Implemented RObjectIx-based memoryaccess APIs.
Upshot is that objinfo now works again on platforms that define FSHELL_NO_DOBJECTIX_SUPPORT.
// btrace_utils.cpp
//
// Copyright (c) 2008 - 2010 Accenture. All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Accenture - Initial contribution
//
#include <e32math.h>
#include <hal.h>
#include "btrace_parser.h"
#include <fshell/ltkutils.h>
void Panic(TBtraceParserPanic aReason)
{
_LIT(KCat, "btrace_parser");
User::Panic(KCat, aReason);
}
enum TTlsFlags
{
ENanoSet = 1,
EFastCounterSet = 2,
EFastCountsUpSet = 4,
};
struct SBtraceParserTls
{
TUint32 iFlags;
TInt iNanoTickPeriod;
TInt iFastCounterFrequency;
TBool iFastCounterCountsUp;
};
EXPORT_C TUint32 TBtraceUtils::MicroSecondsToNanoTicks(TTimeIntervalMicroSeconds32 aInterval)
{
TUint32 numTicks = aInterval.Int();
numTicks /= NanoTickPeriod();
return numTicks;
}
EXPORT_C TUint64 TBtraceUtils::MicroSecondsToFastTicks(TTimeIntervalMicroSeconds32 aInterval)
{
TUint64 numTicks = aInterval.Int();
numTicks *= FastCounterFrequency();
numTicks /= 1000000;
return numTicks;
}
EXPORT_C TTimeIntervalMicroSeconds TBtraceUtils::NanoTicksToMicroSeconds(TUint32 aNanoTicks)
{
TUint64 ms = aNanoTicks;
ms *= NanoTickPeriod();
return ms;
}
EXPORT_C TTimeIntervalMicroSeconds TBtraceUtils::FastTicksToMicroSeconds(const TUint64& aFastTicks)
{
TUint64 ms = aFastTicks;
ms *= 1000000;
TUint64 f = FastCounterFrequency();
ms /= f;
return ms;
}
TInt TBtraceUtils::NanoTickPeriod()
{
SBtraceParserTls* tls = (SBtraceParserTls*)Dll::Tls();
if (tls && tls->iFlags & ENanoSet)
{
return tls->iNanoTickPeriod;
}
else
{
TInt res = CalculateNanoTickPeriod();
tls = CreateTls();
if (tls)
{
tls->iNanoTickPeriod = res;
tls->iFlags |= ENanoSet;
}
return res;
}
}
TInt TBtraceUtils::CalculateNanoTickPeriod()
{
TInt nanoTickPeriod;
if (HAL::Get(HAL::ENanoTickPeriod, nanoTickPeriod) != KErrNone)
{
nanoTickPeriod = 1000;
}
return nanoTickPeriod;
}
TInt TBtraceUtils::FastCounterFrequency()
{
SBtraceParserTls* tls = (SBtraceParserTls*)Dll::Tls();
if (tls && tls->iFlags & EFastCounterSet)
{
return tls->iFastCounterFrequency;
}
else
{
TInt freq = CalculateFastCounterFrequency();
tls = CreateTls();
if (tls)
{
tls->iFastCounterFrequency = freq;
tls->iFlags |= EFastCounterSet;
}
return freq;
}
}
TInt TBtraceUtils::CalculateFastCounterFrequency()
{
TInt fastCounterFrequency;
if (HAL::Get(HAL::EFastCounterFrequency, fastCounterFrequency) != KErrNone)
{
fastCounterFrequency = 1000;
}
return fastCounterFrequency;
}
TBool TBtraceUtils::FastCounterCountsUp()
{
SBtraceParserTls* tls = (SBtraceParserTls*)Dll::Tls();
if (tls && tls->iFlags & EFastCountsUpSet)
{
return tls->iFastCounterCountsUp;
}
else
{
TInt res = CalculateFastCounterCountsUp();
tls = CreateTls();
if (tls)
{
tls->iFastCounterCountsUp = res;
tls->iFlags |= EFastCountsUpSet;
}
return res;
}
}
TBool TBtraceUtils::CalculateFastCounterCountsUp()
{
TBool countsUp;
if (HAL::Get(HAL::EFastCounterCountsUp, countsUp) != KErrNone)
{
countsUp = EFalse;
}
// Hack for N96 which returns countsup=false even though the fast counter is slaved to the nanokernel tick counter (and thus does actually count upwards)
TInt fastCount = User::FastCounter();
TInt ntick = User::NTickCount();
if (FastCounterFrequency() == NanoTickPeriod() && fastCount == ntick)
{
countsUp = ETrue;
}
return countsUp;
}
SBtraceParserTls* TBtraceUtils::CreateTls()
{
SBtraceParserTls* res = (SBtraceParserTls*)Dll::Tls(); // Sort any reentrancy issues by checking if we are actually created
if (res) return res;
res = new SBtraceParserTls;
if (!res) return NULL;
Mem::FillZ(res, sizeof(SBtraceParserTls));
LtkUtils::MakeHeapCellInvisible(res);
TInt err = Dll::SetTls(res);
if (err)
{
delete res;
return NULL;
}
return res;
}
EXPORT_C void TBtraceUtils::DebugOverrideTimerSettings(TInt aNanoPeriod, TInt aFastCounterFreq, TBool aFastCountUp)
{
SBtraceParserTls* tls = CreateTls();
if (tls)
{
tls->iFlags |= ENanoSet | EFastCounterSet | EFastCountsUpSet;
tls->iNanoTickPeriod = aNanoPeriod;
tls->iFastCounterFrequency = aFastCounterFreq;
tls->iFastCounterCountsUp = aFastCountUp;
}
}
EXPORT_C TBtraceTickCount::TBtraceTickCount()
: iNano(0), iFast(0)
{
}
EXPORT_C void TBtraceTickCount::SetToNow()
{
iFast = User::FastCounter();
iNano = User::NTickCount();
}
EXPORT_C TUint32 TBtraceTickCount::IntervalInNanoTicks(const TBtraceTickCount& aTickCount) const
{
__ASSERT_ALWAYS(iNano >= aTickCount.iNano, Panic(EBtpPanicNegativeTickInterval));
return (iNano - aTickCount.iNano);
}
EXPORT_C TUint64 TBtraceTickCount::IntervalInFastTicks(const TBtraceTickCount& aTickCount) const
{
// Calc the number of nano-kernel ticks (simple subtraction)
TUint64 n = IntervalInNanoTicks(aTickCount);
// Convert to microseconds;
n *= TBtraceUtils::NanoTickPeriod();
// Convert this into fast counter ticks.
n *= TBtraceUtils::FastCounterFrequency();
n /= 1000000;
// Round n down to the the nearest KMaxTUint. The next bit of maths is concerned with calculating the remainder
n /= KMaxTUint;
n *= KMaxTUint;
/*
This represents how the fast counter overflows (assuming fast counter counting up):
|-----|-----|-----| <- tick periods
/ / /
/ / /|
/ / / |
/ / / |
/| / / |
/ | / / |
| |
aTickCount this
In the case where aTickCount and this are roughly as presented in the above diagram, the answer
is (2 tick periods) + this.iFast - aTickCount.iFast
Where aTickCount.iFast is numerically greater than this.iFast:
|-----|-----|-----|-----| <- tick periods
/ / / /
/| / / /
/ | / / /
/ | / / /
/ | / / /
/ |/ / /|
| |
aTickCount this
The sum is slightly different: (2 tick periods) + this.iFast + (tick period - aTickCount.iFast)
When the counter counts down, the maths is reversed
*/
// Now calculate the duration (in fast ticks).
if (TBtraceUtils::FastCounterCountsUp())
{
if (aTickCount.iFast < iFast)
{
n = n + iFast - aTickCount.iFast;
}
else if (aTickCount.iFast > iFast)
{
n = n + iFast + (KMaxTUint - aTickCount.iFast);
}
else
{
// Do nothing - the fast counts are the numerically the same, so n being a round number of tick periods is already correct
}
}
else
{
if (iFast < aTickCount.iFast)
{
n = n + aTickCount.iFast - iFast;
}
else if (aTickCount.iFast > iFast)
{
n = n + aTickCount.iFast + (KMaxTUint - iFast);
}
else
{
// Do nothing as above
}
}
return n;
}
EXPORT_C TTimeIntervalMicroSeconds TBtraceTickCount::IntervalInMicroSeconds(const TBtraceTickCount& aTickCount) const
{
TUint64 n = IntervalInFastTicks(aTickCount);
n *= 1000000;
n /= TBtraceUtils::FastCounterFrequency();
return n;
}
EXPORT_C TBool TBtraceTickCount::operator==(const TBtraceTickCount& aTickCount) const
{
return (aTickCount.iNano == iNano) && (aTickCount.iFast == iFast);
}
EXPORT_C TBool TBtraceTickCount::operator!=(const TBtraceTickCount& aTickCount) const
{
return (aTickCount.iNano != iNano) || (aTickCount.iFast != iFast);
}
EXPORT_C TBool TBtraceTickCount::operator>=(const TBtraceTickCount& aTickCount) const
{
if ((iNano > aTickCount.iNano) || (*this == aTickCount))
{
return ETrue;
}
else if (iNano < aTickCount.iNano)
{
return EFalse;
}
else
{
return TBtraceUtils::FastCounterCountsUp() ? (iFast > aTickCount.iFast) : (iFast < aTickCount.iFast);
}
}
EXPORT_C TBool TBtraceTickCount::operator<=(const TBtraceTickCount& aTickCount) const
{
if ((iNano < aTickCount.iNano) || (*this == aTickCount))
{
return ETrue;
}
else if (iNano > aTickCount.iNano)
{
return EFalse;
}
else
{
return TBtraceUtils::FastCounterCountsUp() ? (iFast < aTickCount.iFast) : (iFast > aTickCount.iFast);
}
}
EXPORT_C TBool TBtraceTickCount::operator>(const TBtraceTickCount& aTickCount) const
{
if (iNano > aTickCount.iNano)
{
return ETrue;
}
else if ((*this == aTickCount) || (iNano < aTickCount.iNano))
{
return EFalse;
}
else
{
return TBtraceUtils::FastCounterCountsUp() ? (iFast > aTickCount.iFast) : (iFast < aTickCount.iFast);
}
}
EXPORT_C TBool TBtraceTickCount::operator<(const TBtraceTickCount& aTickCount) const
{
if (iNano < aTickCount.iNano)
{
return ETrue;
}
else if ((*this == aTickCount) || (iNano > aTickCount.iNano))
{
return EFalse;
}
else
{
return TBtraceUtils::FastCounterCountsUp() ? (iFast < aTickCount.iFast) : (iFast > aTickCount.iFast);
}
}
EXPORT_C void CRefCountedObject::IncRef()
{
++iRefCount;
}
EXPORT_C void CRefCountedObject::DecRef()
{
__ASSERT_ALWAYS(iRefCount > 0, Panic(EBtpPanicNegativeRefCount));
--iRefCount;
}
EXPORT_C TInt CRefCountedObject::RefCount() const
{
return iRefCount;
}
CRefCountedObject::CRefCountedObject()
{
}