2
|
1 |
/*
|
|
2 |
** 2007 October 14
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** This file contains the C functions that implement a memory
|
|
13 |
** allocation subsystem for use by SQLite.
|
|
14 |
**
|
|
15 |
** This version of the memory allocation subsystem omits all
|
|
16 |
** use of malloc(). All dynamically allocatable memory is
|
|
17 |
** contained in a static array, mem.aPool[]. The size of this
|
|
18 |
** fixed memory pool is SQLITE_MEMORY_SIZE bytes.
|
|
19 |
**
|
|
20 |
** This version of the memory allocation subsystem is used if
|
|
21 |
** and only if SQLITE_MEMORY_SIZE is defined.
|
|
22 |
**
|
|
23 |
** $Id: mem3.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
24 |
*/
|
|
25 |
|
|
26 |
/*
|
|
27 |
** This version of the memory allocator is used only when
|
|
28 |
** SQLITE_MEMORY_SIZE is defined.
|
|
29 |
*/
|
|
30 |
#if defined(SQLITE_MEMORY_SIZE)
|
|
31 |
#include "sqliteInt.h"
|
|
32 |
|
|
33 |
#ifdef SQLITE_MEMDEBUG
|
|
34 |
# error cannot define both SQLITE_MEMDEBUG and SQLITE_MEMORY_SIZE
|
|
35 |
#endif
|
|
36 |
|
|
37 |
/*
|
|
38 |
** Maximum size (in Mem3Blocks) of a "small" chunk.
|
|
39 |
*/
|
|
40 |
#define MX_SMALL 10
|
|
41 |
|
|
42 |
|
|
43 |
/*
|
|
44 |
** Number of freelist hash slots
|
|
45 |
*/
|
|
46 |
#define N_HASH 61
|
|
47 |
|
|
48 |
/*
|
|
49 |
** A memory allocation (also called a "chunk") consists of two or
|
|
50 |
** more blocks where each block is 8 bytes. The first 8 bytes are
|
|
51 |
** a header that is not returned to the user.
|
|
52 |
**
|
|
53 |
** A chunk is two or more blocks that is either checked out or
|
|
54 |
** free. The first block has format u.hdr. u.hdr.size is the
|
|
55 |
** size of the allocation in blocks if the allocation is free.
|
|
56 |
** If the allocation is checked out, u.hdr.size is the negative
|
|
57 |
** of the size. Similarly, u.hdr.prevSize is the size of the
|
|
58 |
** immediately previous allocation.
|
|
59 |
**
|
|
60 |
** We often identify a chunk by its index in mem.aPool[]. When
|
|
61 |
** this is done, the chunk index refers to the second block of
|
|
62 |
** the chunk. In this way, the first chunk has an index of 1.
|
|
63 |
** A chunk index of 0 means "no such chunk" and is the equivalent
|
|
64 |
** of a NULL pointer.
|
|
65 |
**
|
|
66 |
** The second block of free chunks is of the form u.list. The
|
|
67 |
** two fields form a double-linked list of chunks of related sizes.
|
|
68 |
** Pointers to the head of the list are stored in mem.aiSmall[]
|
|
69 |
** for smaller chunks and mem.aiHash[] for larger chunks.
|
|
70 |
**
|
|
71 |
** The second block of a chunk is user data if the chunk is checked
|
|
72 |
** out.
|
|
73 |
*/
|
|
74 |
typedef struct Mem3Block Mem3Block;
|
|
75 |
struct Mem3Block {
|
|
76 |
union {
|
|
77 |
struct {
|
|
78 |
int prevSize; /* Size of previous chunk in Mem3Block elements */
|
|
79 |
int size; /* Size of current chunk in Mem3Block elements */
|
|
80 |
} hdr;
|
|
81 |
struct {
|
|
82 |
int next; /* Index in mem.aPool[] of next free chunk */
|
|
83 |
int prev; /* Index in mem.aPool[] of previous free chunk */
|
|
84 |
} list;
|
|
85 |
} u;
|
|
86 |
};
|
|
87 |
|
|
88 |
/*
|
|
89 |
** All of the static variables used by this module are collected
|
|
90 |
** into a single structure named "mem". This is to keep the
|
|
91 |
** static variables organized and to reduce namespace pollution
|
|
92 |
** when this module is combined with other in the amalgamation.
|
|
93 |
*/
|
|
94 |
static struct {
|
|
95 |
/*
|
|
96 |
** True if we are evaluating an out-of-memory callback.
|
|
97 |
*/
|
|
98 |
int alarmBusy;
|
|
99 |
|
|
100 |
/*
|
|
101 |
** Mutex to control access to the memory allocation subsystem.
|
|
102 |
*/
|
|
103 |
sqlite3_mutex *mutex;
|
|
104 |
|
|
105 |
/*
|
|
106 |
** The minimum amount of free space that we have seen.
|
|
107 |
*/
|
|
108 |
int mnMaster;
|
|
109 |
|
|
110 |
/*
|
|
111 |
** iMaster is the index of the master chunk. Most new allocations
|
|
112 |
** occur off of this chunk. szMaster is the size (in Mem3Blocks)
|
|
113 |
** of the current master. iMaster is 0 if there is not master chunk.
|
|
114 |
** The master chunk is not in either the aiHash[] or aiSmall[].
|
|
115 |
*/
|
|
116 |
int iMaster;
|
|
117 |
int szMaster;
|
|
118 |
|
|
119 |
/*
|
|
120 |
** Array of lists of free blocks according to the block size
|
|
121 |
** for smaller chunks, or a hash on the block size for larger
|
|
122 |
** chunks.
|
|
123 |
*/
|
|
124 |
int aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */
|
|
125 |
int aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */
|
|
126 |
|
|
127 |
/*
|
|
128 |
** Memory available for allocation
|
|
129 |
*/
|
|
130 |
Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2];
|
|
131 |
} mem;
|
|
132 |
|
|
133 |
/*
|
|
134 |
** Unlink the chunk at mem.aPool[i] from list it is currently
|
|
135 |
** on. *pRoot is the list that i is a member of.
|
|
136 |
*/
|
|
137 |
static void memsys3UnlinkFromList(int i, int *pRoot){
|
|
138 |
int next = mem.aPool[i].u.list.next;
|
|
139 |
int prev = mem.aPool[i].u.list.prev;
|
|
140 |
assert( sqlite3_mutex_held(mem.mutex) );
|
|
141 |
if( prev==0 ){
|
|
142 |
*pRoot = next;
|
|
143 |
}else{
|
|
144 |
mem.aPool[prev].u.list.next = next;
|
|
145 |
}
|
|
146 |
if( next ){
|
|
147 |
mem.aPool[next].u.list.prev = prev;
|
|
148 |
}
|
|
149 |
mem.aPool[i].u.list.next = 0;
|
|
150 |
mem.aPool[i].u.list.prev = 0;
|
|
151 |
}
|
|
152 |
|
|
153 |
/*
|
|
154 |
** Unlink the chunk at index i from
|
|
155 |
** whatever list is currently a member of.
|
|
156 |
*/
|
|
157 |
static void memsys3Unlink(int i){
|
|
158 |
int size, hash;
|
|
159 |
assert( sqlite3_mutex_held(mem.mutex) );
|
|
160 |
size = mem.aPool[i-1].u.hdr.size;
|
|
161 |
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
|
|
162 |
assert( size>=2 );
|
|
163 |
if( size <= MX_SMALL ){
|
|
164 |
memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
|
|
165 |
}else{
|
|
166 |
hash = size % N_HASH;
|
|
167 |
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
|
|
168 |
}
|
|
169 |
}
|
|
170 |
|
|
171 |
/*
|
|
172 |
** Link the chunk at mem.aPool[i] so that is on the list rooted
|
|
173 |
** at *pRoot.
|
|
174 |
*/
|
|
175 |
static void memsys3LinkIntoList(int i, int *pRoot){
|
|
176 |
assert( sqlite3_mutex_held(mem.mutex) );
|
|
177 |
mem.aPool[i].u.list.next = *pRoot;
|
|
178 |
mem.aPool[i].u.list.prev = 0;
|
|
179 |
if( *pRoot ){
|
|
180 |
mem.aPool[*pRoot].u.list.prev = i;
|
|
181 |
}
|
|
182 |
*pRoot = i;
|
|
183 |
}
|
|
184 |
|
|
185 |
/*
|
|
186 |
** Link the chunk at index i into either the appropriate
|
|
187 |
** small chunk list, or into the large chunk hash table.
|
|
188 |
*/
|
|
189 |
static void memsys3Link(int i){
|
|
190 |
int size, hash;
|
|
191 |
assert( sqlite3_mutex_held(mem.mutex) );
|
|
192 |
size = mem.aPool[i-1].u.hdr.size;
|
|
193 |
assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
|
|
194 |
assert( size>=2 );
|
|
195 |
if( size <= MX_SMALL ){
|
|
196 |
memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
|
|
197 |
}else{
|
|
198 |
hash = size % N_HASH;
|
|
199 |
memsys3LinkIntoList(i, &mem.aiHash[hash]);
|
|
200 |
}
|
|
201 |
}
|
|
202 |
|
|
203 |
/*
|
|
204 |
** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
|
|
205 |
**
|
|
206 |
** Also: Initialize the memory allocation subsystem the first time
|
|
207 |
** this routine is called.
|
|
208 |
*/
|
|
209 |
static void memsys3Enter(void){
|
|
210 |
if( mem.mutex==0 ){
|
|
211 |
mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
|
|
212 |
mem.aPool[0].u.hdr.size = SQLITE_MEMORY_SIZE/8;
|
|
213 |
mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_MEMORY_SIZE/8;
|
|
214 |
mem.iMaster = 1;
|
|
215 |
mem.szMaster = SQLITE_MEMORY_SIZE/8;
|
|
216 |
mem.mnMaster = mem.szMaster;
|
|
217 |
}
|
|
218 |
sqlite3_mutex_enter(mem.mutex);
|
|
219 |
}
|
|
220 |
|
|
221 |
/*
|
|
222 |
** Return the amount of memory currently checked out.
|
|
223 |
*/
|
|
224 |
sqlite3_int64 sqlite3_memory_used(void){
|
|
225 |
sqlite3_int64 n;
|
|
226 |
memsys3Enter();
|
|
227 |
n = SQLITE_MEMORY_SIZE - mem.szMaster*8;
|
|
228 |
sqlite3_mutex_leave(mem.mutex);
|
|
229 |
return n;
|
|
230 |
}
|
|
231 |
|
|
232 |
/*
|
|
233 |
** Return the maximum amount of memory that has ever been
|
|
234 |
** checked out since either the beginning of this process
|
|
235 |
** or since the most recent reset.
|
|
236 |
*/
|
|
237 |
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
|
238 |
sqlite3_int64 n;
|
|
239 |
memsys3Enter();
|
|
240 |
n = SQLITE_MEMORY_SIZE - mem.mnMaster*8;
|
|
241 |
if( resetFlag ){
|
|
242 |
mem.mnMaster = mem.szMaster;
|
|
243 |
}
|
|
244 |
sqlite3_mutex_leave(mem.mutex);
|
|
245 |
return n;
|
|
246 |
}
|
|
247 |
|
|
248 |
/*
|
|
249 |
** Change the alarm callback.
|
|
250 |
**
|
|
251 |
** This is a no-op for the static memory allocator. The purpose
|
|
252 |
** of the memory alarm is to support sqlite3_soft_heap_limit().
|
|
253 |
** But with this memory allocator, the soft_heap_limit is really
|
|
254 |
** a hard limit that is fixed at SQLITE_MEMORY_SIZE.
|
|
255 |
*/
|
|
256 |
int sqlite3_memory_alarm(
|
|
257 |
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
|
|
258 |
void *pArg,
|
|
259 |
sqlite3_int64 iThreshold
|
|
260 |
){
|
|
261 |
return SQLITE_OK;
|
|
262 |
}
|
|
263 |
|
|
264 |
/*
|
|
265 |
** Called when we are unable to satisfy an allocation of nBytes.
|
|
266 |
*/
|
|
267 |
static void memsys3OutOfMemory(int nByte){
|
|
268 |
if( !mem.alarmBusy ){
|
|
269 |
mem.alarmBusy = 1;
|
|
270 |
assert( sqlite3_mutex_held(mem.mutex) );
|
|
271 |
sqlite3_mutex_leave(mem.mutex);
|
|
272 |
sqlite3_release_memory(nByte);
|
|
273 |
sqlite3_mutex_enter(mem.mutex);
|
|
274 |
mem.alarmBusy = 0;
|
|
275 |
}
|
|
276 |
}
|
|
277 |
|
|
278 |
/*
|
|
279 |
** Return the size of an outstanding allocation, in bytes. The
|
|
280 |
** size returned omits the 8-byte header overhead. This only
|
|
281 |
** works for chunks that are currently checked out.
|
|
282 |
*/
|
|
283 |
static int memsys3Size(void *p){
|
|
284 |
Mem3Block *pBlock = (Mem3Block*)p;
|
|
285 |
assert( pBlock[-1].u.hdr.size<0 );
|
|
286 |
return (-1-pBlock[-1].u.hdr.size)*8;
|
|
287 |
}
|
|
288 |
|
|
289 |
/*
|
|
290 |
** Chunk i is a free chunk that has been unlinked. Adjust its
|
|
291 |
** size parameters for check-out and return a pointer to the
|
|
292 |
** user portion of the chunk.
|
|
293 |
*/
|
|
294 |
static void *memsys3Checkout(int i, int nBlock){
|
|
295 |
assert( sqlite3_mutex_held(mem.mutex) );
|
|
296 |
assert( mem.aPool[i-1].u.hdr.size==nBlock );
|
|
297 |
assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
|
|
298 |
mem.aPool[i-1].u.hdr.size = -nBlock;
|
|
299 |
mem.aPool[i+nBlock-1].u.hdr.prevSize = -nBlock;
|
|
300 |
return &mem.aPool[i];
|
|
301 |
}
|
|
302 |
|
|
303 |
/*
|
|
304 |
** Carve a piece off of the end of the mem.iMaster free chunk.
|
|
305 |
** Return a pointer to the new allocation. Or, if the master chunk
|
|
306 |
** is not large enough, return 0.
|
|
307 |
*/
|
|
308 |
static void *memsys3FromMaster(int nBlock){
|
|
309 |
assert( sqlite3_mutex_held(mem.mutex) );
|
|
310 |
assert( mem.szMaster>=nBlock );
|
|
311 |
if( nBlock>=mem.szMaster-1 ){
|
|
312 |
/* Use the entire master */
|
|
313 |
void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
|
|
314 |
mem.iMaster = 0;
|
|
315 |
mem.szMaster = 0;
|
|
316 |
mem.mnMaster = 0;
|
|
317 |
return p;
|
|
318 |
}else{
|
|
319 |
/* Split the master block. Return the tail. */
|
|
320 |
int newi;
|
|
321 |
newi = mem.iMaster + mem.szMaster - nBlock;
|
|
322 |
assert( newi > mem.iMaster+1 );
|
|
323 |
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = -nBlock;
|
|
324 |
mem.aPool[newi-1].u.hdr.size = -nBlock;
|
|
325 |
mem.szMaster -= nBlock;
|
|
326 |
mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
|
|
327 |
mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster;
|
|
328 |
if( mem.szMaster < mem.mnMaster ){
|
|
329 |
mem.mnMaster = mem.szMaster;
|
|
330 |
}
|
|
331 |
return (void*)&mem.aPool[newi];
|
|
332 |
}
|
|
333 |
}
|
|
334 |
|
|
335 |
/*
|
|
336 |
** *pRoot is the head of a list of free chunks of the same size
|
|
337 |
** or same size hash. In other words, *pRoot is an entry in either
|
|
338 |
** mem.aiSmall[] or mem.aiHash[].
|
|
339 |
**
|
|
340 |
** This routine examines all entries on the given list and tries
|
|
341 |
** to coalesce each entries with adjacent free chunks.
|
|
342 |
**
|
|
343 |
** If it sees a chunk that is larger than mem.iMaster, it replaces
|
|
344 |
** the current mem.iMaster with the new larger chunk. In order for
|
|
345 |
** this mem.iMaster replacement to work, the master chunk must be
|
|
346 |
** linked into the hash tables. That is not the normal state of
|
|
347 |
** affairs, of course. The calling routine must link the master
|
|
348 |
** chunk before invoking this routine, then must unlink the (possibly
|
|
349 |
** changed) master chunk once this routine has finished.
|
|
350 |
*/
|
|
351 |
static void memsys3Merge(int *pRoot){
|
|
352 |
int iNext, prev, size, i;
|
|
353 |
|
|
354 |
assert( sqlite3_mutex_held(mem.mutex) );
|
|
355 |
for(i=*pRoot; i>0; i=iNext){
|
|
356 |
iNext = mem.aPool[i].u.list.next;
|
|
357 |
size = mem.aPool[i-1].u.hdr.size;
|
|
358 |
assert( size>0 );
|
|
359 |
if( mem.aPool[i-1].u.hdr.prevSize>0 ){
|
|
360 |
memsys3UnlinkFromList(i, pRoot);
|
|
361 |
prev = i - mem.aPool[i-1].u.hdr.prevSize;
|
|
362 |
assert( prev>=0 );
|
|
363 |
if( prev==iNext ){
|
|
364 |
iNext = mem.aPool[prev].u.list.next;
|
|
365 |
}
|
|
366 |
memsys3Unlink(prev);
|
|
367 |
size = i + size - prev;
|
|
368 |
mem.aPool[prev-1].u.hdr.size = size;
|
|
369 |
mem.aPool[prev+size-1].u.hdr.prevSize = size;
|
|
370 |
memsys3Link(prev);
|
|
371 |
i = prev;
|
|
372 |
}
|
|
373 |
if( size>mem.szMaster ){
|
|
374 |
mem.iMaster = i;
|
|
375 |
mem.szMaster = size;
|
|
376 |
}
|
|
377 |
}
|
|
378 |
}
|
|
379 |
|
|
380 |
/*
|
|
381 |
** Return a block of memory of at least nBytes in size.
|
|
382 |
** Return NULL if unable.
|
|
383 |
*/
|
|
384 |
static void *memsys3Malloc(int nByte){
|
|
385 |
int i;
|
|
386 |
int nBlock;
|
|
387 |
int toFree;
|
|
388 |
|
|
389 |
assert( sqlite3_mutex_held(mem.mutex) );
|
|
390 |
assert( sizeof(Mem3Block)==8 );
|
|
391 |
if( nByte<=0 ){
|
|
392 |
nBlock = 2;
|
|
393 |
}else{
|
|
394 |
nBlock = (nByte + 15)/8;
|
|
395 |
}
|
|
396 |
assert( nBlock >= 2 );
|
|
397 |
|
|
398 |
/* STEP 1:
|
|
399 |
** Look for an entry of the correct size in either the small
|
|
400 |
** chunk table or in the large chunk hash table. This is
|
|
401 |
** successful most of the time (about 9 times out of 10).
|
|
402 |
*/
|
|
403 |
if( nBlock <= MX_SMALL ){
|
|
404 |
i = mem.aiSmall[nBlock-2];
|
|
405 |
if( i>0 ){
|
|
406 |
memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
|
|
407 |
return memsys3Checkout(i, nBlock);
|
|
408 |
}
|
|
409 |
}else{
|
|
410 |
int hash = nBlock % N_HASH;
|
|
411 |
for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
|
|
412 |
if( mem.aPool[i-1].u.hdr.size==nBlock ){
|
|
413 |
memsys3UnlinkFromList(i, &mem.aiHash[hash]);
|
|
414 |
return memsys3Checkout(i, nBlock);
|
|
415 |
}
|
|
416 |
}
|
|
417 |
}
|
|
418 |
|
|
419 |
/* STEP 2:
|
|
420 |
** Try to satisfy the allocation by carving a piece off of the end
|
|
421 |
** of the master chunk. This step usually works if step 1 fails.
|
|
422 |
*/
|
|
423 |
if( mem.szMaster>=nBlock ){
|
|
424 |
return memsys3FromMaster(nBlock);
|
|
425 |
}
|
|
426 |
|
|
427 |
|
|
428 |
/* STEP 3:
|
|
429 |
** Loop through the entire memory pool. Coalesce adjacent free
|
|
430 |
** chunks. Recompute the master chunk as the largest free chunk.
|
|
431 |
** Then try again to satisfy the allocation by carving a piece off
|
|
432 |
** of the end of the master chunk. This step happens very
|
|
433 |
** rarely (we hope!)
|
|
434 |
*/
|
|
435 |
for(toFree=nBlock*16; toFree<SQLITE_MEMORY_SIZE*2; toFree *= 2){
|
|
436 |
memsys3OutOfMemory(toFree);
|
|
437 |
if( mem.iMaster ){
|
|
438 |
memsys3Link(mem.iMaster);
|
|
439 |
mem.iMaster = 0;
|
|
440 |
mem.szMaster = 0;
|
|
441 |
}
|
|
442 |
for(i=0; i<N_HASH; i++){
|
|
443 |
memsys3Merge(&mem.aiHash[i]);
|
|
444 |
}
|
|
445 |
for(i=0; i<MX_SMALL-1; i++){
|
|
446 |
memsys3Merge(&mem.aiSmall[i]);
|
|
447 |
}
|
|
448 |
if( mem.szMaster ){
|
|
449 |
memsys3Unlink(mem.iMaster);
|
|
450 |
if( mem.szMaster>=nBlock ){
|
|
451 |
return memsys3FromMaster(nBlock);
|
|
452 |
}
|
|
453 |
}
|
|
454 |
}
|
|
455 |
|
|
456 |
/* If none of the above worked, then we fail. */
|
|
457 |
return 0;
|
|
458 |
}
|
|
459 |
|
|
460 |
/*
|
|
461 |
** Free an outstanding memory allocation.
|
|
462 |
*/
|
|
463 |
void memsys3Free(void *pOld){
|
|
464 |
Mem3Block *p = (Mem3Block*)pOld;
|
|
465 |
int i;
|
|
466 |
int size;
|
|
467 |
assert( sqlite3_mutex_held(mem.mutex) );
|
|
468 |
assert( p>mem.aPool && p<&mem.aPool[SQLITE_MEMORY_SIZE/8] );
|
|
469 |
i = p - mem.aPool;
|
|
470 |
size = -mem.aPool[i-1].u.hdr.size;
|
|
471 |
assert( size>=2 );
|
|
472 |
assert( mem.aPool[i+size-1].u.hdr.prevSize==-size );
|
|
473 |
mem.aPool[i-1].u.hdr.size = size;
|
|
474 |
mem.aPool[i+size-1].u.hdr.prevSize = size;
|
|
475 |
memsys3Link(i);
|
|
476 |
|
|
477 |
/* Try to expand the master using the newly freed chunk */
|
|
478 |
if( mem.iMaster ){
|
|
479 |
while( mem.aPool[mem.iMaster-1].u.hdr.prevSize>0 ){
|
|
480 |
size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
|
|
481 |
mem.iMaster -= size;
|
|
482 |
mem.szMaster += size;
|
|
483 |
memsys3Unlink(mem.iMaster);
|
|
484 |
mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster;
|
|
485 |
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
|
|
486 |
}
|
|
487 |
while( mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size>0 ){
|
|
488 |
memsys3Unlink(mem.iMaster+mem.szMaster);
|
|
489 |
mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size;
|
|
490 |
mem.aPool[mem.iMaster-1].u.hdr.size = mem.szMaster;
|
|
491 |
mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
|
|
492 |
}
|
|
493 |
}
|
|
494 |
}
|
|
495 |
|
|
496 |
/*
|
|
497 |
** Allocate nBytes of memory
|
|
498 |
*/
|
|
499 |
void *sqlite3_malloc(int nBytes){
|
|
500 |
sqlite3_int64 *p = 0;
|
|
501 |
if( nBytes>0 ){
|
|
502 |
memsys3Enter();
|
|
503 |
p = memsys3Malloc(nBytes);
|
|
504 |
sqlite3_mutex_leave(mem.mutex);
|
|
505 |
}
|
|
506 |
return (void*)p;
|
|
507 |
}
|
|
508 |
|
|
509 |
/*
|
|
510 |
** Free memory.
|
|
511 |
*/
|
|
512 |
void sqlite3_free(void *pPrior){
|
|
513 |
if( pPrior==0 ){
|
|
514 |
return;
|
|
515 |
}
|
|
516 |
assert( mem.mutex!=0 );
|
|
517 |
sqlite3_mutex_enter(mem.mutex);
|
|
518 |
memsys3Free(pPrior);
|
|
519 |
sqlite3_mutex_leave(mem.mutex);
|
|
520 |
}
|
|
521 |
|
|
522 |
/*
|
|
523 |
** Change the size of an existing memory allocation
|
|
524 |
*/
|
|
525 |
void *sqlite3_realloc(void *pPrior, int nBytes){
|
|
526 |
int nOld;
|
|
527 |
void *p;
|
|
528 |
if( pPrior==0 ){
|
|
529 |
return sqlite3_malloc(nBytes);
|
|
530 |
}
|
|
531 |
if( nBytes<=0 ){
|
|
532 |
sqlite3_free(pPrior);
|
|
533 |
return 0;
|
|
534 |
}
|
|
535 |
assert( mem.mutex!=0 );
|
|
536 |
nOld = memsys3Size(pPrior);
|
|
537 |
if( nBytes<=nOld && nBytes>=nOld-128 ){
|
|
538 |
return pPrior;
|
|
539 |
}
|
|
540 |
sqlite3_mutex_enter(mem.mutex);
|
|
541 |
p = memsys3Malloc(nBytes);
|
|
542 |
if( p ){
|
|
543 |
if( nOld<nBytes ){
|
|
544 |
memcpy(p, pPrior, nOld);
|
|
545 |
}else{
|
|
546 |
memcpy(p, pPrior, nBytes);
|
|
547 |
}
|
|
548 |
memsys3Free(pPrior);
|
|
549 |
}
|
|
550 |
sqlite3_mutex_leave(mem.mutex);
|
|
551 |
return p;
|
|
552 |
}
|
|
553 |
|
|
554 |
/*
|
|
555 |
** Open the file indicated and write a log of all unfreed memory
|
|
556 |
** allocations into that log.
|
|
557 |
*/
|
|
558 |
void sqlite3_memdebug_dump(const char *zFilename){
|
|
559 |
#ifdef SQLITE_DEBUG
|
|
560 |
FILE *out;
|
|
561 |
int i, j, size;
|
|
562 |
if( zFilename==0 || zFilename[0]==0 ){
|
|
563 |
out = stdout;
|
|
564 |
}else{
|
|
565 |
out = fopen(zFilename, "w");
|
|
566 |
if( out==0 ){
|
|
567 |
fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
|
|
568 |
zFilename);
|
|
569 |
return;
|
|
570 |
}
|
|
571 |
}
|
|
572 |
memsys3Enter();
|
|
573 |
fprintf(out, "CHUNKS:\n");
|
|
574 |
for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size){
|
|
575 |
size = mem.aPool[i-1].u.hdr.size;
|
|
576 |
if( size>=-1 && size<=1 ){
|
|
577 |
fprintf(out, "%p size error\n", &mem.aPool[i]);
|
|
578 |
assert( 0 );
|
|
579 |
break;
|
|
580 |
}
|
|
581 |
if( mem.aPool[i+(size<0?-size:size)-1].u.hdr.prevSize!=size ){
|
|
582 |
fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
|
|
583 |
assert( 0 );
|
|
584 |
break;
|
|
585 |
}
|
|
586 |
if( size<0 ){
|
|
587 |
size = -size;
|
|
588 |
fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], size*8-8);
|
|
589 |
}else{
|
|
590 |
fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], size*8-8,
|
|
591 |
i==mem.iMaster ? " **master**" : "");
|
|
592 |
}
|
|
593 |
}
|
|
594 |
for(i=0; i<MX_SMALL-1; i++){
|
|
595 |
if( mem.aiSmall[i]==0 ) continue;
|
|
596 |
fprintf(out, "small(%2d):", i);
|
|
597 |
for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
|
|
598 |
fprintf(out, " %p(%d)", &mem.aPool[j], mem.aPool[j-1].u.hdr.size*8-8);
|
|
599 |
}
|
|
600 |
fprintf(out, "\n");
|
|
601 |
}
|
|
602 |
for(i=0; i<N_HASH; i++){
|
|
603 |
if( mem.aiHash[i]==0 ) continue;
|
|
604 |
fprintf(out, "hash(%2d):", i);
|
|
605 |
for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
|
|
606 |
fprintf(out, " %p(%d)", &mem.aPool[j], mem.aPool[j-1].u.hdr.size*8-8);
|
|
607 |
}
|
|
608 |
fprintf(out, "\n");
|
|
609 |
}
|
|
610 |
fprintf(out, "master=%d\n", mem.iMaster);
|
|
611 |
fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem.szMaster*8);
|
|
612 |
fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem.mnMaster*8);
|
|
613 |
sqlite3_mutex_leave(mem.mutex);
|
|
614 |
if( out==stdout ){
|
|
615 |
fflush(stdout);
|
|
616 |
}else{
|
|
617 |
fclose(out);
|
|
618 |
}
|
|
619 |
#endif
|
|
620 |
}
|
|
621 |
|
|
622 |
|
|
623 |
#endif /* !SQLITE_MEMORY_SIZE */
|