Enhance the base/rom extension to generate the symbol file of the rom built.
The symbol file is placed in epoc32/rom/<baseport_name>, along with the rom log and final oby file.
// Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32test\buffer\bin_srch.cpp
//
//
#include <e32test.h>
#include <e32math.h>
GLREF_D RTest test;
#define KEEP_RUNNING 100
struct TestMe
{
TBuf<0x10> name;
TInt32 key1;
TUint32 key2;
};
LOCAL_C void fillArray(RArray<TestMe>& arr, TInt size)
{
TInt32 seed = 1 + Math::Random() % size;
TestMe testMe;
for(TInt i=0;i<size;i++)
{
testMe.key1 = seed;
arr.Append(testMe);
seed += 2 + Math::Random() % (2 + size%5);
}
}
LOCAL_C void fillArray(RArray<TInt32>& arr, TInt size)
{
TInt32 seed = 1 + Math::Random() % size;
for(TInt i=0;i<size;i++)
{
arr.Append(seed);
seed += 2 + Math::Random() % (2 + size%5);
}
}
LOCAL_C void fillArray(RArray<TInt32>& arr, RPointerArray<TUint32>& parr, TInt size)
{
TInt32 seed = 1 + Math::Random() % size;
TInt i;
for(i=0;i<size;i++)
{
arr.Append(seed);
seed += 2 + Math::Random() % (2 + size%5);
}
for(i=0;i<size;i++)
{
parr.Append((const TUint32*)&arr[i]);
}
}
LOCAL_C void fillArray(RPointerArray<TUint32>& arr, TInt size)
{
TUint32 seed = 1 + Math::Random() % size;
TUint32 dummy;
for(TInt i=0;i<size;i++)
{
arr.Append((&dummy) + seed);
seed += 2 + Math::Random() % (2 + size%5);
}
}
LOCAL_C TInt simpleOrder(const TInt32& a1, const TInt32& a2)
{
return a1 - a2;
}
LOCAL_C TInt simpleOrder2(const TUint32& a1, const TUint32& a2)
{
return (a1==a2)?0:(a1>a2?1:-1);
}
GLDEF_C void DoRArrayTests()
{
{
RArray<TInt32>* rArr1 = new RArray<TInt32>(0x10);
test(rArr1!=NULL);
RPointerArray<TUint32>* rpArr1 = new RPointerArray<TUint32>(0x10);
test(rpArr1!=NULL);
TInt i;
TInt size = 25;
test.Next(_L("Testing RArray::FindInOrder, RPointerArray::FindInOrder, RArrayBase::BinarySearch and RPointerArrayBase::BinarySearch with arrays of different sizes\r\n"));
for(i=0;i<KEEP_RUNNING;i++)
{
test.Printf(_L("Testing with a random array of size %d \r\n"), size);
fillArray(*rArr1,*rpArr1,size);
test(rArr1->Count()==rpArr1->Count());
TInt index;
//test(KErrNotFound==rArr1->BinarySearch((TAny*)(rArr1->operator[](0)-1),index,(TGeneralLinearOrder)simpleOrder));
test(KErrNotFound==rArr1->FindInOrder(rArr1->operator[](0)-1,index,TLinearOrder<TInt32>(simpleOrder)));
test(index==0);
TUint32 t = *rpArr1->operator[](0)-1;
test(KErrNotFound==rpArr1->FindInOrder(&t,index,TLinearOrder<TUint32>(simpleOrder2)));
test(index==0);
for(TInt k=0;k<rArr1->Count();k++)
{
test(KErrNone==rArr1->FindInOrder(rArr1->operator[](k),index,TLinearOrder<TInt32>(simpleOrder)));
test(index==k);
test(KErrNone==rpArr1->FindInOrder(rpArr1->operator[](k),index,TLinearOrder<TUint32>(simpleOrder2)));
test(index==k);
if(k<rArr1->Count()-1)
{
test(KErrNotFound==rArr1->FindInOrder((rArr1->operator[](k)+rArr1->operator[](k+1))>>1,index,TLinearOrder<TInt32>(simpleOrder)));
test(index==k+1);
t = (*rpArr1->operator[](k)+*rpArr1->operator[](k+1))>>1;
test(KErrNotFound==rpArr1->FindInOrder(&t,index,TLinearOrder<TUint32>(simpleOrder2)));
test(index==k+1);
}
}
test(KErrNotFound==rArr1->FindInOrder(rArr1->operator[](rArr1->Count()-1)+5,index,TLinearOrder<TInt32>(simpleOrder)));
test(index==rArr1->Count());
t = *rpArr1->operator[](rpArr1->Count()-1) + 5;
test(KErrNotFound==rpArr1->FindInOrder(&t,index,TLinearOrder<TUint32>(simpleOrder2)));
test(index==rpArr1->Count());
size += 2 + Math::Random() % (2 + size%5);
rArr1->Reset();
rpArr1->Reset();
}
delete rpArr1;
test.Next(_L("Testing RArray::FindInSignedKeyOrder and RArrayBase::BinarySignedSearch with arrays of different sizes\r\n"));
for(i=0;i<KEEP_RUNNING;i++)
{
test.Printf(_L("Testing with a random array of size %d \r\n"), size);
fillArray(*rArr1,size);
TInt index;
//test(KErrNotFound==rArr1->BinarySearch((TAny*)(rArr1->operator[](0)-1),index,(TGeneralLinearOrder)simpleOrder));
test(KErrNotFound==rArr1->FindInSignedKeyOrder(rArr1->operator[](0)-1,index));
test(index==0);
for(TInt k=0;k<rArr1->Count();k++)
{
test(KErrNone==rArr1->FindInSignedKeyOrder(rArr1->operator[](k),index));
test(index==k);
if(k<rArr1->Count()-1)
{
test(KErrNotFound==rArr1->FindInSignedKeyOrder((rArr1->operator[](k)+rArr1->operator[](k+1))>>1,index));
test(index==k+1);
}
}
test(KErrNotFound==rArr1->FindInSignedKeyOrder(rArr1->operator[](rArr1->Count()-1)+5,index));
test(index==rArr1->Count());
size += 2 + Math::Random() % (2 + size%5);
rArr1->Reset();
}
size=25;
test.Next(_L("Testing RArray::FindInUnsignedKeyOrder and RArrayBase::BinaryUnsignedSearch with arrays of different sizes\r\n"));
for(i=0;i<KEEP_RUNNING;i++)
{
test.Printf(_L("Testing with a random array of size %d \r\n"), size);
fillArray(*rArr1,size);
TInt index;
//test(KErrNotFound==rArr1->BinarySearch((TAny*)(rArr1->operator[](0)-1),index,(TGeneralLinearOrder)simpleOrder));
test(KErrNotFound==rArr1->FindInUnsignedKeyOrder(rArr1->operator[](0)-1,index));
test(index==0);
for(TInt k=0;k<rArr1->Count();k++)
{
test(KErrNone==rArr1->FindInUnsignedKeyOrder(rArr1->operator[](k),index));
test(index==k);
if(k<rArr1->Count()-1)
{
test(KErrNotFound==rArr1->FindInUnsignedKeyOrder((rArr1->operator[](k)+rArr1->operator[](k+1))>>1,index));
test(index==k+1);
}
}
test(KErrNotFound==rArr1->FindInUnsignedKeyOrder(rArr1->operator[](rArr1->Count()-1)+5,index));
test(index==rArr1->Count());
size += 2 + Math::Random() % (2 + size%5);
rArr1->Reset();
}
delete rArr1;
}
{
RArray<TestMe>* rArr1 = new RArray<TestMe>(0x10,_FOFF(TestMe,key1));
test(rArr1!=NULL);
TInt i;
TInt size = 25;
test.Next(_L("Testing RArray::FindInSignedOrder and RArrayBase::BinarySignedSearch with a structure + key\r\n"));
TestMe testMe;
for(i=0;i<KEEP_RUNNING;i++)
{
test.Printf(_L("Testing with a random array of size %d \r\n"), size);
fillArray(*rArr1,size);
TInt index;
//test(KErrNotFound==rArr1->BinarySearch((TAny*)(rArr1->operator[](0)-1),index,(TGeneralLinearOrder)simpleOrder));
testMe=rArr1->operator[](0);
testMe.key1 = rArr1->operator[](0).key1-1;
test(KErrNotFound==rArr1->FindInSignedKeyOrder(testMe,index));
test(index==0);
for(TInt k=0;k<rArr1->Count();k++)
{
testMe.key1 = rArr1->operator[](k).key1;
test(KErrNone==rArr1->FindInSignedKeyOrder(testMe,index));
test(index==k);
if(k<rArr1->Count()-1)
{
testMe.key1 = (rArr1->operator[](k).key1+rArr1->operator[](k+1).key1)>>1;
test(KErrNotFound==rArr1->FindInSignedKeyOrder(testMe,index));
test(index==k+1);
}
}
testMe.key1 = rArr1->operator[](rArr1->Count()-1).key1+5;
test(KErrNotFound==rArr1->FindInSignedKeyOrder(testMe,index));
test(index==rArr1->Count());
size += 2 + Math::Random() % (2 + size%5);
rArr1->Reset();
}
size=25;
test.Next(_L("Testing RArray::FindInUnsignedKeyOrder and RArrayBase::BinaryUnsignedSearch with arrays of different sizes\r\n"));
for(i=0;i<KEEP_RUNNING;i++)
{
test.Printf(_L("Testing with a random array of size %d \r\n"), size);
fillArray(*rArr1,size);
TInt index;
//test(KErrNotFound==rArr1->BinarySearch((TAny*)(rArr1->operator[](0)-1),index,(TGeneralLinearOrder)simpleOrder));
testMe.key1 = rArr1->operator[](0).key1-1;
test(KErrNotFound==rArr1->FindInUnsignedKeyOrder(testMe,index));
test(index==0);
for(TInt k=0;k<rArr1->Count();k++)
{
testMe.key1 = rArr1->operator[](k).key1;
test(KErrNone==rArr1->FindInUnsignedKeyOrder(testMe,index));
test(index==k);
if(k<rArr1->Count()-1)
{
testMe.key1 = (rArr1->operator[](k).key1+rArr1->operator[](k+1).key1)>>1;
test(KErrNotFound==rArr1->FindInUnsignedKeyOrder(testMe,index));
test(index==k+1);
}
}
testMe.key1 = rArr1->operator[](rArr1->Count()-1).key1+5;
test(KErrNotFound==rArr1->FindInUnsignedKeyOrder(testMe,index));
test(index==rArr1->Count());
size += 2 + Math::Random() % (2 + size%5);
rArr1->Reset();
}
delete rArr1;
}
{
RPointerArray<TUint32>* rArr1 = new RPointerArray<TUint32>(0x10);
test(rArr1!=NULL);
TInt i;
TInt size = 25;
test.Next(_L("Testing RPointerArray::FindInAddressOrder and RPointerArrayBase::BinaryUnsignedSearch with arrays of different sizes\r\n"));
for(i=0;i<KEEP_RUNNING;i++)
{
test.Printf(_L("Testing with a random array of size %d \r\n"), size);
fillArray(*rArr1,size);
TInt index;
//test(KErrNotFound==rArr1->BinarySearch((TAny*)(rArr1->operator[](0)-1),index,(TGeneralLinearOrder)simpleOrder));
test(KErrNotFound==rArr1->FindInAddressOrder(rArr1->operator[](0)-1,index));
test(index==0);
for(TInt k=0;k<rArr1->Count();k++)
{
test(KErrNone==rArr1->FindInAddressOrder(rArr1->operator[](k),index));
test(index==k);
if(k<rArr1->Count()-1)
{
test(KErrNotFound==rArr1->FindInAddressOrder((const TUint32*)(((TUint32)rArr1->operator[](k))/2+((TUint32)rArr1->operator[](k+1))/2 + (((TUint32)rArr1->operator[](k))%2 + ((TUint32)rArr1->operator[](k+1))%2)/2),index));
test(index==k+1);
}
}
test(KErrNotFound==rArr1->FindInAddressOrder(rArr1->operator[](rArr1->Count()-1)+5,index));
test(index==rArr1->Count());
size += 2 + Math::Random() % (2 + size%5);
rArr1->Reset();
}
delete rArr1;
}
}