kerneltest/e32utils/nistsecurerng/src/approximateEntropy.cpp
author Mike Kinghan <mikek@symbian.org>
Thu, 25 Nov 2010 14:35:45 +0000
branchGCC_SURGE
changeset 305 1ba12ef4ef89
parent 152 657f875b013e
permissions -rw-r--r--
Enhance the base/rom extension to generate the symbol file of the rom built. The symbol file is placed in epoc32/rom/<baseport_name>, along with the rom log and final oby file.

/*
* Portions Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description: 
* The original NIST Statistical Test Suite code is placed in public domain.
* (http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html) 
* 
* This software was developed at the National Institute of Standards and Technology by 
* employees of the Federal Government in the course of their official duties. Pursuant
* to title 17 Section 105 of the United States Code this software is not subject to 
* copyright protection and is in the public domain. The NIST Statistical Test Suite is
* an experimental system. NIST assumes no responsibility whatsoever for its use by other 
* parties, and makes no guarantees, expressed or implied, about its quality, reliability, 
* or any other characteristic. We would appreciate acknowledgment if the software is used.
*/

#include "openc.h"
#include "../include/externs.h"
#include "../include/utilities.h"
#include "../include/cephes.h"  

/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
                A P P R O X I M A T E  E N T R O P Y   T E S T
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

void
ApproximateEntropy(int m, int n)
{
	int				i, j, k, r, blockSize, seqLength, powLen, index;
	double			sum, numOfBlocks, ApEn[2], apen, chi_squared, p_value;
	unsigned int	*P;
	
	fprintf(stats[TEST_APEN], "\t\t\tAPPROXIMATE ENTROPY TEST\n");
	fprintf(stats[TEST_APEN], "\t\t--------------------------------------------\n");
	fprintf(stats[TEST_APEN], "\t\tCOMPUTATIONAL INFORMATION:\n");
	fprintf(stats[TEST_APEN], "\t\t--------------------------------------------\n");
	fprintf(stats[TEST_APEN], "\t\t(a) m (block length)    = %d\n", m);

	seqLength = n;
	r = 0;
	
	for ( blockSize=m; blockSize<=m+1; blockSize++ ) {
		if ( blockSize == 0 ) {
			ApEn[0] = 0.00;
			r++;
		}
		else {
			numOfBlocks = (double)seqLength;
			powLen = (int)pow(2, blockSize+1)-1;
			if ( (P = (unsigned int*)calloc(powLen,sizeof(unsigned int)))== NULL ) {
				fprintf(stats[TEST_APEN], "ApEn:  Insufficient memory available.\n");
				return;
			}
			for ( i=1; i<powLen-1; i++ )
				P[i] = 0;
			for ( i=0; i<numOfBlocks; i++ ) { /* COMPUTE FREQUENCY */
				k = 1;
				for ( j=0; j<blockSize; j++ ) {
					k <<= 1;
					if ( (int)epsilon[(i+j) % seqLength] == 1 )
						k++;
				}
				P[k-1]++;
			}
			/* DISPLAY FREQUENCY */
			sum = 0.0;
			index = (int)pow(2, blockSize)-1;
			for ( i=0; i<(int)pow(2, blockSize); i++ ) {
				if ( P[index] > 0 )
					sum += P[index]*log(P[index]/numOfBlocks);
				index++;
			}
			sum /= numOfBlocks;
			ApEn[r] = sum;
			r++;
			free(P);
		}
	}
	apen = ApEn[0] - ApEn[1];
	
	chi_squared = 2.0*seqLength*(log(2) - apen);
	p_value = cephes_igamc(pow(2, m-1), chi_squared/2.0);
	
	fprintf(stats[TEST_APEN], "\t\t(b) n (sequence length) = %d\n", seqLength);
	fprintf(stats[TEST_APEN], "\t\t(c) Chi^2               = %f\n", chi_squared);
	fprintf(stats[TEST_APEN], "\t\t(d) Phi(m)	       = %f\n", ApEn[0]);
	fprintf(stats[TEST_APEN], "\t\t(e) Phi(m+1)	       = %f\n", ApEn[1]);
	fprintf(stats[TEST_APEN], "\t\t(f) ApEn                = %f\n", apen);
	fprintf(stats[TEST_APEN], "\t\t(g) Log(2)              = %f\n", log(2.0));
	fprintf(stats[TEST_APEN], "\t\t--------------------------------------------\n");

	if ( m > (int)(log(seqLength)/log(2)-5) ) {
		fprintf(stats[TEST_APEN], "\t\tNote: The blockSize = %d exceeds recommended value of %d\n", m,
			MAX(1, (int)(log(seqLength)/log(2)-5)));
		fprintf(stats[TEST_APEN], "\t\tResults are inaccurate!\n");
		fprintf(stats[TEST_APEN], "\t\t--------------------------------------------\n");
	}
	
	fprintf(stats[TEST_APEN], "%s\t\tp_value = %f\n\n", p_value < ALPHA ? "FAILURE" : "SUCCESS", p_value);
	fprintf(results[TEST_APEN], "%f\n", p_value);
}