Convert Kernelhwsrv package from SFL to EPL
kernel\eka\compsupp is subject to the ARM EABI LICENSE
userlibandfileserver\fatfilenameconversionplugins\unicodeTables is subject to the Unicode license
kernel\eka\kernel\zlib is subject to the zlib license
// Copyright (c) 1996-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\math\t_r64.cpp
// T_R64.CPP - Test routines for TReal64
// Also note that these tests do not generally include testing of special values. This is done
// in T_R96 tests and conversions are tested thoroughly, so explicit tests are unnecessary here.
//
//
#include "t_math.h"
#include "t_vals.h"
#include "t_real64.h"
// Data for tests from T_R64DTA.cpp
GLREF_D TReal64 addInput[];
GLREF_D TReal64 subInput[];
GLREF_D TReal64 multInput[];
GLREF_D TReal64 divInput[];
GLREF_D TReal64 divDenormalInput[];
GLREF_D TReal64 unaryInput[];
GLREF_D TReal64 incDecInput[];
GLREF_D TInt sizeAdd;
GLREF_D TInt sizeSub;
GLREF_D TInt sizeMult;
GLREF_D TInt sizeDiv;
GLREF_D TInt sizeDivDenormal;
GLREF_D TInt sizeUnary;
GLREF_D TInt sizeIncDec;
#if defined (__WINS__) || defined (__X86__)
// Functions from EMGCC64.CPP
GLREF_C TReal64 __adddf3(TReal64 a1,TReal64 a2);
GLREF_C TReal64 __subdf3(TReal64 a1,TReal64 a2);
GLREF_C TReal64 __muldf3(TReal64 a1,TReal64 a2);
GLREF_C TReal64 __divdf3(TReal64 a1,TReal64 a2);
#endif
// Special numbers for arithmetic tests
GLDEF_D TReal64 endsInFour;
GLDEF_D TReal64 arg1;
GLDEF_D TReal64 arg2;
GLDEF_D TReal64 arg3;
GLDEF_D const TReal64 KMinDenormalTReal64=5E-324;
GLDEF_D const TReal KNaNTReal=TReal(KNaNTReal64);
GLDEF_D const TReal KPosInfTReal=TReal(KPosInfTReal64);;
GLDEF_D const TReal KNegInfTReal=TReal(KNegInfTReal64);;
GLDEF_D const TReal KMinDenormalTReal=5E-324;
enum TOrder
{
ELessThan,
EEqual,
EGreaterThan
};
LOCAL_D RTest test(_L("T_R64"));
#if defined (__WINS__) || defined (__X86__)
LOCAL_C void testConstants()
//
// Checks that constants are defined as expected in WINS, in case low and high words are swapped
//
{
test(TRealX(TReal32(KMinTReal32in64))==TRealX(KMinTReal32));
test(TRealX(TReal32(KMaxTReal32in64))==TRealX(KMaxTReal32));
}
#endif
LOCAL_C void initSpecialValues()
//
// Initialise special values, etc
//
{
SReal64* p64=(SReal64*)&endsInFour;
p64->sign=0;
p64->exp=1020;
p64->msm=0;
p64->lsm=0x4;
p64=(SReal64*)&arg1;
p64->sign=0;
p64->exp=1075;
p64->msm=0x20000;
p64->lsm=0;
p64=(SReal64*)&arg2;
p64->sign=0;
p64->exp=1075;
p64->msm=0;
p64->lsm=0x2a;
p64=(SReal64*)&arg3;
p64->sign=0;
p64->exp=970;
p64->msm=0xc71c7;
p64->lsm=0x1c71c71c;
}
LOCAL_C void testConvert()
//
// Test conversion from TReal to TReal64
// N.B. Conversions between TRealX and TReal64 are tested by t_r96.cpp
//
{
const TReal input[]=
{
KMaxTReal,KMinTReal,-KMaxTReal,-KMinTReal,
1.7976931348622E+308,-1.7976931348622E+308,2.2250738585073E-308,-2.2250738585073E-308,
KMaxTReal32inTReal,KMinTReal32inTReal,-KMaxTReal32inTReal,-KMinTReal32inTReal,
0.0,64.5,-64.5,1.54E+180,-1.54E+180,4.72E-225,-4.72E-225,
KNegZeroTReal,KPosInfTReal,KNegInfTReal,KMinDenormalTReal,
1.2345E-318,-2.4682E-321,1.0E-323,-2.0E-308
};
const TReal64 expect[]=
{
KMaxTReal64,KMinTReal64,-KMaxTReal64,-KMinTReal64,
1.7976931348622E+308,-1.7976931348622E+308,2.2250738585073E-308,-2.2250738585073E-308,
KMaxTReal32in64,KMinTReal32in64,-KMaxTReal32in64,-KMinTReal32in64,
0.0,64.5,-64.5,1.54E+180,-1.54E+180,4.72E-225,-4.72E-225,
KNegZeroTReal64,KPosInfTReal64,KNegInfTReal64,KMinDenormalTReal64,
1.2345E-318,-2.4682E-321,1.0E-323,-2.0E-308
};
TInt size = sizeof(input)/sizeof(TReal);
TRealX f;
for (TInt ii=0; ii<size; ii++)
{
f=TRealX(TReal64(TRealX(input[ii])));
test(f==TRealX(expect[ii]));
}
// NaN
TReal a=KNaNTReal;
// TReal64 b=KNaNTReal64;
f=TRealX(TReal64(TRealX(a)));
// test(f!=TRealX(b));
test(f.IsNaN());
}
LOCAL_C void testAdd()
//
// Addition tests
//
{
TReal64 f,g,h,y;
TRealX ff,gg,hh;
for (TInt ii=0; ii<sizeAdd-1; ii++)
{
f=addInput[ii];
g=addInput[ii+1];
ff=TRealX(f);
gg=TRealX(g);
// Test commute
test(f+g == g+f);
// Test PC real addition using fp-hardware same as TRealX addition
h=f+g;
hh=ff+gg;
y=(TReal64)hh; // need to do this since TRealX has too much precision
test(y==h);
h=g+f;
hh=gg+ff;
y=(TReal64)hh; // need to do this since TRealX has too much precision
test(y==h);
// Test hex-encoded constants for TReal64s generated on PC using fp-hardware same as
// TRealX addition
test(*(TReal64*)&addArray[ii]==f+g);
test(*(TReal64*)&addArray[ii]==g+f);
// similarly to tests above ...
h=g;
hh=gg;
h+=f;
hh+=ff;
test(h==(TReal64)hh);
test(*(TReal64*)&addArray[ii]==h);
//
h=f;
hh=ff;
h+=g;
hh+=gg;
test(h==(TReal64)hh);
test(*(TReal64*)&addArray[ii]==h);
}
}
LOCAL_C void testSub()
//
// Subtraction tests - see notes in addition test above
//
{
TReal64 f,g,h;
TRealX ff,gg,hh;
for (TInt ii=0; ii<sizeSub-1; ii++)
{
f=subInput[ii];
g=subInput[ii+1];
ff=TRealX(f);
gg=TRealX(g);
//
test(f-g == -(g-f));
//
test(TRealX(f-g)==ff-gg);
test(TRealX(g-f)==gg-ff);
test(*(TReal64*)&subArray[ii]==f-g);
test(*(TReal64*)&subArray[ii]==-(g-f));
//
h=g;
hh=gg;
test(TRealX(h-=f)==(hh-=ff));
test(TRealX(h)==hh);
test(*(TReal64*)&subArray[ii]==-h);
//
h=f;
hh=ff;
test(TRealX(h-=g)==(hh-=gg));
test(TRealX(h)==hh);
test(*(TReal64*)&subArray[ii]==h);
}
}
LOCAL_C void testMult()
//
// Multiplication test
//
{
TReal64 f,g,h;
TRealX ff,gg,hh;
for (TInt ii=0; ii<sizeMult-1; ii++)
{
f=multInput[ii];
g=multInput[ii+1];
ff=TRealX(f);
gg=TRealX(g);
//
test(f*g == g*f);
//
test(TRealX(f*g)==ff*gg);
test(TRealX(g*f)==gg*ff);
test(*(TReal64*)&multArray[ii]==f*g);
test(*(TReal64*)&multArray[ii]==g*f);
//
h=f;
hh=ff;
test(TRealX(h*=g)==(hh*=gg));
test(TRealX(h)==hh);
test(*(TReal64*)&multArray[ii]==h);
//
h=g;
hh=gg;
test(TRealX(h*=f)==(hh*=ff));
test(TRealX(h)==hh);
test(*(TReal64*)&multArray[ii]==h);
}
}
LOCAL_C void testDiv()
//
// Division tests
//
{
TReal64 f,g,h;
TRealX ff,gg,hh;
TInt count=0;
// Panic (under ARM) - Divide by Zero - run in DEBUG build as a check only
//f=1.0;
//g=0.0;
//f/=g;
for (TInt ii=0; ii<sizeDiv-1; ii++)
{
f=divInput[ii];
g=divInput[ii+1];
ff=TRealX(f);
gg=TRealX(g);
if (g!=0.0)
{
test(TRealX(f/g)==ff/gg);
test(*(TReal64*)&divArray[count]==f/g);
//
h=f;
hh=ff;
test(TRealX(h/=g)==(hh/=gg));
test(TRealX(h)==hh);
test(*(TReal64*)&divArray[count]==h);
++count;
}
if (f!=0.0)
{
test(TRealX(g/f)==gg/ff);
//
h=g;
hh=gg;
test(TRealX(h/=f)==(hh/=ff));
test(TRealX(h)==hh);
}
}
gg=TRealX(arg2)/TRealX(arg3);
//Additional test
f=3.999999999999999;
g=KMinTReal64;
ff=TRealX(f);
gg=TRealX(g);
test(TRealX(f/g)==ff/gg);
h=f;
test(TRealX(h/=g)==ff/gg);
test(TRealX(h)==ff/gg);
}
#if defined (__WINS__) || defined (__X86__)
LOCAL_C void testArithmeticExceptionRaising()
//
// Test that UP_GCC.CPP raise exceptions correctly by calling functions from EMGCC64.CPP which
// are copies of those in UP_GCC.CPP. To be used in debugger only.
// Added by AnnW, December 1996
//
{
TReal64 f,g,h;
// Addition - possible errors are argument, overflow, or none
// NB cannot achieve underflow now denormals in use
f=KNaNTReal64;
h=__adddf3(f,f); // argument
f=KMaxTReal64;
h=__adddf3(f,f); // overflow
f=1.0;
g=2.0;
h=__adddf3(f,g); // none
test(h==3.0);
// Subtraction - possible errors are argumnet, overflow or none
// NB cannot achieve underflow now denormals in use
f=KNaNTReal64;
h=__subdf3(f,f); // argument
f=KMaxTReal64;
g=-KMaxTReal64;
h=__subdf3(f,g); // overflow
f=1.0;
g=2.0;
h=__subdf3(f,g); // none
test(h==-1.0);
// Multiplication - possible errors are argument, overflow, underflow or none
f=KNaNTReal64;
h=__muldf3(f,f); // argument
f=KMaxTReal64;
g=2.0;
h=__muldf3(f,g); // overflow
f=KMinDenormalTReal64;
g=0.1;
h=__muldf3(f,g); // underflow
f=1.0;
g=2.0;
h=__muldf3(f,g); // none
test(h==2.0);
// Division - possible errors are overflow, underflow, divide by zero, argument or none
f=KMaxTReal64;
g=0.5;
h=__divdf3(f,g); // overflow
f=KMinDenormalTReal64;
g=10.0;
h=__divdf3(f,g); // underflow
f=4.0;
g=0.0;
h=__divdf3(f,g); // divide by zero
f=0.0;
g=0.0;
h=__divdf3(f,g); // argument
f=1.0;
g=2.0;
h=__divdf3(f,g); // none
test(h==0.5);
}
#endif
LOCAL_C void testUnary()
//
// Unary operator tests
//
{
TReal64 f;
TRealX g;
for (TInt ii=0; ii<sizeUnary-1; ii++)
{
f=unaryInput[ii];
g=TRealX(f);
test(TRealX(-f)==-g);
test(TRealX(-f)==TRealX(0-f));
test(TRealX(+f)==g);
test(TRealX(+f)==TRealX(0+f));
test(*(TReal64*)&unaryArray[ii]==-f);
}
}
LOCAL_C void testEqualities(const TReal& aA, TOrder aOrder, const TReal& aB)
//
// Test equality/inequality functions on aA and aB
// aOrder specifies the operand's relative sizes
//
{
// Tautologies
test((aA>aA) ==FALSE);
test((aA<aA) ==FALSE);
test((aA>=aA)==TRUE);
test((aA<=aA)==TRUE);
test((aA==aA)==TRUE);
test((aA!=aA)==FALSE);
if (aOrder!=EEqual)
{
test((aA==aB)==FALSE);
test((aA!=aB)==TRUE);
}
if (aOrder==ELessThan)
{
test((aA<aB) ==TRUE);
test((aA<=aB)==TRUE);
test((aA>aB) ==FALSE);
test((aA>=aB)==FALSE);
}
if (aOrder==EEqual)
{
test((aA==aB)==TRUE);
test((aA!=aB)==FALSE);
test((aA>=aB)==TRUE);
test((aA<=aB)==TRUE);
test((aA>aB)==FALSE);
test((aA<aB)==FALSE);
}
if (aOrder==EGreaterThan)
{
test((aA>aB) ==TRUE);
test((aA>=aB)==TRUE);
test((aA<aB) ==FALSE);
test((aA<=aB)==FALSE);
}
}
LOCAL_C void testEqualities()
//
// Test >, <, >=, <=, ==, !=
//
{
TInt i, size;
TReal64 lessThanMax = KMaxTReal64-TReal64(1.0E+294);
TReal64 greaterThanMin = TReal64(2.225075E-308);
TReal64 zero(0.0);
TReal64 positive[] =
{KMinTReal64,5.3824705392348592E-138,1.0,2387501,5.3824705392348592E+138,KMaxTReal64};
TReal64 large[] =
{2.0,KMaxTReal64,-lessThanMax,greaterThanMin,-KMinTReal64,10.40584821945060,-10.40584821945058,
1.244334567201E+105,1.244334567201E+105,-1.3420344230402E-106,132435.97865,5.0E-16,9.6,-8.0};
TReal64 small[] =
{1.0,lessThanMax,-KMaxTReal64,KMinTReal64,-greaterThanMin,10.40584821945058,-10.40584821945060,
50E-100,1.244334567201E+104,-5.03824705392348592E+58,-132435.97865,-5.1E-16,8.0,-9.6};
TReal64 equal[] = // Same as large[]
{2.0,KMaxTReal64,-lessThanMax,greaterThanMin,-KMinTReal64,10.40584821945060,-10.40584821945058,
1.244334567201E+105,1.244334567201E+105,-1.3420344230402E-106,132435.97865,5.0E-16,9.6,-8.0};
// Tests with zero
size = sizeof(positive)/sizeof(TReal64);
test.Start(_L("Zero"));
testEqualities(zero, EEqual, zero);
for (i=0; i<size; i++)
{
testEqualities(positive[i], EGreaterThan, zero);
testEqualities(-positive[i], ELessThan, zero);
testEqualities(zero, ELessThan, positive[i]);
testEqualities(zero, EGreaterThan, -positive[i]);
}
// Test boundary and other numbers
size = sizeof(large)/sizeof(TReal64);
test.Next(_L("Nonzero"));
for (i=0; i<size; i++)
{
testEqualities(large[i], EGreaterThan, small[i]);
testEqualities(small[i], ELessThan, large[i]);
testEqualities(large[i], EEqual, equal[i]);
}
test.End();
}
LOCAL_C void testIncDec()
//
// Test Pre/Post-increment/decrement
//
{
TInt ii;
TReal64 f;
TRealX g;
test.Start(_L("Pre-increment"));
for (ii=0; ii<sizeIncDec; ii++)
{
f=incDecInput[ii];
g=TRealX(f);
test(TRealX(f)==g);
test(TRealX(++f)==(++g));
test(*(TReal64*)&preIncArray1[ii]==f);
test(TRealX(f)==g);
test(TRealX(++f)==(++g));
test(*(TReal64*)&preIncArray2[ii]==f);
test(TRealX(f)==g);
}
test.Next(_L("Post-increment"));
for (ii=0; ii<sizeIncDec; ii++)
{
f=incDecInput[ii];
g=TRealX(f);
test(TRealX(f)==g);
test(TRealX(f++)==(g++));
test(*(TReal64*)&postIncArray1[ii]==f);
test(TRealX(f)==g);
test(TRealX(f++)==(g++));
test(*(TReal64*)&postIncArray2[ii]==f);
test(TRealX(f)==g);
}
test.Next(_L("Pre-decrement"));
for (ii=0; ii<sizeIncDec; ii++)
{
f=incDecInput[ii];
g=TRealX(f);
test(TRealX(f)==g);
test(TRealX(--f)==(--g));
test(*(TReal64*)&preDecArray1[ii]==f);
test(TRealX(f)==g);
test(TRealX(--f)==(--g));
test(*(TReal64*)&preDecArray2[ii]==f);
test(TRealX(f)==g);
}
test.Next(_L("Post-decrement"));
for (ii=0; ii<sizeIncDec; ii++)
{
f=incDecInput[ii];
g=TRealX(f);
test(TRealX(f)==g);
test(TRealX(f--)==(g--));
test(*(TReal64*)&postDecArray1[ii]==f);
test(TRealX(f)==g);
test(TRealX(f--)==(g--));
test(*(TReal64*)&postDecArray2[ii]==f);
test(TRealX(f)==g);
}
test.End();
}
LOCAL_C void _matherr(TExcType aType)
//
// Dummy function to handle exceptions
//
{
test.Printf(_L("_matherr: Exception type %u handled\n"),TUint(aType));
}
GLDEF_C TInt E32Main()
//
// Test TReal64
//
{
test.Title();
#if defined (__X86__)
TInt16 cw=0;
_asm fstcw cw;
test.Printf(_L("control word = 0x%x\n"),cw);
cw=0x27f; // WINS value
_asm fldcw cw;
#endif
// Set exceptions to be handled
RThread myThread;
myThread.SetExceptionHandler(_matherr,KExceptionFpe);
initSpecialValues();
#if defined (__WINS__) || defined (__X86__)
test.Start(_L("Checking double words not swapped..."));
testConstants();
test.Next(_L("Conversion from TReal to TReal64"));
testConvert();
#else
test.Start(_L("Conversion from TReal to TReal64"));
testConvert();
#endif
test.Next(_L("Conversion from TReal to TReal64"));
testConvert();
test.Next(_L("Addition"));
testAdd();
test.Next(_L("Subtraction"));
testSub();
test.Next(_L("Multiplication"));
testMult();
test.Next(_L("Division"));
testDiv();
#if defined (__WINS__) || defined (__X86__)
test.Next(_L("Arithmetic which emulates UP_GCC and raises an exception"));
testArithmeticExceptionRaising();
#endif
test.Next(_L("Unary Operations"));
testUnary();
test.Next(_L("Equalities and Inequalities"));
testEqualities();
test.Next(_L("Increment and Decrement"));
testIncDec();
test.End();
return(KErrNone);
}