointF(x + w2, y), |
|
890 |
||
891 |
// 90 -> 0 degrees |
|
892 |
QPointF(x + w2 + w2k, y), |
|
893 |
QPointF(x + w, y + h2 - h2k), |
|
894 |
QPointF(x + w, y + h2) |
|
895 |
}; |
|
896 |
||
897 |
if (sweepLength > 360) sweepLength = 360; |
|
898 |
else if (sweepLength < -360) sweepLength = -360; |
|
899 |
||
900 |
// Special case fast paths |
|
901 |
if (startAngle == 0.0) { |
|
902 |
if (sweepLength == 360.0) { |
|
903 |
for (int i = 11; i >= 0; --i) |
|
904 |
curves[(*point_count)++] = points[i]; |
|
905 |
return points[12]; |
|
906 |
} else if (sweepLength == -360.0) { |
|
907 |
for (int i = 1; i <= 12; ++i) |
|
908 |
curves[(*point_count)++] = points[i]; |
|
909 |
return points[0]; |
|
910 |
} |
|
911 |
} |
|
912 |
||
3
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
913 |
int startSegment = int(qFloor(startAngle / 90)); |
41300fa6a67c
Revision: 201003
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
0
diff
changeset
|
914 |
int endSegment = int(qFloor((startAngle + sweepLength) / 90)); |
0 | 915 |
|
916 |
qreal startT = (startAngle - startSegment * 90) / 90; |
|
917 |
qreal endT = (startAngle + sweepLength - endSegment * 90) / 90; |
|
918 |
||
919 |
int delta = sweepLength > 0 ? 1 : -1; |
|
920 |
if (delta < 0) { |
|
921 |
startT = 1 - startT; |
|
922 |
endT = 1 - endT; |
|
923 |
} |
|
924 |
||
925 |
// avoid empty start segment |
|
926 |
if (qFuzzyIsNull(startT - qreal(1))) { |
|
927 |
startT = 0; |
|
928 |
startSegment += delta; |
|
929 |
} |
|
930 |
||
931 |
// avoid empty end segment |
|
932 |
if (qFuzzyIsNull(endT)) { |
|
933 |
endT = 1; |
|
934 |
endSegment -= delta; |
|
935 |
} |
|
936 |
||
937 |
startT = qt_t_for_arc_angle(startT * 90); |
|
938 |
endT = qt_t_for_arc_angle(endT * 90); |
|
939 |
||
940 |
const bool splitAtStart = !qFuzzyIsNull(startT); |
|
941 |
const bool splitAtEnd = !qFuzzyIsNull(endT - qreal(1)); |
|
942 |
||
943 |
const int end = endSegment + delta; |
|
944 |
||
945 |
// empty arc? |
|
946 |
if (startSegment == end) { |
|
947 |
const int quadrant = 3 - ((startSegment % 4) + 4) % 4; |
|
948 |
const int j = 3 * quadrant; |
|
949 |
return delta > 0 ? points[j + 3] : points[j]; |
|
950 |
} |
|
951 |
||
952 |
QPointF startPoint, endPoint; |
|
953 |
qt_find_ellipse_coords(rect, startAngle, sweepLength, &startPoint, &endPoint); |
|
954 |
||
955 |
for (int i = startSegment; i != end; i += delta) { |
|
956 |
const int quadrant = 3 - ((i % 4) + 4) % 4; |
|
957 |
const int j = 3 * quadrant; |
|
958 |
||
959 |
QBezier b; |
|
960 |
if (delta > 0) |
|
961 |
b = QBezier::fromPoints(points[j + 3], points[j + 2], points[j + 1], points[j]); |
|
962 |
else |
|
963 |
b = QBezier::fromPoints(points[j], points[j + 1], points[j + 2], points[j + 3]); |
|
964 |
||
965 |
// empty arc? |
|
966 |
if (startSegment == endSegment && qFuzzyCompare(startT, endT)) |
|
967 |
return startPoint; |
|
968 |
||
969 |
if (i == startSegment) { |
|
970 |
if (i == endSegment && splitAtEnd) |
|
971 |
b = b.bezierOnInterval(startT, endT); |
|
972 |
else if (splitAtStart) |
|
973 |
b = b.bezierOnInterval(startT, 1); |
|
974 |
} else if (i == endSegment && splitAtEnd) { |
|
975 |
b = b.bezierOnInterval(0, endT); |
|
976 |
} |
|
977 |
||
978 |
// push control points |
|
979 |
curves[(*point_count)++] = b.pt2(); |
|
980 |
curves[(*point_count)++] = b.pt3(); |
|
981 |
curves[(*point_count)++] = b.pt4(); |
|
982 |
} |
|
983 |
||
984 |
Q_ASSERT(*point_count > 0); |
|
985 |
curves[*(point_count)-1] = endPoint; |
|
986 |
||
987 |
return startPoint; |
|
988 |
} |
|
989 |
||
990 |
||
991 |
static inline void qdashstroker_moveTo(qfixed x, qfixed y, void *data) { |
|
992 |
((QStroker *) data)->moveTo(x, y); |
|
993 |
} |
|
994 |
||
995 |
static inline void qdashstroker_lineTo(qfixed x, qfixed y, void *data) { |
|
996 |
((QStroker *) data)->lineTo(x, y); |
|
997 |
} |
|
998 |
||
999 |
static inline void qdashstroker_cubicTo(qfixed, qfixed, qfixed, qfixed, qfixed, qfixed, void *) { |
|
1000 |
Q_ASSERT(0); |
|
1001 |
// ((QStroker *) data)->cubicTo(c1x, c1y, c2x, c2y, ex, ey); |
|
1002 |
} |
|
1003 |
||
1004 |
||
1005 |
/******************************************************************************* |
|
1006 |
* QDashStroker members |
|
1007 |
*/ |
|
1008 |
QDashStroker::QDashStroker(QStroker *stroker) |
|
1009 |
: m_stroker(stroker), m_dashOffset(0), m_stroke_width(1), m_miter_limit(1) |
|
1010 |
{ |
|
1011 |
if (m_stroker) { |
|
1012 |
setMoveToHook(qdashstroker_moveTo); |
|
1013 |
setLineToHook(qdashstroker_lineTo); |
|
1014 |
setCubicToHook(qdashstroker_cubicTo); |
|
1015 |
} |
|
1016 |
} |
|
1017 |
||
1018 |
QVector<qfixed> QDashStroker::patternForStyle(Qt::PenStyle style) |
|
1019 |
{ |
|
1020 |
const qfixed space = 2; |
|
1021 |
const qfixed dot = 1; |
|
1022 |
const qfixed dash = 4; |
|
1023 |
||
1024 |
QVector<qfixed> pattern; |
|
1025 |
||
1026 |
switch (style) { |
|
1027 |
case Qt::DashLine: |
|
1028 |
pattern << dash << space; |
|
1029 |
break; |
|
1030 |
case Qt::DotLine: |
|
1031 |
pattern << dot << space; |
|
1032 |
break; |
|
1033 |
case Qt::DashDotLine: |
|
1034 |
pattern << dash << space << dot << space; |
|
1035 |
break; |
|
1036 |
case Qt::DashDotDotLine: |
|
1037 |
pattern << dash << space << dot << space << dot << space; |
|
1038 |
break; |
|
1039 |
default: |
|
1040 |
break; |
|
1041 |
} |
|
1042 |
||
1043 |
return pattern; |
|
1044 |
} |
|
1045 |
||
1046 |
||
1047 |
void QDashStroker::processCurrentSubpath() |
|
1048 |
{ |
|
1049 |
int dashCount = qMin(m_dashPattern.size(), 32); |
|
1050 |
qfixed dashes[32]; |
|
1051 |
||
1052 |
if (m_stroker) { |
|
1053 |
m_customData = m_stroker; |
|
1054 |
m_stroke_width = m_stroker->strokeWidth(); |
|
1055 |
m_miter_limit = m_stroker->miterLimit(); |
|
1056 |
} |
|
1057 |
||
1058 |
qreal longestLength = 0; |
|
1059 |
qreal sumLength = 0; |
|
1060 |
for (int i=0; i<dashCount; ++i) { |
|
1061 |
dashes[i] = qMax(m_dashPattern.at(i), qreal(0)) * m_stroke_width; |
|
1062 |
sumLength += dashes[i]; |
|
1063 |
if (dashes[i] > longestLength) |
|
1064 |
longestLength = dashes[i]; |
|
1065 |
} |
|
1066 |
||
1067 |
if (qFuzzyIsNull(sumLength)) |
|
1068 |
return; |
|
1069 |
||
1070 |
Q_ASSERT(dashCount > 0); |
|
1071 |
||
1072 |
dashCount = (dashCount / 2) * 2; // Round down to even number |
|
1073 |
||
1074 |
int idash = 0; // Index to current dash |
|
1075 |
qreal pos = 0; // The position on the curve, 0 <= pos <= path.length |
|
1076 |
qreal elen = 0; // element length |
|
1077 |
qreal doffset = m_dashOffset * m_stroke_width; |
|
1078 |
||
1079 |
// make sure doffset is in range [0..sumLength) |
|
1080 |
doffset -= qFloor(doffset / sumLength) * sumLength; |
|
1081 |
||
1082 |
while (doffset >= dashes[idash]) { |
|
1083 |
doffset -= dashes[idash]; |
|
1084 |
idash = (idash + 1) % dashCount; |
|
1085 |
} |
|
1086 |
||
1087 |
qreal estart = 0; // The elements starting position |
|
1088 |
qreal estop = 0; // The element stop position |
|
1089 |
||
1090 |
QLineF cline; |
|
1091 |
||
1092 |
QPainterPath dashPath; |
|
1093 |
||
1094 |
QSubpathFlatIterator it(&m_elements); |
|
1095 |
qfixed2d prev = it.next(); |
|
1096 |
||
1097 |
bool clipping = !m_clip_rect.isEmpty(); |
|
1098 |
qfixed2d move_to_pos = prev; |
|
1099 |
qfixed2d line_to_pos; |
|
1100 |
||
1101 |
// Pad to avoid clipping the borders of thick pens. |
|
1102 |
qfixed padding = qt_real_to_fixed(qMax(m_stroke_width, m_miter_limit) * longestLength); |
|
1103 |
qfixed2d clip_tl = { qt_real_to_fixed(m_clip_rect.left()) - padding, |
|
1104 |
qt_real_to_fixed(m_clip_rect.top()) - padding }; |
|
1105 |
qfixed2d clip_br = { qt_real_to_fixed(m_clip_rect.right()) + padding , |
|
1106 |
qt_real_to_fixed(m_clip_rect.bottom()) + padding }; |
|
1107 |
||
1108 |
bool hasMoveTo = false; |
|
1109 |
while (it.hasNext()) { |
|
1110 |
QStrokerOps::Element e = it.next(); |
|
1111 |
||
1112 |
Q_ASSERT(e.isLineTo()); |
|
1113 |
cline = QLineF(qt_fixed_to_real(prev.x), |
|
1114 |
qt_fixed_to_real(prev.y), |
|
1115 |
qt_fixed_to_real(e.x), |
|
1116 |
qt_fixed_to_real(e.y)); |
|
1117 |
elen = cline.length(); |
|
1118 |
||
1119 |
estop = estart + elen; |
|
1120 |
||
1121 |
bool done = pos >= estop; |
|
1122 |
// Dash away... |
|
1123 |
while (!done) { |
|
1124 |
QPointF p2; |
|
1125 |
||
1126 |
int idash_incr = 0; |
|
1127 |
bool has_offset = doffset > 0; |
|
1128 |
qreal dpos = pos + dashes[idash] - doffset - estart; |
|
1129 |
||
1130 |
Q_ASSERT(dpos >= 0); |
|
1131 |
||
1132 |
if (dpos > elen) { // dash extends this line |
|
1133 |
doffset = dashes[idash] - (dpos - elen); // subtract the part already used |
|
1134 |
pos = estop; // move pos to next path element |
|
1135 |
done = true; |
|
1136 |
p2 = cline.p2(); |
|
1137 |
} else { // Dash is on this line |
|
1138 |
p2 = cline.pointAt(dpos/elen); |
|
1139 |
pos = dpos + estart; |
|
1140 |
done = pos >= estop; |
|
1141 |
idash_incr = 1; |
|
1142 |
doffset = 0; // full segment so no offset on next. |
|
1143 |
} |
|
1144 |
||
1145 |
if (idash % 2 == 0) { |
|
1146 |
line_to_pos.x = qt_real_to_fixed(p2.x()); |
|
1147 |
line_to_pos.y = qt_real_to_fixed(p2.y()); |
|
1148 |
||
1149 |
// If we have an offset, we're continuing a dash |
|
1150 |
// from a previous element and should only |
|
1151 |
// continue the current dash, without starting a |
|
1152 |
// new subpath. |
|
1153 |
if (!has_offset || !hasMoveTo) { |
|
1154 |
emitMoveTo(move_to_pos.x, move_to_pos.y); |
|
1155 |
hasMoveTo = true; |
|
1156 |
} |
|
1157 |
||
1158 |
if (!clipping |
|
1159 |
// if move_to is inside... |
|
1160 |
|| (move_to_pos.x > clip_tl.x && move_to_pos.x < clip_br.x |
|
1161 |
&& move_to_pos.y > clip_tl.y && move_to_pos.y < clip_br.y) |
|
1162 |
// Or if line_to is inside... |
|
1163 |
|| (line_to_pos.x > clip_tl.x && line_to_pos.x < clip_br.x |
|
1164 |
&& line_to_pos.y > clip_tl.y && line_to_pos.y < clip_br.y)) |
|
1165 |
{ |
|
1166 |
emitLineTo(line_to_pos.x, line_to_pos.y); |
|
1167 |
} |
|
1168 |
} else { |
|
1169 |
move_to_pos.x = qt_real_to_fixed(p2.x()); |
|
1170 |
move_to_pos.y = qt_real_to_fixed(p2.y()); |
|
1171 |
} |
|
1172 |
||
1173 |
idash = (idash + idash_incr) % dashCount; |
|
1174 |
} |
|
1175 |
||
1176 |
// Shuffle to the next cycle... |
|
1177 |
estart = estop; |
|
1178 |
prev = e; |
|
1179 |
} |
|
1180 |
||
1181 |
} |
|
1182 |
||
1183 |
QT_END_NAMESPACE |