--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/crypto/weakcrypto/source/bigint/algorithms.cpp Tue Aug 31 17:00:08 2010 +0300
@@ -0,0 +1,1160 @@
+/*
+* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
+* All rights reserved.
+* This component and the accompanying materials are made available
+* under the terms of the License "Eclipse Public License v1.0"
+* which accompanies this distribution, and is available
+* at the URL "http://www.eclipse.org/legal/epl-v10.html".
+*
+* Initial Contributors:
+* Nokia Corporation - initial contribution.
+*
+* Contributors:
+*
+* Description:
+*
+*/
+
+
+#include "words.h"
+#include "algorithms.h"
+
+word Add(word *C, const word *A, const word *B, unsigned int N)
+{
+ assert (N%2 == 0);
+ word carry = 0;
+ for (unsigned int i = 0; i < N; i+=2)
+ {
+ dword u = (dword) carry + A[i] + B[i];
+ C[i] = LOW_WORD(u);
+ u = (dword) HIGH_WORD(u) + A[i+1] + B[i+1];
+ C[i+1] = LOW_WORD(u);
+ carry = HIGH_WORD(u);
+ }
+ return carry;
+}
+
+word Subtract(word *C, const word *A, const word *B, unsigned int N)
+{
+ assert (N%2 == 0);
+ word borrow=0;
+ for (unsigned i = 0; i < N; i+=2)
+ {
+ dword u = (dword) A[i] - B[i] - borrow;
+ C[i] = LOW_WORD(u);
+ u = (dword) A[i+1] - B[i+1] - (word)(0-HIGH_WORD(u));
+ C[i+1] = LOW_WORD(u);
+ borrow = 0-HIGH_WORD(u);
+ }
+ return borrow;
+}
+
+int Compare(const word *A, const word *B, unsigned int N)
+{
+ while (N--)
+ if (A[N] > B[N])
+ return 1;
+ else if (A[N] < B[N])
+ return -1;
+
+ return 0;
+}
+
+// It is the job of the calling code to ensure that this won't carry.
+// If you aren't sure, use the next version that will tell you if you need to
+// grow your integer.
+// Having two of these creates ever so slightly more code but avoids having
+// ifdefs all over the rest of the code checking the following type stuff which
+// causes warnings in certain compilers about unused parameters in release
+// builds. We can't have that can we!
+/*
+Allows avoid this all over bigint.cpp and primes.cpp
+ifdef _DEBUG
+ TUint carry = Increment(Ptr(), Size());
+ assert(!carry);
+else
+ Increment(Ptr(), Size())
+endif
+*/
+void IncrementNoCarry(word *A, unsigned int N, word B)
+{
+ assert(N);
+ word t = A[0];
+ A[0] = t+B;
+ if (A[0] >= t)
+ return;
+ for (unsigned i=1; i<N; i++)
+ if (++A[i])
+ return;
+ assert(0);
+}
+
+word Increment(word *A, unsigned int N, word B)
+{
+ assert(N);
+ word t = A[0];
+ A[0] = t+B;
+ if (A[0] >= t)
+ return 0;
+ for (unsigned i=1; i<N; i++)
+ if (++A[i])
+ return 0;
+ return 1;
+}
+
+//See commments above about IncrementNoCarry
+void DecrementNoCarry(word *A, unsigned int N, word B)
+{
+ assert(N);
+ word t = A[0];
+ A[0] = t-B;
+ if (A[0] <= t)
+ return;
+ for (unsigned i=1; i<N; i++)
+ if (A[i]--)
+ return;
+ assert(0);
+}
+
+word Decrement(word *A, unsigned int N, word B)
+{
+ assert(N);
+ word t = A[0];
+ A[0] = t-B;
+ if (A[0] <= t)
+ return 0;
+ for (unsigned i=1; i<N; i++)
+ if (A[i]--)
+ return 0;
+ return 1;
+}
+
+void TwosComplement(word *A, unsigned int N)
+{
+ Decrement(A, N);
+ for (unsigned i=0; i<N; i++)
+ A[i] = ~A[i];
+}
+
+static word LinearMultiply(word *C, const word *A, word B, unsigned int N)
+{
+ word carry=0;
+ for(unsigned i=0; i<N; i++)
+ {
+ dword p = (dword)A[i] * B + carry;
+ C[i] = LOW_WORD(p);
+ carry = HIGH_WORD(p);
+ }
+ return carry;
+}
+
+static void AtomicMultiply(word *C, const word *A, const word *B)
+{
+/*
+ word s;
+ dword d;
+
+ if (A1 >= A0)
+ if (B0 >= B1)
+ {
+ s = 0;
+ d = (dword)(A1-A0)*(B0-B1);
+ }
+ else
+ {
+ s = (A1-A0);
+ d = (dword)s*(word)(B0-B1);
+ }
+ else
+ if (B0 > B1)
+ {
+ s = (B0-B1);
+ d = (word)(A1-A0)*(dword)s;
+ }
+ else
+ {
+ s = 0;
+ d = (dword)(A0-A1)*(B1-B0);
+ }
+*/
+ // this segment is the branchless equivalent of above
+ word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]};
+ unsigned int ai = A[1] < A[0];
+ unsigned int bi = B[0] < B[1];
+ unsigned int di = ai & bi;
+ dword d = (dword)D[di]*D[di+2];
+ D[1] = D[3] = 0;
+ unsigned int si = ai + !bi;
+ word s = D[si];
+
+ dword A0B0 = (dword)A[0]*B[0];
+ C[0] = LOW_WORD(A0B0);
+
+ dword A1B1 = (dword)A[1]*B[1];
+ dword t = (dword) HIGH_WORD(A0B0) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1);
+ C[1] = LOW_WORD(t);
+
+ t = A1B1 + HIGH_WORD(t) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s;
+ C[2] = LOW_WORD(t);
+ C[3] = HIGH_WORD(t);
+}
+
+static word AtomicMultiplyAdd(word *C, const word *A, const word *B)
+{
+ word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]};
+ unsigned int ai = A[1] < A[0];
+ unsigned int bi = B[0] < B[1];
+ unsigned int di = ai & bi;
+ dword d = (dword)D[di]*D[di+2];
+ D[1] = D[3] = 0;
+ unsigned int si = ai + !bi;
+ word s = D[si];
+
+ dword A0B0 = (dword)A[0]*B[0];
+ dword t = A0B0 + C[0];
+ C[0] = LOW_WORD(t);
+
+ dword A1B1 = (dword)A[1]*B[1];
+ t = (dword) HIGH_WORD(t) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1) + C[1];
+ C[1] = LOW_WORD(t);
+
+ t = (dword) HIGH_WORD(t) + LOW_WORD(A1B1) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s + C[2];
+ C[2] = LOW_WORD(t);
+
+ t = (dword) HIGH_WORD(t) + HIGH_WORD(A1B1) + C[3];
+ C[3] = LOW_WORD(t);
+ return HIGH_WORD(t);
+}
+
+static inline void AtomicMultiplyBottom(word *C, const word *A, const word *B)
+{
+ dword t = (dword)A[0]*B[0];
+ C[0] = LOW_WORD(t);
+ C[1] = HIGH_WORD(t) + A[0]*B[1] + A[1]*B[0];
+}
+
+#define MulAcc(x, y) \
+ p = (dword)A[x] * B[y] + c; \
+ c = LOW_WORD(p); \
+ p = (dword)d + HIGH_WORD(p); \
+ d = LOW_WORD(p); \
+ e += HIGH_WORD(p);
+
+#define SaveMulAcc(s, x, y) \
+ R[s] = c; \
+ p = (dword)A[x] * B[y] + d; \
+ c = LOW_WORD(p); \
+ p = (dword)e + HIGH_WORD(p); \
+ d = LOW_WORD(p); \
+ e = HIGH_WORD(p);
+
+#define MulAcc1(x, y) \
+ p = (dword)A[x] * A[y] + c; \
+ c = LOW_WORD(p); \
+ p = (dword)d + HIGH_WORD(p); \
+ d = LOW_WORD(p); \
+ e += HIGH_WORD(p);
+
+#define SaveMulAcc1(s, x, y) \
+ R[s] = c; \
+ p = (dword)A[x] * A[y] + d; \
+ c = LOW_WORD(p); \
+ p = (dword)e + HIGH_WORD(p); \
+ d = LOW_WORD(p); \
+ e = HIGH_WORD(p);
+
+#define SquAcc(x, y) \
+ p = (dword)A[x] * A[y]; \
+ p = p + p + c; \
+ c = LOW_WORD(p); \
+ p = (dword)d + HIGH_WORD(p); \
+ d = LOW_WORD(p); \
+ e += HIGH_WORD(p);
+
+#define SaveSquAcc(s, x, y) \
+ R[s] = c; \
+ p = (dword)A[x] * A[y]; \
+ p = p + p + d; \
+ c = LOW_WORD(p); \
+ p = (dword)e + HIGH_WORD(p); \
+ d = LOW_WORD(p); \
+ e = HIGH_WORD(p);
+
+// VC60 workaround: MSVC 6.0 has an optimization problem that makes
+// (dword)A*B where either A or B has been cast to a dword before
+// very expensive. Revisit a CombaSquare4() function when this
+// problem is fixed.
+
+// WARNING: KeithR. 05/08/03 This routine doesn't work with gcc on hardware
+// either. I've completely removed it. It may be worth looking into sometime
+// in the future.
+/*#ifndef __WINS__
+static void CombaSquare4(word *R, const word *A)
+{
+ dword p;
+ word c, d, e;
+
+ p = (dword)A[0] * A[0];
+ R[0] = LOW_WORD(p);
+ c = HIGH_WORD(p);
+ d = e = 0;
+
+ SquAcc(0, 1);
+
+ SaveSquAcc(1, 2, 0);
+ MulAcc1(1, 1);
+
+ SaveSquAcc(2, 0, 3);
+ SquAcc(1, 2);
+
+ SaveSquAcc(3, 3, 1);
+ MulAcc1(2, 2);
+
+ SaveSquAcc(4, 2, 3);
+
+ R[5] = c;
+ p = (dword)A[3] * A[3] + d;
+ R[6] = LOW_WORD(p);
+ R[7] = e + HIGH_WORD(p);
+}
+#endif */
+
+static void CombaMultiply4(word *R, const word *A, const word *B)
+{
+ dword p;
+ word c, d, e;
+
+ p = (dword)A[0] * B[0];
+ R[0] = LOW_WORD(p);
+ c = HIGH_WORD(p);
+ d = e = 0;
+
+ MulAcc(0, 1);
+ MulAcc(1, 0);
+
+ SaveMulAcc(1, 2, 0);
+ MulAcc(1, 1);
+ MulAcc(0, 2);
+
+ SaveMulAcc(2, 0, 3);
+ MulAcc(1, 2);
+ MulAcc(2, 1);
+ MulAcc(3, 0);
+
+ SaveMulAcc(3, 3, 1);
+ MulAcc(2, 2);
+ MulAcc(1, 3);
+
+ SaveMulAcc(4, 2, 3);
+ MulAcc(3, 2);
+
+ R[5] = c;
+ p = (dword)A[3] * B[3] + d;
+ R[6] = LOW_WORD(p);
+ R[7] = e + HIGH_WORD(p);
+}
+
+static void CombaMultiply8(word *R, const word *A, const word *B)
+{
+ dword p;
+ word c, d, e;
+
+ p = (dword)A[0] * B[0];
+ R[0] = LOW_WORD(p);
+ c = HIGH_WORD(p);
+ d = e = 0;
+
+ MulAcc(0, 1);
+ MulAcc(1, 0);
+
+ SaveMulAcc(1, 2, 0);
+ MulAcc(1, 1);
+ MulAcc(0, 2);
+
+ SaveMulAcc(2, 0, 3);
+ MulAcc(1, 2);
+ MulAcc(2, 1);
+ MulAcc(3, 0);
+
+ SaveMulAcc(3, 0, 4);
+ MulAcc(1, 3);
+ MulAcc(2, 2);
+ MulAcc(3, 1);
+ MulAcc(4, 0);
+
+ SaveMulAcc(4, 0, 5);
+ MulAcc(1, 4);
+ MulAcc(2, 3);
+ MulAcc(3, 2);
+ MulAcc(4, 1);
+ MulAcc(5, 0);
+
+ SaveMulAcc(5, 0, 6);
+ MulAcc(1, 5);
+ MulAcc(2, 4);
+ MulAcc(3, 3);
+ MulAcc(4, 2);
+ MulAcc(5, 1);
+ MulAcc(6, 0);
+
+ SaveMulAcc(6, 0, 7);
+ MulAcc(1, 6);
+ MulAcc(2, 5);
+ MulAcc(3, 4);
+ MulAcc(4, 3);
+ MulAcc(5, 2);
+ MulAcc(6, 1);
+ MulAcc(7, 0);
+
+ SaveMulAcc(7, 1, 7);
+ MulAcc(2, 6);
+ MulAcc(3, 5);
+ MulAcc(4, 4);
+ MulAcc(5, 3);
+ MulAcc(6, 2);
+ MulAcc(7, 1);
+
+ SaveMulAcc(8, 2, 7);
+ MulAcc(3, 6);
+ MulAcc(4, 5);
+ MulAcc(5, 4);
+ MulAcc(6, 3);
+ MulAcc(7, 2);
+
+ SaveMulAcc(9, 3, 7);
+ MulAcc(4, 6);
+ MulAcc(5, 5);
+ MulAcc(6, 4);
+ MulAcc(7, 3);
+
+ SaveMulAcc(10, 4, 7);
+ MulAcc(5, 6);
+ MulAcc(6, 5);
+ MulAcc(7, 4);
+
+ SaveMulAcc(11, 5, 7);
+ MulAcc(6, 6);
+ MulAcc(7, 5);
+
+ SaveMulAcc(12, 6, 7);
+ MulAcc(7, 6);
+
+ R[13] = c;
+ p = (dword)A[7] * B[7] + d;
+ R[14] = LOW_WORD(p);
+ R[15] = e + HIGH_WORD(p);
+}
+
+static void CombaMultiplyBottom4(word *R, const word *A, const word *B)
+{
+ dword p;
+ word c, d, e;
+
+ p = (dword)A[0] * B[0];
+ R[0] = LOW_WORD(p);
+ c = HIGH_WORD(p);
+ d = e = 0;
+
+ MulAcc(0, 1);
+ MulAcc(1, 0);
+
+ SaveMulAcc(1, 2, 0);
+ MulAcc(1, 1);
+ MulAcc(0, 2);
+
+ R[2] = c;
+ R[3] = d + A[0] * B[3] + A[1] * B[2] + A[2] * B[1] + A[3] * B[0];
+}
+
+static void CombaMultiplyBottom8(word *R, const word *A, const word *B)
+{
+ dword p;
+ word c, d, e;
+
+ p = (dword)A[0] * B[0];
+ R[0] = LOW_WORD(p);
+ c = HIGH_WORD(p);
+ d = e = 0;
+
+ MulAcc(0, 1);
+ MulAcc(1, 0);
+
+ SaveMulAcc(1, 2, 0);
+ MulAcc(1, 1);
+ MulAcc(0, 2);
+
+ SaveMulAcc(2, 0, 3);
+ MulAcc(1, 2);
+ MulAcc(2, 1);
+ MulAcc(3, 0);
+
+ SaveMulAcc(3, 0, 4);
+ MulAcc(1, 3);
+ MulAcc(2, 2);
+ MulAcc(3, 1);
+ MulAcc(4, 0);
+
+ SaveMulAcc(4, 0, 5);
+ MulAcc(1, 4);
+ MulAcc(2, 3);
+ MulAcc(3, 2);
+ MulAcc(4, 1);
+ MulAcc(5, 0);
+
+ SaveMulAcc(5, 0, 6);
+ MulAcc(1, 5);
+ MulAcc(2, 4);
+ MulAcc(3, 3);
+ MulAcc(4, 2);
+ MulAcc(5, 1);
+ MulAcc(6, 0);
+
+ R[6] = c;
+ R[7] = d + A[0] * B[7] + A[1] * B[6] + A[2] * B[5] + A[3] * B[4] +
+ A[4] * B[3] + A[5] * B[2] + A[6] * B[1] + A[7] * B[0];
+}
+
+#undef MulAcc
+#undef SaveMulAcc
+static void AtomicInverseModPower2(word *C, word A0, word A1)
+{
+ assert(A0%2==1);
+
+ dword A=MAKE_DWORD(A0, A1), R=A0%8;
+
+ for (unsigned i=3; i<2*WORD_BITS; i*=2)
+ R = R*(2-R*A);
+
+ assert(R*A==1);
+
+ C[0] = LOW_WORD(R);
+ C[1] = HIGH_WORD(R);
+}
+// ********************************************************
+
+#define A0 A
+#define A1 (A+N2)
+#define B0 B
+#define B1 (B+N2)
+
+#define T0 T
+#define T1 (T+N2)
+#define T2 (T+N)
+#define T3 (T+N+N2)
+
+#define R0 R
+#define R1 (R+N2)
+#define R2 (R+N)
+#define R3 (R+N+N2)
+
+// R[2*N] - result = A*B
+// T[2*N] - temporary work space
+// A[N] --- multiplier
+// B[N] --- multiplicant
+
+void RecursiveMultiply(word *R, word *T, const word *A, const word *B, unsigned int N)
+{
+ assert(N>=2 && N%2==0);
+
+ if (N==2)
+ AtomicMultiply(R, A, B);
+ else if (N==4)
+ CombaMultiply4(R, A, B);
+ else if (N==8)
+ CombaMultiply8(R, A, B);
+ else
+ {
+ const unsigned int N2 = N/2;
+ int carry;
+
+ int aComp = Compare(A0, A1, N2);
+ int bComp = Compare(B0, B1, N2);
+
+ switch (2*aComp + aComp + bComp)
+ {
+ case -4:
+ Subtract(R0, A1, A0, N2);
+ Subtract(R1, B0, B1, N2);
+ RecursiveMultiply(T0, T2, R0, R1, N2);
+ Subtract(T1, T1, R0, N2);
+ carry = -1;
+ break;
+ case -2:
+ Subtract(R0, A1, A0, N2);
+ Subtract(R1, B0, B1, N2);
+ RecursiveMultiply(T0, T2, R0, R1, N2);
+ carry = 0;
+ break;
+ case 2:
+ Subtract(R0, A0, A1, N2);
+ Subtract(R1, B1, B0, N2);
+ RecursiveMultiply(T0, T2, R0, R1, N2);
+ carry = 0;
+ break;
+ case 4:
+ Subtract(R0, A1, A0, N2);
+ Subtract(R1, B0, B1, N2);
+ RecursiveMultiply(T0, T2, R0, R1, N2);
+ Subtract(T1, T1, R1, N2);
+ carry = -1;
+ break;
+ default:
+ SetWords(T0, 0, N);
+ carry = 0;
+ }
+
+ RecursiveMultiply(R0, T2, A0, B0, N2);
+ RecursiveMultiply(R2, T2, A1, B1, N2);
+
+ // now T[01] holds (A1-A0)*(B0-B1), R[01] holds A0*B0, R[23] holds A1*B1
+
+ carry += Add(T0, T0, R0, N);
+ carry += Add(T0, T0, R2, N);
+ carry += Add(R1, R1, T0, N);
+
+ assert (carry >= 0 && carry <= 2);
+ Increment(R3, N2, carry);
+ }
+}
+
+// R[2*N] - result = A*A
+// T[2*N] - temporary work space
+// A[N] --- number to be squared
+
+void RecursiveSquare(word *R, word *T, const word *A, unsigned int N)
+{
+ assert(N && N%2==0);
+
+ if (N==2)
+ AtomicMultiply(R, A, A);
+ else if (N==4)
+ {
+ // VC60 workaround: MSVC 6.0 has an optimization problem that makes
+ // (dword)A*B where either A or B has been cast to a dword before
+ // very expensive. Revisit a CombaSquare4() function when this
+ // problem is fixed.
+
+// WARNING: KeithR. 05/08/03 This routine doesn't work with gcc on hardware
+// either. I've completely removed it. It may be worth looking into sometime
+// in the future. Therefore, we use the CombaMultiply4 on all targets.
+//#ifdef __WINS__
+ CombaMultiply4(R, A, A);
+/*#else
+ CombaSquare4(R, A);
+#endif*/
+ }
+ else
+ {
+ const unsigned int N2 = N/2;
+
+ RecursiveSquare(R0, T2, A0, N2);
+ RecursiveSquare(R2, T2, A1, N2);
+ RecursiveMultiply(T0, T2, A0, A1, N2);
+
+ word carry = Add(R1, R1, T0, N);
+ carry += Add(R1, R1, T0, N);
+ Increment(R3, N2, carry);
+ }
+}
+// R[N] - bottom half of A*B
+// T[N] - temporary work space
+// A[N] - multiplier
+// B[N] - multiplicant
+
+void RecursiveMultiplyBottom(word *R, word *T, const word *A, const word *B, unsigned int N)
+{
+ assert(N>=2 && N%2==0);
+
+ if (N==2)
+ AtomicMultiplyBottom(R, A, B);
+ else if (N==4)
+ CombaMultiplyBottom4(R, A, B);
+ else if (N==8)
+ CombaMultiplyBottom8(R, A, B);
+ else
+ {
+ const unsigned int N2 = N/2;
+
+ RecursiveMultiply(R, T, A0, B0, N2);
+ RecursiveMultiplyBottom(T0, T1, A1, B0, N2);
+ Add(R1, R1, T0, N2);
+ RecursiveMultiplyBottom(T0, T1, A0, B1, N2);
+ Add(R1, R1, T0, N2);
+ }
+}
+
+// R[N] --- upper half of A*B
+// T[2*N] - temporary work space
+// L[N] --- lower half of A*B
+// A[N] --- multiplier
+// B[N] --- multiplicant
+
+void RecursiveMultiplyTop(word *R, word *T, const word *L, const word *A, const word *B, unsigned int N)
+{
+ assert(N>=2 && N%2==0);
+
+ if (N==2)
+ {
+ AtomicMultiply(T, A, B);
+ ((dword *)R)[0] = ((dword *)T)[1];
+ }
+ else if (N==4)
+ {
+ CombaMultiply4(T, A, B);
+ ((dword *)R)[0] = ((dword *)T)[2];
+ ((dword *)R)[1] = ((dword *)T)[3];
+ }
+ else
+ {
+ const unsigned int N2 = N/2;
+ int carry;
+
+ int aComp = Compare(A0, A1, N2);
+ int bComp = Compare(B0, B1, N2);
+
+ switch (2*aComp + aComp + bComp)
+ {
+ case -4:
+ Subtract(R0, A1, A0, N2);
+ Subtract(R1, B0, B1, N2);
+ RecursiveMultiply(T0, T2, R0, R1, N2);
+ Subtract(T1, T1, R0, N2);
+ carry = -1;
+ break;
+ case -2:
+ Subtract(R0, A1, A0, N2);
+ Subtract(R1, B0, B1, N2);
+ RecursiveMultiply(T0, T2, R0, R1, N2);
+ carry = 0;
+ break;
+ case 2:
+ Subtract(R0, A0, A1, N2);
+ Subtract(R1, B1, B0, N2);
+ RecursiveMultiply(T0, T2, R0, R1, N2);
+ carry = 0;
+ break;
+ case 4:
+ Subtract(R0, A1, A0, N2);
+ Subtract(R1, B0, B1, N2);
+ RecursiveMultiply(T0, T2, R0, R1, N2);
+ Subtract(T1, T1, R1, N2);
+ carry = -1;
+ break;
+ default:
+ SetWords(T0, 0, N);
+ carry = 0;
+ }
+
+ RecursiveMultiply(T2, R0, A1, B1, N2);
+
+ // now T[01] holds (A1-A0)*(B0-B1), T[23] holds A1*B1
+
+ CopyWords(R0, L+N2, N2);
+ word c2 = Subtract(R0, R0, L, N2);
+ c2 += Subtract(R0, R0, T0, N2);
+ word t = (Compare(R0, T2, N2) == -1);
+
+ carry += t;
+ carry += Increment(R0, N2, c2+t);
+ carry += Add(R0, R0, T1, N2);
+ carry += Add(R0, R0, T3, N2);
+
+ CopyWords(R1, T3, N2);
+ assert (carry >= 0 && carry <= 2);
+ Increment(R1, N2, carry);
+ }
+}
+
+// R[NA+NB] - result = A*B
+// T[NA+NB] - temporary work space
+// A[NA] ---- multiplier
+// B[NB] ---- multiplicant
+
+void AsymmetricMultiply(word *R, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB)
+{
+ if (NA == NB)
+ {
+ if (A == B)
+ RecursiveSquare(R, T, A, NA);
+ else
+ RecursiveMultiply(R, T, A, B, NA);
+
+ return;
+ }
+
+ if (NA > NB)
+ {
+ TClassSwap(A, B);
+ TClassSwap(NA, NB);
+ //std::swap(A, B);
+ //std::swap(NA, NB);
+ }
+
+ assert(NB % NA == 0);
+ assert((NB/NA)%2 == 0); // NB is an even multiple of NA
+
+ if (NA==2 && !A[1])
+ {
+ switch (A[0])
+ {
+ case 0:
+ SetWords(R, 0, NB+2);
+ return;
+ case 1:
+ CopyWords(R, B, NB);
+ R[NB] = R[NB+1] = 0;
+ return;
+ default:
+ R[NB] = LinearMultiply(R, B, A[0], NB);
+ R[NB+1] = 0;
+ return;
+ }
+ }
+
+ RecursiveMultiply(R, T, A, B, NA);
+ CopyWords(T+2*NA, R+NA, NA);
+
+ unsigned i;
+
+ for (i=2*NA; i<NB; i+=2*NA)
+ RecursiveMultiply(T+NA+i, T, A, B+i, NA);
+ for (i=NA; i<NB; i+=2*NA)
+ RecursiveMultiply(R+i, T, A, B+i, NA);
+
+ if (Add(R+NA, R+NA, T+2*NA, NB-NA))
+ Increment(R+NB, NA);
+}
+// R[N] ----- result = A inverse mod 2**(WORD_BITS*N)
+// T[3*N/2] - temporary work space
+// A[N] ----- an odd number as input
+
+void RecursiveInverseModPower2(word *R, word *T, const word *A, unsigned int N)
+{
+ if (N==2)
+ AtomicInverseModPower2(R, A[0], A[1]);
+ else
+ {
+ const unsigned int N2 = N/2;
+ RecursiveInverseModPower2(R0, T0, A0, N2);
+ T0[0] = 1;
+ SetWords(T0+1, 0, N2-1);
+ RecursiveMultiplyTop(R1, T1, T0, R0, A0, N2);
+ RecursiveMultiplyBottom(T0, T1, R0, A1, N2);
+ Add(T0, R1, T0, N2);
+ TwosComplement(T0, N2);
+ RecursiveMultiplyBottom(R1, T1, R0, T0, N2);
+ }
+}
+#undef A0
+#undef A1
+#undef B0
+#undef B1
+
+#undef T0
+#undef T1
+#undef T2
+#undef T3
+
+#undef R0
+#undef R1
+#undef R2
+#undef R3
+
+// R[N] --- result = X/(2**(WORD_BITS*N)) mod M
+// T[3*N] - temporary work space
+// X[2*N] - number to be reduced
+// M[N] --- modulus
+// U[N] --- multiplicative inverse of M mod 2**(WORD_BITS*N)
+
+void MontgomeryReduce(word *R, word *T, const word *X, const word *M, const word *U, unsigned int N)
+{
+ RecursiveMultiplyBottom(R, T, X, U, N);
+ RecursiveMultiplyTop(T, T+N, X, R, M, N);
+ if (Subtract(R, X+N, T, N))
+ {
+#ifdef _DEBUG
+ word carry = Add(R, R, M, N);
+ assert(carry);
+#else
+ Add(R, R, M, N);
+#endif
+ }
+}
+
+// do a 3 word by 2 word divide, returns quotient and leaves remainder in A
+static word SubatomicDivide(word *A, word B0, word B1)
+{
+ // assert {A[2],A[1]} < {B1,B0}, so quotient can fit in a word
+ assert(A[2] < B1 || (A[2]==B1 && A[1] < B0));
+
+ dword p, u;
+ word Q;
+
+ // estimate the quotient: do a 2 word by 1 word divide
+ if (B1+1 == 0)
+ Q = A[2];
+ else
+ Q = word(MAKE_DWORD(A[1], A[2]) / (B1+1));
+
+ // now subtract Q*B from A
+ p = (dword) B0*Q;
+ u = (dword) A[0] - LOW_WORD(p);
+ A[0] = LOW_WORD(u);
+ u = (dword) A[1] - HIGH_WORD(p) - (word)(0-HIGH_WORD(u)) - (dword)B1*Q;
+ A[1] = LOW_WORD(u);
+ A[2] += HIGH_WORD(u);
+
+ // Q <= actual quotient, so fix it
+ while (A[2] || A[1] > B1 || (A[1]==B1 && A[0]>=B0))
+ {
+ u = (dword) A[0] - B0;
+ A[0] = LOW_WORD(u);
+ u = (dword) A[1] - B1 - (word)(0-HIGH_WORD(u));
+ A[1] = LOW_WORD(u);
+ A[2] += HIGH_WORD(u);
+ Q++;
+ assert(Q); // shouldn't overflow
+ }
+
+ return Q;
+}
+
+// do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1
+static inline void AtomicDivide(word *Q, const word *A, const word *B)
+{
+ if (!B[0] && !B[1]) // if divisor is 0, we assume divisor==2**(2*WORD_BITS)
+ {
+ Q[0] = A[2];
+ Q[1] = A[3];
+ }
+ else
+ {
+ word T[4];
+ T[0] = A[0]; T[1] = A[1]; T[2] = A[2]; T[3] = A[3];
+ Q[1] = SubatomicDivide(T+1, B[0], B[1]);
+ Q[0] = SubatomicDivide(T, B[0], B[1]);
+
+#ifdef _DEBUG
+ // multiply quotient and divisor and add remainder, make sure it equals dividend
+ assert(!T[2] && !T[3] && (T[1] < B[1] || (T[1]==B[1] && T[0]<B[0])));
+ word P[4];
+ AtomicMultiply(P, Q, B);
+ Add(P, P, T, 4);
+ assert(Mem::Compare((TUint8*)P, 4*WORD_SIZE, (TUint8*)A, 4*WORD_SIZE)==0);
+#endif
+ }
+}
+
+// for use by Divide(), corrects the underestimated quotient {Q1,Q0}
+static void CorrectQuotientEstimate(word *R, word *T, word *Q, const word *B, unsigned int N)
+{
+ assert(N && N%2==0);
+
+ if (Q[1])
+ {
+ T[N] = T[N+1] = 0;
+ unsigned i;
+ for (i=0; i<N; i+=4)
+ AtomicMultiply(T+i, Q, B+i);
+ for (i=2; i<N; i+=4)
+ if (AtomicMultiplyAdd(T+i, Q, B+i))
+ T[i+5] += (++T[i+4]==0);
+ }
+ else
+ {
+ T[N] = LinearMultiply(T, B, Q[0], N);
+ T[N+1] = 0;
+ }
+
+#ifdef _DEBUG
+ word borrow = Subtract(R, R, T, N+2);
+ assert(!borrow && !R[N+1]);
+#else
+ Subtract(R, R, T, N+2);
+#endif
+
+ while (R[N] || Compare(R, B, N) >= 0)
+ {
+ R[N] -= Subtract(R, R, B, N);
+ Q[1] += (++Q[0]==0);
+ assert(Q[0] || Q[1]); // no overflow
+ }
+}
+
+// R[NB] -------- remainder = A%B
+// Q[NA-NB+2] --- quotient = A/B
+// T[NA+2*NB+4] - temp work space
+// A[NA] -------- dividend
+// B[NB] -------- divisor
+
+void Divide(word *R, word *Q, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB)
+{
+ assert(NA && NB && NA%2==0 && NB%2==0);
+ assert(B[NB-1] || B[NB-2]);
+ assert(NB <= NA);
+
+ // set up temporary work space
+ word *const TA=T;
+ word *const TB=T+NA+2;
+ word *const TP=T+NA+2+NB;
+
+ // copy B into TB and normalize it so that TB has highest bit set to 1
+ unsigned shiftWords = (B[NB-1]==0);
+ TB[0] = TB[NB-1] = 0;
+ CopyWords(TB+shiftWords, B, NB-shiftWords);
+ unsigned shiftBits = WORD_BITS - BitPrecision(TB[NB-1]);
+ assert(shiftBits < WORD_BITS);
+ ShiftWordsLeftByBits(TB, NB, shiftBits);
+
+ // copy A into TA and normalize it
+ TA[0] = TA[NA] = TA[NA+1] = 0;
+ CopyWords(TA+shiftWords, A, NA);
+ ShiftWordsLeftByBits(TA, NA+2, shiftBits);
+
+ if (TA[NA+1]==0 && TA[NA] <= 1)
+ {
+ Q[NA-NB+1] = Q[NA-NB] = 0;
+ while (TA[NA] || Compare(TA+NA-NB, TB, NB) >= 0)
+ {
+ TA[NA] -= Subtract(TA+NA-NB, TA+NA-NB, TB, NB);
+ ++Q[NA-NB];
+ }
+ }
+ else
+ {
+ NA+=2;
+ assert(Compare(TA+NA-NB, TB, NB) < 0);
+ }
+
+ word BT[2];
+ BT[0] = TB[NB-2] + 1;
+ BT[1] = TB[NB-1] + (BT[0]==0);
+
+ // start reducing TA mod TB, 2 words at a time
+ for (unsigned i=NA-2; i>=NB; i-=2)
+ {
+ AtomicDivide(Q+i-NB, TA+i-2, BT);
+ CorrectQuotientEstimate(TA+i-NB, TP, Q+i-NB, TB, NB);
+ }
+
+ // copy TA into R, and denormalize it
+ CopyWords(R, TA+shiftWords, NB);
+ ShiftWordsRightByBits(R, NB, shiftBits);
+}
+
+static inline unsigned int EvenWordCount(const word *X, unsigned int N)
+{
+ while (N && X[N-2]==0 && X[N-1]==0)
+ N-=2;
+ return N;
+}
+
+// return k
+// R[N] --- result = A^(-1) * 2^k mod M
+// T[4*N] - temporary work space
+// A[NA] -- number to take inverse of
+// M[N] --- modulus
+
+unsigned int AlmostInverse(word *R, word *T, const word *A, unsigned int NA, const word *M, unsigned int N)
+{
+ assert(NA<=N && N && N%2==0);
+
+ word *b = T;
+ word *c = T+N;
+ word *f = T+2*N;
+ word *g = T+3*N;
+ unsigned int bcLen=2, fgLen=EvenWordCount(M, N);
+ unsigned int k=0, s=0;
+
+ SetWords(T, 0, 3*N);
+ b[0]=1;
+ CopyWords(f, A, NA);
+ CopyWords(g, M, N);
+
+ FOREVER
+ {
+ word t=f[0];
+ while (!t)
+ {
+ if (EvenWordCount(f, fgLen)==0)
+ {
+ SetWords(R, 0, N);
+ return 0;
+ }
+
+ ShiftWordsRightByWords(f, fgLen, 1);
+ if (c[bcLen-1]) bcLen+=2;
+ assert(bcLen <= N);
+ ShiftWordsLeftByWords(c, bcLen, 1);
+ k+=WORD_BITS;
+ t=f[0];
+ }
+
+ unsigned int i=0;
+ while (t%2 == 0)
+ {
+ t>>=1;
+ i++;
+ }
+ k+=i;
+
+ if (t==1 && f[1]==0 && EvenWordCount(f, fgLen)==2)
+ {
+ if (s%2==0)
+ CopyWords(R, b, N);
+ else
+ Subtract(R, M, b, N);
+ return k;
+ }
+
+ ShiftWordsRightByBits(f, fgLen, i);
+ t=ShiftWordsLeftByBits(c, bcLen, i);
+ if (t)
+ {
+ c[bcLen] = t;
+ bcLen+=2;
+ assert(bcLen <= N);
+ }
+
+ if (f[fgLen-2]==0 && g[fgLen-2]==0 && f[fgLen-1]==0 && g[fgLen-1]==0)
+ fgLen-=2;
+
+ if (Compare(f, g, fgLen)==-1)
+ {
+ TClassSwap<word*>(f,g);
+ TClassSwap<word*>(b,c);
+ s++;
+ }
+
+ Subtract(f, f, g, fgLen);
+
+ if (Add(b, b, c, bcLen))
+ {
+ b[bcLen] = 1;
+ bcLen+=2;
+ assert(bcLen <= N);
+ }
+ }
+}
+
+// R[N] - result = A/(2^k) mod M
+// A[N] - input
+// M[N] - modulus
+
+void DivideByPower2Mod(word *R, const word *A, unsigned int k, const word *M, unsigned int N)
+{
+ CopyWords(R, A, N);
+
+ while (k--)
+ {
+ if (R[0]%2==0)
+ ShiftWordsRightByBits(R, N, 1);
+ else
+ {
+ word carry = Add(R, R, M, N);
+ ShiftWordsRightByBits(R, N, 1);
+ R[N-1] += carry<<(WORD_BITS-1);
+ }
+ }
+}
+