Enhance the base/rom extension to generate the symbol file of the rom built.
The symbol file is placed in epoc32/rom/<baseport_name>, along with the rom log and final oby file.
// Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// Overview:
// Test the video driver kernel extension that provides chunk handle to access video memory.
// API Information:
// HAL, UserSvr
// Details:
// - Check that the "old" GetMemoryAddress function still works, for legacy compatibility.
// - Check that we can get a chunk and that we can read/write the memory belonging to that chunk.
// - Check that asking for a DisplayMemoryHandle twice gives the same piece of memory.
// - Test that the same memory is available to a second process, by starting second process and
// the second process can write to memory. Validate by confirming that the value in the second process
// is changed.
// Platforms/Drives/Compatibility:
// All.
// Assumptions/Requirement/Pre-requisites:
// Failures and causes:
// Base Port information:
//
//
#include <e32test.h>
#include <videodriver.h>
#include <hal.h>
#include <e32svr.h>
#include <dispchannel.h>
#include "t_videomemory.h"
LOCAL_D RTest test(_L("T_VIDEOMEMORY"));
#ifndef __WINS__
#define DUMP(x) test.Printf(_L(#x"= %d =0x%08x\n"), x, x)
#endif
LOCAL_C void RunTestsForScreen(TInt aScreenID)
{
TInt ret = KErrNone;
#ifdef __WINS__
RDisplayChannel displayChannel;
test.Next(_L("Open Display Driver"));
_LIT(KDisplayDriver, "display0");
ret = User::LoadLogicalDevice(KDisplayDriver);
test(KErrNone == ret || KErrAlreadyExists == ret);
ret = displayChannel.Open(aScreenID);
test(KErrNone == ret);
#endif
test.Next(_L("Checking Display Memory Address"));
// This is the real basic form of test:
// Get the display memory address from the HAL.
// Check that it's not zero - that would be invalid memory.
// Try to write to the memory - it should not give a page-fault/crash.
// Try to read the memory - we should get the same value as we wrote.
TInt memoryAddress=0;
volatile TUint32 *pMemory = 0;
ret = HAL::Get(aScreenID, HAL::EDisplayMemoryAddress, memoryAddress);
test (KErrNone == ret || KErrNotSupported == ret);
if (KErrNone == ret)
{
test.Printf(_L("Display Memory Address = %08x\n"), memoryAddress);
// Now check that we can write to memoryAddress:
test (memoryAddress != 0);
pMemory = reinterpret_cast<TUint32 *>(memoryAddress);
*pMemory = KTestValue1;
test(KTestValue1 == *pMemory);
}
else
{
test.Printf(_L("Memory Address not available from HAL\n"));
}
// Second basic test. Use the HAL to fetch a handle
// to the display memory.
// Check that the handle is not zero.
// Get the base-address of the chunk.
// Write this base address with a new value.
// Read with the chunk base address to see that teh new value is there.
// Read the memory address from the above test and check that it changed
// to the new value.
// Note that the memory address from above test MAY NOT BE SET - so
// check to see if it's non-zero first.
test.Next(_L("Checking Display Handle"));
TInt handle = 0;
volatile TUint32 *pChunkBase = 0;
RChunk chunk;
ret = HAL::Get(aScreenID, HALData::EDisplayMemoryHandle, handle);
test ((KErrNone == ret || KErrNotSupported == ret));
if (KErrNone == ret)
{
// Handle should not be zero.
test(0 != handle);
ret = chunk.SetReturnedHandle(handle);
test(KErrNone == ret);
pChunkBase = reinterpret_cast<TUint32 *>(chunk.Base());
test.Printf(_L("Display Memory Address = %08x\n"), reinterpret_cast<TUint>(pChunkBase));
*pChunkBase = KTestValue2;
test(KTestValue2 == *pChunkBase);
// We should see the new value through the pMemory pointer!
if (pMemory)
{
test(KTestValue2 == *pMemory);
}
}
else
{
test.Printf(_L("Memory Handle not available from HAL - no point in further testing\n"));
return;
}
// Check that we can write to more than the first bit of memory.
test.Next(_L("Check that we can write to \"all\" of the memory"));
// First, find the mode with the biggest number of bits per pixel:
TInt totalModes;
ret = HAL::Get(aScreenID, HAL::EDisplayNumModes, totalModes);
test (KErrNone == ret);
TInt biggestMode = 0;
TInt maxBitsPerPixel = 0;
for(TInt mode = 0; mode < totalModes; mode++)
{
TInt bitsPerPixel = mode;
ret = HAL::Get(aScreenID, HAL::EDisplayBitsPerPixel, bitsPerPixel);
test (KErrNone == ret);
if (bitsPerPixel > maxBitsPerPixel)
{
maxBitsPerPixel = bitsPerPixel;
biggestMode = mode;
}
}
TInt offsetToFirstPixel = biggestMode;
ret = HAL::Get(aScreenID, HALData::EDisplayOffsetToFirstPixel, offsetToFirstPixel);
test(KErrNone == ret);
TInt stride = biggestMode;
ret = HAL::Get(aScreenID, HALData::EDisplayOffsetBetweenLines, stride);
test(KErrNone == ret);
TInt yPixels = biggestMode;
ret = HAL::Get(aScreenID, HALData::EDisplayYPixels, yPixels);
test(KErrNone == ret);
// Note this is no attempt to be precise. xPixels is not
TUint maxByte = offsetToFirstPixel + stride * yPixels - sizeof(TUint32);
volatile TUint32 *memPtr = reinterpret_cast<volatile TUint32 *>(reinterpret_cast<volatile TUint8 *>(pChunkBase) + maxByte);
*memPtr = KTestValue1;
test(KTestValue1 == *memPtr);
// Ask for a second handle and see that this also points to the same bit of memory.
test.Next(_L("Checking Display Handle second time"));
volatile TUint32 *pChunkBase2 = 0;
ret = HAL::Get(aScreenID, HALData::EDisplayMemoryHandle, handle);
test ((KErrNone == ret || KErrNotSupported == ret));
if (KErrNone == ret)
{
// Handle should not be zero!
test(0 != handle);
RChunk chunk2;
ret = chunk2.SetReturnedHandle(handle);
test(KErrNone == ret);
pChunkBase2 = reinterpret_cast<TUint32 *>(chunk2.Base());
test.Printf(_L("Display Memory Address = %08x\n"), reinterpret_cast<TUint>(pChunkBase));
test(KTestValue2 == *pChunkBase2);
*pChunkBase2 = KTestValue3;
test(KTestValue3 == *pChunkBase2);
chunk2.Close();
}
test.Next(_L("Checking Display Handle using second process"));
// Create a process, let it find the handle of the memory, then read it, and write it.
// Check that the value we have is the new value: KTestValue3.
_LIT(KProcName, "t_videomemprocess.exe");
RProcess process;
ret = process.Create(KProcName, KNullDesC);
test(KErrNone == ret);
TRequestStatus procStatus;
process.Logon(procStatus);
process.SetParameter(12, aScreenID);
process.Resume();
User::WaitForRequest(procStatus);
test.Next(_L("Checking that second process updated video memory"));
// Check that we got the new value.
test(KTestValue4 == *pChunkBase);
chunk.Close();
#ifdef __WINS__
displayChannel.Close();
#endif
// Now for some negative tests: Attempt to get a handle for a closes display.
test.Next(_L("Negative test: Check that we CAN NOT use closed screen"));
ret = HAL::Get(aScreenID, HALData::EDisplayMemoryHandle, handle);
test (KErrNone != ret);
}
LOCAL_C void NegativeTests(TInt aMaxScreens)
{
TInt handle;
TInt ret;
// Another few negative tests: Try invalid screen numbers.
test.Next(_L("Negative tests: Invalid screen ID's"));
ret = HAL::Get(aMaxScreens, HALData::EDisplayMemoryHandle, handle);
test (KErrNone != ret);
ret = HAL::Get(aMaxScreens+1, HALData::EDisplayMemoryHandle, handle);
test (KErrNone != ret);
ret = HAL::Get(4718, HALData::EDisplayMemoryHandle, handle);
test (KErrNone != ret);
ret = HAL::Get(-1, HALData::EDisplayMemoryHandle, handle);
test (KErrNone != ret);
}
GLDEF_C TInt E32Main()
//
//
{
test.Title();
//
#if defined(__EPOC32__) && defined(__CPU_X86)
test.Printf(_L("Doesn't run on X86\n"));
#else
test.Start(_L("Testing Video Memory HAL interfaces"));
TInt screens = 0;
TInt ret=HAL::Get(HAL::EDisplayNumberOfScreens, screens);
test((KErrNone == ret));
// We expect that there is at least ONE screen.
test((screens > 0));
for(TInt i=0;i<screens;i++)
{
RunTestsForScreen(i);
}
NegativeTests(screens);
#endif
return KErrNone;
}