0
|
1 |
/****************************************************************************
|
|
2 |
**
|
|
3 |
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
4 |
** All rights reserved.
|
|
5 |
** Contact: Nokia Corporation (qt-info@nokia.com)
|
|
6 |
**
|
|
7 |
** This file is part of the test suite of the Qt Toolkit.
|
|
8 |
**
|
|
9 |
** $QT_BEGIN_LICENSE:LGPL$
|
|
10 |
** No Commercial Usage
|
|
11 |
** This file contains pre-release code and may not be distributed.
|
|
12 |
** You may use this file in accordance with the terms and conditions
|
|
13 |
** contained in the Technology Preview License Agreement accompanying
|
|
14 |
** this package.
|
|
15 |
**
|
|
16 |
** GNU Lesser General Public License Usage
|
|
17 |
** Alternatively, this file may be used under the terms of the GNU Lesser
|
|
18 |
** General Public License version 2.1 as published by the Free Software
|
|
19 |
** Foundation and appearing in the file LICENSE.LGPL included in the
|
|
20 |
** packaging of this file. Please review the following information to
|
|
21 |
** ensure the GNU Lesser General Public License version 2.1 requirements
|
|
22 |
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
|
|
23 |
**
|
|
24 |
** In addition, as a special exception, Nokia gives you certain additional
|
|
25 |
** rights. These rights are described in the Nokia Qt LGPL Exception
|
|
26 |
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
|
|
27 |
**
|
|
28 |
** If you have questions regarding the use of this file, please contact
|
|
29 |
** Nokia at qt-info@nokia.com.
|
|
30 |
**
|
|
31 |
**
|
|
32 |
**
|
|
33 |
**
|
|
34 |
**
|
|
35 |
**
|
|
36 |
**
|
|
37 |
**
|
|
38 |
** $QT_END_LICENSE$
|
|
39 |
**
|
|
40 |
****************************************************************************/
|
|
41 |
#include <QtTest/QtTest>
|
|
42 |
#include <QCoreApplication>
|
|
43 |
#include <QVector>
|
|
44 |
#include <qdebug.h>
|
|
45 |
#include <qpolygon.h>
|
|
46 |
#include <qmatrix.h>
|
|
47 |
|
|
48 |
#include "oldtessellator.h"
|
|
49 |
#include "testtessellator.h"
|
|
50 |
#include "utils.h"
|
|
51 |
#include "simple.h"
|
|
52 |
#include "arc.h"
|
|
53 |
|
|
54 |
#include "math.h"
|
|
55 |
|
|
56 |
//TESTED_CLASS=
|
|
57 |
//TESTED_FILES=
|
|
58 |
|
|
59 |
class tst_QTessellator : public QObject
|
|
60 |
{
|
|
61 |
Q_OBJECT
|
|
62 |
|
|
63 |
public:
|
|
64 |
tst_QTessellator() {
|
|
65 |
}
|
|
66 |
|
|
67 |
private slots:
|
|
68 |
void testStandardSet();
|
|
69 |
void testRandom();
|
|
70 |
void testArc();
|
|
71 |
void testRects();
|
|
72 |
void testConvexRects();
|
|
73 |
void testConvex();
|
|
74 |
};
|
|
75 |
|
|
76 |
|
|
77 |
QPointF creatPoint()
|
|
78 |
{
|
|
79 |
qreal x = int(20.0 * (rand() / (RAND_MAX + 1.0)));
|
|
80 |
qreal y = int(20.0 * (rand() / (RAND_MAX + 1.0)));
|
|
81 |
return QPointF(x, y);
|
|
82 |
}
|
|
83 |
|
|
84 |
bool test(const QPointF *pg, int pgSize, bool winding, tessellate_function tessellate = test_tesselate_polygon, qreal maxDiff = 0.005)
|
|
85 |
{
|
|
86 |
QVector<XTrapezoid> traps;
|
|
87 |
qreal area1 = 0;
|
|
88 |
qreal area2 = 0;
|
|
89 |
|
|
90 |
old_tesselate_polygon(&traps, pg, pgSize, winding);
|
|
91 |
area1 = compute_area_for_x(traps);
|
|
92 |
|
|
93 |
traps.clear();
|
|
94 |
|
|
95 |
tessellate(&traps, pg, pgSize, winding);
|
|
96 |
area2 = compute_area_for_x(traps);
|
|
97 |
|
|
98 |
bool result = (qAbs(area2 - area1) < maxDiff);
|
|
99 |
if (!result && area1)
|
|
100 |
result = (qAbs(area1 - area2)/area1 < maxDiff);
|
|
101 |
|
|
102 |
if (!result)
|
|
103 |
qDebug() << area1 << area2;
|
|
104 |
|
|
105 |
return result;
|
|
106 |
}
|
|
107 |
|
|
108 |
|
|
109 |
void simplifyTestFailure(QVector<QPointF> failure, bool winding)
|
|
110 |
{
|
|
111 |
int i = 1;
|
|
112 |
while (i < failure.size() - 1) {
|
|
113 |
QVector<QPointF> t = failure;
|
|
114 |
t.remove(i);
|
|
115 |
if (test(t.data(), t.size(), winding)) {
|
|
116 |
++i;
|
|
117 |
continue;
|
|
118 |
}
|
|
119 |
failure = t;
|
|
120 |
i = 1;
|
|
121 |
}
|
|
122 |
|
|
123 |
for (int x = 0; x < failure.size(); ++x) {
|
|
124 |
fprintf(stderr, "%lf,%lf, ", failure[x].x(), failure[x].y());
|
|
125 |
}
|
|
126 |
fprintf(stderr, "\n\n");
|
|
127 |
}
|
|
128 |
|
|
129 |
void tst_QTessellator::testStandardSet()
|
|
130 |
{
|
|
131 |
QVector<FullData> sampleSet;
|
|
132 |
sampleSet.append(simpleData());
|
|
133 |
|
|
134 |
foreach(FullData data, sampleSet) {
|
|
135 |
for (int i = 0; i < data.size(); ++i) {
|
|
136 |
if (!test(data[i].data(), data[i].size(), false)) {
|
|
137 |
simplifyTestFailure(data[i], false);
|
|
138 |
QCOMPARE(true, false);
|
|
139 |
}
|
|
140 |
if (!test(data[i].data(), data[i].size(), true)) {
|
|
141 |
simplifyTestFailure(data[i], true);
|
|
142 |
QCOMPARE(true, false);
|
|
143 |
}
|
|
144 |
}
|
|
145 |
}
|
|
146 |
}
|
|
147 |
|
|
148 |
|
|
149 |
|
|
150 |
void fillRandomVec(QVector<QPointF> &vec)
|
|
151 |
{
|
|
152 |
int size = vec.size(); --size;
|
|
153 |
for (int i = 0; i < size; ++i) {
|
|
154 |
vec[i] = creatPoint();
|
|
155 |
}
|
|
156 |
vec[size] = vec[0];
|
|
157 |
}
|
|
158 |
|
|
159 |
void tst_QTessellator::testRandom()
|
|
160 |
{
|
|
161 |
int failures = 0;
|
|
162 |
for (int i = 5; i < 12; ++i) {
|
|
163 |
QVector<QPointF> vec(i);
|
|
164 |
#ifdef QT_ARCH_ARM
|
|
165 |
int k = 200;
|
|
166 |
#else
|
|
167 |
int k = 5000;
|
|
168 |
#endif
|
|
169 |
while (--k) {
|
|
170 |
fillRandomVec(vec);
|
|
171 |
if (!test(vec.data(), vec.size(), false)) {
|
|
172 |
simplifyTestFailure(vec, false);
|
|
173 |
++failures;
|
|
174 |
}
|
|
175 |
if (!test(vec.data(), vec.size(), true)) {
|
|
176 |
simplifyTestFailure(vec, true);
|
|
177 |
++failures;
|
|
178 |
}
|
|
179 |
}
|
|
180 |
}
|
|
181 |
QVERIFY(failures == 0);
|
|
182 |
}
|
|
183 |
|
|
184 |
|
|
185 |
// we need a higher threshold for failure here than in the above tests, as this basically draws
|
|
186 |
// a very thin outline, where the discretization in the new tesselator shows
|
|
187 |
bool test_arc(const QPolygonF &poly, bool winding)
|
|
188 |
{
|
|
189 |
QVector<XTrapezoid> traps;
|
|
190 |
qreal area1 = 0;
|
|
191 |
qreal area2 = 0;
|
|
192 |
|
|
193 |
old_tesselate_polygon(&traps, poly.data(), poly.size(), winding);
|
|
194 |
area1 = compute_area_for_x(traps);
|
|
195 |
|
|
196 |
traps.clear();
|
|
197 |
|
|
198 |
test_tesselate_polygon(&traps, poly.data(), poly.size(), winding);
|
|
199 |
area2 = compute_area_for_x(traps);
|
|
200 |
|
|
201 |
bool result = (area2 - area1 < .02);
|
|
202 |
if (!result && area1)
|
|
203 |
result = (qAbs(area1 - area2)/area1 < .02);
|
|
204 |
|
|
205 |
return result;
|
|
206 |
}
|
|
207 |
|
|
208 |
|
|
209 |
|
|
210 |
void tst_QTessellator::testArc()
|
|
211 |
{
|
|
212 |
FullData arc = arcData();
|
|
213 |
|
|
214 |
QMatrix mat;
|
|
215 |
#ifdef QT_ARCH_ARM
|
|
216 |
const int stop = 5;
|
|
217 |
#else
|
|
218 |
const int stop = 1000;
|
|
219 |
#endif
|
|
220 |
for (int i = 0; i < stop; ++i) {
|
|
221 |
mat.rotate(qreal(.01));
|
|
222 |
mat.scale(qreal(.99), qreal(.99));
|
|
223 |
QPolygonF poly = arc.at(0);
|
|
224 |
QPolygonF vec = poly * mat;
|
|
225 |
QVERIFY(test_arc(vec, true));
|
|
226 |
QVERIFY(test_arc(vec, false));
|
|
227 |
}
|
|
228 |
}
|
|
229 |
|
|
230 |
static bool isConvex(const QVector<QPointF> &v)
|
|
231 |
{
|
|
232 |
int nPoints = v.size() - 1;
|
|
233 |
|
|
234 |
qreal lastCross = 0;
|
|
235 |
for (int i = 0; i < nPoints; ++i) {
|
|
236 |
QPointF a = v[i];
|
|
237 |
QPointF b = v[(i + 1) % nPoints];
|
|
238 |
|
|
239 |
QPointF d1 = b - a;
|
|
240 |
|
|
241 |
for (int j = 0; j < nPoints; ++j) {
|
|
242 |
if (j == i || j == i + 1)
|
|
243 |
continue;
|
|
244 |
|
|
245 |
QPointF p = v[j];
|
|
246 |
QPointF d2 = p - a;
|
|
247 |
|
|
248 |
qreal cross = d1.x() * d2.y() - d1.y() * d2.x();
|
|
249 |
|
|
250 |
if (!qFuzzyCompare(cross + 1, 1)
|
|
251 |
&& !qFuzzyCompare(cross + 1, 1)
|
|
252 |
&& (lastCross > 0) != (cross > 0))
|
|
253 |
return false;
|
|
254 |
|
|
255 |
lastCross = cross;
|
|
256 |
}
|
|
257 |
}
|
|
258 |
|
|
259 |
return true;
|
|
260 |
}
|
|
261 |
|
|
262 |
static void fillRectVec(QVector<QPointF> &v)
|
|
263 |
{
|
|
264 |
int numRects = v.size() / 5;
|
|
265 |
|
|
266 |
int first = 0;
|
|
267 |
v[first++] = QPointF(0, 0);
|
|
268 |
v[first++] = QPointF(10, 0);
|
|
269 |
v[first++] = QPointF(10, 10);
|
|
270 |
v[first++] = QPointF(0, 10);
|
|
271 |
v[first++] = QPointF(0, 0);
|
|
272 |
|
|
273 |
v[first++] = QPointF(0, 0);
|
|
274 |
v[first++] = QPointF(2, 2);
|
|
275 |
v[first++] = QPointF(4, 0);
|
|
276 |
v[first++] = QPointF(2, -2);
|
|
277 |
v[first++] = QPointF(0, 0);
|
|
278 |
|
|
279 |
v[first++] = QPointF(0, 0);
|
|
280 |
v[first++] = QPointF(4, 4);
|
|
281 |
v[first++] = QPointF(6, 2);
|
|
282 |
v[first++] = QPointF(2, -2);
|
|
283 |
v[first++] = QPointF(0, 0);
|
|
284 |
|
|
285 |
for (int i = first / 5; i < numRects; ++i) {
|
|
286 |
QPointF a = creatPoint();
|
|
287 |
QPointF b = creatPoint();
|
|
288 |
|
|
289 |
QPointF delta = a - b;
|
|
290 |
QPointF perp(delta.y(), -delta.x());
|
|
291 |
|
|
292 |
perp *= ((int)(20.0 * rand() / (RAND_MAX + 1.0))) / 20.0;
|
|
293 |
|
|
294 |
int j = 5 * i;
|
|
295 |
v[j++] = a + perp;
|
|
296 |
v[j++] = a - perp;
|
|
297 |
v[j++] = b - perp;
|
|
298 |
v[j++] = b + perp;
|
|
299 |
v[j++] = a + perp;
|
|
300 |
}
|
|
301 |
}
|
|
302 |
|
|
303 |
#ifdef QT_ARCH_ARM
|
|
304 |
const int numRects = 500;
|
|
305 |
#else
|
|
306 |
const int numRects = 5000;
|
|
307 |
#endif
|
|
308 |
|
|
309 |
void tst_QTessellator::testConvexRects()
|
|
310 |
{
|
|
311 |
return;
|
|
312 |
int failures = 0;
|
|
313 |
QVector<QPointF> vec(numRects * 5);
|
|
314 |
fillRectVec(vec);
|
|
315 |
for (int rect = 0; rect < numRects; ++rect) {
|
|
316 |
QVector<QPointF> v(5);
|
|
317 |
for (int i = 0; i < 5; ++i)
|
|
318 |
v[i] = vec[5 * rect + i];
|
|
319 |
if (!test(v.data(), v.size(), false, test_tessellate_polygon_convex)) {
|
|
320 |
simplifyTestFailure(v, false);
|
|
321 |
++failures;
|
|
322 |
}
|
|
323 |
if (!test(v.data(), v.size(), true, test_tessellate_polygon_convex)) {
|
|
324 |
simplifyTestFailure(v, true);
|
|
325 |
++failures;
|
|
326 |
}
|
|
327 |
}
|
|
328 |
QVERIFY(failures == 0);
|
|
329 |
}
|
|
330 |
|
|
331 |
void tst_QTessellator::testConvex()
|
|
332 |
{
|
|
333 |
int failures = 0;
|
|
334 |
for (int i = 4; i < 10; ++i) {
|
|
335 |
QVector<QPointF> vec(i);
|
|
336 |
int k = 5000;
|
|
337 |
while (k--) {
|
|
338 |
fillRandomVec(vec);
|
|
339 |
if (!isConvex(vec))
|
|
340 |
continue;
|
|
341 |
if (!test(vec.data(), vec.size(), false, test_tessellate_polygon_convex)) {
|
|
342 |
simplifyTestFailure(vec, false);
|
|
343 |
++failures;
|
|
344 |
}
|
|
345 |
if (!test(vec.data(), vec.size(), true, test_tessellate_polygon_convex)) {
|
|
346 |
simplifyTestFailure(vec, true);
|
|
347 |
++failures;
|
|
348 |
}
|
|
349 |
}
|
|
350 |
}
|
|
351 |
QVERIFY(failures == 0);
|
|
352 |
}
|
|
353 |
|
|
354 |
|
|
355 |
void tst_QTessellator::testRects()
|
|
356 |
{
|
|
357 |
int failures = 0;
|
|
358 |
QVector<QPointF> vec(numRects * 5);
|
|
359 |
fillRectVec(vec);
|
|
360 |
for (int rect = 0; rect < numRects; ++rect) {
|
|
361 |
QVector<QPointF> v(5);
|
|
362 |
for (int i = 0; i < 5; ++i)
|
|
363 |
v[i] = vec[5 * rect + i];
|
|
364 |
if (!test(v.data(), v.size(), false, test_tessellate_polygon_rect, qreal(0.05))) {
|
|
365 |
simplifyTestFailure(v, false);
|
|
366 |
++failures;
|
|
367 |
}
|
|
368 |
if (!test(v.data(), v.size(), true, test_tessellate_polygon_rect, qreal(0.05))) {
|
|
369 |
simplifyTestFailure(v, true);
|
|
370 |
++failures;
|
|
371 |
}
|
|
372 |
}
|
|
373 |
QVERIFY(failures == 0);
|
|
374 |
}
|
|
375 |
|
|
376 |
|
|
377 |
QTEST_MAIN(tst_QTessellator)
|
|
378 |
#include "tst_tessellator.moc"
|