2
|
1 |
/*
|
|
2 |
** 2004 April 13
|
|
3 |
**
|
|
4 |
** The author disclaims copyright to this source code. In place of
|
|
5 |
** a legal notice, here is a blessing:
|
|
6 |
**
|
|
7 |
** May you do good and not evil.
|
|
8 |
** May you find forgiveness for yourself and forgive others.
|
|
9 |
** May you share freely, never taking more than you give.
|
|
10 |
**
|
|
11 |
*************************************************************************
|
|
12 |
** This file contains routines used to translate between UTF-8,
|
|
13 |
** UTF-16, UTF-16BE, and UTF-16LE.
|
|
14 |
**
|
|
15 |
** $Id: utf.cpp 1282 2008-11-13 09:31:33Z LarsPson $
|
|
16 |
**
|
|
17 |
** Notes on UTF-8:
|
|
18 |
**
|
|
19 |
** Byte-0 Byte-1 Byte-2 Byte-3 Value
|
|
20 |
** 0xxxxxxx 00000000 00000000 0xxxxxxx
|
|
21 |
** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
|
|
22 |
** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
|
|
23 |
** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
|
|
24 |
**
|
|
25 |
**
|
|
26 |
** Notes on UTF-16: (with wwww+1==uuuuu)
|
|
27 |
**
|
|
28 |
** Word-0 Word-1 Value
|
|
29 |
** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
|
|
30 |
** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
|
|
31 |
**
|
|
32 |
**
|
|
33 |
** BOM or Byte Order Mark:
|
|
34 |
** 0xff 0xfe little-endian utf-16 follows
|
|
35 |
** 0xfe 0xff big-endian utf-16 follows
|
|
36 |
**
|
|
37 |
*/
|
|
38 |
#include "sqliteInt.h"
|
|
39 |
#include <assert.h>
|
|
40 |
#include "vdbeInt.h"
|
|
41 |
|
|
42 |
/*
|
|
43 |
** The following constant value is used by the SQLITE_BIGENDIAN and
|
|
44 |
** SQLITE_LITTLEENDIAN macros.
|
|
45 |
*/
|
|
46 |
const int sqlite3one = 1;
|
|
47 |
|
|
48 |
/*
|
|
49 |
** This lookup table is used to help decode the first byte of
|
|
50 |
** a multi-byte UTF8 character.
|
|
51 |
*/
|
|
52 |
static const unsigned char sqlite3UtfTrans1[] = {
|
|
53 |
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
54 |
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
55 |
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
56 |
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
|
57 |
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
58 |
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
59 |
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
60 |
0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
|
|
61 |
};
|
|
62 |
|
|
63 |
|
|
64 |
#define WRITE_UTF8(zOut, c) { \
|
|
65 |
if( c<0x00080 ){ \
|
|
66 |
*zOut++ = (c&0xFF); \
|
|
67 |
} \
|
|
68 |
else if( c<0x00800 ){ \
|
|
69 |
*zOut++ = 0xC0 + ((c>>6)&0x1F); \
|
|
70 |
*zOut++ = 0x80 + (c & 0x3F); \
|
|
71 |
} \
|
|
72 |
else if( c<0x10000 ){ \
|
|
73 |
*zOut++ = 0xE0 + ((c>>12)&0x0F); \
|
|
74 |
*zOut++ = 0x80 + ((c>>6) & 0x3F); \
|
|
75 |
*zOut++ = 0x80 + (c & 0x3F); \
|
|
76 |
}else{ \
|
|
77 |
*zOut++ = 0xF0 + ((c>>18) & 0x07); \
|
|
78 |
*zOut++ = 0x80 + ((c>>12) & 0x3F); \
|
|
79 |
*zOut++ = 0x80 + ((c>>6) & 0x3F); \
|
|
80 |
*zOut++ = 0x80 + (c & 0x3F); \
|
|
81 |
} \
|
|
82 |
}
|
|
83 |
|
|
84 |
#define WRITE_UTF16LE(zOut, c) { \
|
|
85 |
if( c<=0xFFFF ){ \
|
|
86 |
*zOut++ = (c&0x00FF); \
|
|
87 |
*zOut++ = ((c>>8)&0x00FF); \
|
|
88 |
}else{ \
|
|
89 |
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
|
90 |
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
|
91 |
*zOut++ = (c&0x00FF); \
|
|
92 |
*zOut++ = (0x00DC + ((c>>8)&0x03)); \
|
|
93 |
} \
|
|
94 |
}
|
|
95 |
|
|
96 |
#define WRITE_UTF16BE(zOut, c) { \
|
|
97 |
if( c<=0xFFFF ){ \
|
|
98 |
*zOut++ = ((c>>8)&0x00FF); \
|
|
99 |
*zOut++ = (c&0x00FF); \
|
|
100 |
}else{ \
|
|
101 |
*zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
|
102 |
*zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
|
103 |
*zOut++ = (0x00DC + ((c>>8)&0x03)); \
|
|
104 |
*zOut++ = (c&0x00FF); \
|
|
105 |
} \
|
|
106 |
}
|
|
107 |
|
|
108 |
#define READ_UTF16LE(zIn, c){ \
|
|
109 |
c = (*zIn++); \
|
|
110 |
c += ((*zIn++)<<8); \
|
|
111 |
if( c>=0xD800 && c<0xE000 ){ \
|
|
112 |
int c2 = (*zIn++); \
|
|
113 |
c2 += ((*zIn++)<<8); \
|
|
114 |
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
|
|
115 |
if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
|
|
116 |
} \
|
|
117 |
}
|
|
118 |
|
|
119 |
#define READ_UTF16BE(zIn, c){ \
|
|
120 |
c = ((*zIn++)<<8); \
|
|
121 |
c += (*zIn++); \
|
|
122 |
if( c>=0xD800 && c<0xE000 ){ \
|
|
123 |
int c2 = ((*zIn++)<<8); \
|
|
124 |
c2 += (*zIn++); \
|
|
125 |
c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
|
|
126 |
if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \
|
|
127 |
} \
|
|
128 |
}
|
|
129 |
|
|
130 |
/*
|
|
131 |
** Translate a single UTF-8 character. Return the unicode value.
|
|
132 |
**
|
|
133 |
** During translation, assume that the byte that zTerm points
|
|
134 |
** is a 0x00.
|
|
135 |
**
|
|
136 |
** Write a pointer to the next unread byte back into *pzNext.
|
|
137 |
**
|
|
138 |
** Notes On Invalid UTF-8:
|
|
139 |
**
|
|
140 |
** * This routine never allows a 7-bit character (0x00 through 0x7f) to
|
|
141 |
** be encoded as a multi-byte character. Any multi-byte character that
|
|
142 |
** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
|
|
143 |
**
|
|
144 |
** * This routine never allows a UTF16 surrogate value to be encoded.
|
|
145 |
** If a multi-byte character attempts to encode a value between
|
|
146 |
** 0xd800 and 0xe000 then it is rendered as 0xfffd.
|
|
147 |
**
|
|
148 |
** * Bytes in the range of 0x80 through 0xbf which occur as the first
|
|
149 |
** byte of a character are interpreted as single-byte characters
|
|
150 |
** and rendered as themselves even though they are technically
|
|
151 |
** invalid characters.
|
|
152 |
**
|
|
153 |
** * This routine accepts an infinite number of different UTF8 encodings
|
|
154 |
** for unicode values 0x80 and greater. It do not change over-length
|
|
155 |
** encodings to 0xfffd as some systems recommend.
|
|
156 |
*/
|
|
157 |
int sqlite3Utf8Read(
|
|
158 |
const unsigned char *z, /* First byte of UTF-8 character */
|
|
159 |
const unsigned char *zTerm, /* Pretend this byte is 0x00 */
|
|
160 |
const unsigned char **pzNext /* Write first byte past UTF-8 char here */
|
|
161 |
){
|
|
162 |
int c = *(z++);
|
|
163 |
if( c>=0xc0 ){
|
|
164 |
c = sqlite3UtfTrans1[c-0xc0];
|
|
165 |
while( z!=zTerm && (*z & 0xc0)==0x80 ){
|
|
166 |
c = (c<<6) + (0x3f & *(z++));
|
|
167 |
}
|
|
168 |
if( c<0x80
|
|
169 |
|| (c&0xFFFFF800)==0xD800
|
|
170 |
|| (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
|
|
171 |
}
|
|
172 |
*pzNext = z;
|
|
173 |
return c;
|
|
174 |
}
|
|
175 |
|
|
176 |
|
|
177 |
|
|
178 |
/*
|
|
179 |
** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
|
|
180 |
** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
|
|
181 |
*/
|
|
182 |
/* #define TRANSLATE_TRACE 1 */
|
|
183 |
|
|
184 |
#ifndef SQLITE_OMIT_UTF16
|
|
185 |
/*
|
|
186 |
** This routine transforms the internal text encoding used by pMem to
|
|
187 |
** desiredEnc. It is an error if the string is already of the desired
|
|
188 |
** encoding, or if *pMem does not contain a string value.
|
|
189 |
*/
|
|
190 |
int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
|
191 |
unsigned char zShort[NBFS]; /* Temporary short output buffer */
|
|
192 |
int len; /* Maximum length of output string in bytes */
|
|
193 |
unsigned char *zOut; /* Output buffer */
|
|
194 |
unsigned char *zIn; /* Input iterator */
|
|
195 |
unsigned char *zTerm; /* End of input */
|
|
196 |
unsigned char *z; /* Output iterator */
|
|
197 |
unsigned int c;
|
|
198 |
|
|
199 |
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
200 |
assert( pMem->flags&MEM_Str );
|
|
201 |
assert( pMem->enc!=desiredEnc );
|
|
202 |
assert( pMem->enc!=0 );
|
|
203 |
assert( pMem->n>=0 );
|
|
204 |
|
|
205 |
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
|
206 |
{
|
|
207 |
char zBuf[100];
|
|
208 |
sqlite3VdbeMemPrettyPrint(pMem, zBuf);
|
|
209 |
fprintf(stderr, "INPUT: %s\n", zBuf);
|
|
210 |
}
|
|
211 |
#endif
|
|
212 |
|
|
213 |
/* If the translation is between UTF-16 little and big endian, then
|
|
214 |
** all that is required is to swap the byte order. This case is handled
|
|
215 |
** differently from the others.
|
|
216 |
*/
|
|
217 |
if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
|
|
218 |
u8 temp;
|
|
219 |
int rc;
|
|
220 |
rc = sqlite3VdbeMemMakeWriteable(pMem);
|
|
221 |
if( rc!=SQLITE_OK ){
|
|
222 |
assert( rc==SQLITE_NOMEM );
|
|
223 |
return SQLITE_NOMEM;
|
|
224 |
}
|
|
225 |
zIn = (u8*)pMem->z;
|
|
226 |
zTerm = &zIn[pMem->n];
|
|
227 |
while( zIn<zTerm ){
|
|
228 |
temp = *zIn;
|
|
229 |
*zIn = *(zIn+1);
|
|
230 |
zIn++;
|
|
231 |
*zIn++ = temp;
|
|
232 |
}
|
|
233 |
pMem->enc = desiredEnc;
|
|
234 |
goto translate_out;
|
|
235 |
}
|
|
236 |
|
|
237 |
/* Set len to the maximum number of bytes required in the output buffer. */
|
|
238 |
if( desiredEnc==SQLITE_UTF8 ){
|
|
239 |
/* When converting from UTF-16, the maximum growth results from
|
|
240 |
** translating a 2-byte character to a 4-byte UTF-8 character.
|
|
241 |
** A single byte is required for the output string
|
|
242 |
** nul-terminator.
|
|
243 |
*/
|
|
244 |
len = pMem->n * 2 + 1;
|
|
245 |
}else{
|
|
246 |
/* When converting from UTF-8 to UTF-16 the maximum growth is caused
|
|
247 |
** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
|
|
248 |
** character. Two bytes are required in the output buffer for the
|
|
249 |
** nul-terminator.
|
|
250 |
*/
|
|
251 |
len = pMem->n * 2 + 2;
|
|
252 |
}
|
|
253 |
|
|
254 |
/* Set zIn to point at the start of the input buffer and zTerm to point 1
|
|
255 |
** byte past the end.
|
|
256 |
**
|
|
257 |
** Variable zOut is set to point at the output buffer. This may be space
|
|
258 |
** obtained from sqlite3_malloc(), or Mem.zShort, if it large enough and
|
|
259 |
** not in use, or the zShort array on the stack (see above).
|
|
260 |
*/
|
|
261 |
zIn = (u8*)pMem->z;
|
|
262 |
zTerm = &zIn[pMem->n];
|
|
263 |
if( len>NBFS ){
|
|
264 |
zOut = (unsigned char*)sqlite3DbMallocRaw(pMem->db, len);
|
|
265 |
if( !zOut ){
|
|
266 |
return SQLITE_NOMEM;
|
|
267 |
}
|
|
268 |
}else{
|
|
269 |
zOut = zShort;
|
|
270 |
}
|
|
271 |
z = zOut;
|
|
272 |
|
|
273 |
if( pMem->enc==SQLITE_UTF8 ){
|
|
274 |
if( desiredEnc==SQLITE_UTF16LE ){
|
|
275 |
/* UTF-8 -> UTF-16 Little-endian */
|
|
276 |
while( zIn<zTerm ){
|
|
277 |
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
|
|
278 |
WRITE_UTF16LE(z, c);
|
|
279 |
}
|
|
280 |
}else{
|
|
281 |
assert( desiredEnc==SQLITE_UTF16BE );
|
|
282 |
/* UTF-8 -> UTF-16 Big-endian */
|
|
283 |
while( zIn<zTerm ){
|
|
284 |
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
|
|
285 |
WRITE_UTF16BE(z, c);
|
|
286 |
}
|
|
287 |
}
|
|
288 |
pMem->n = z - zOut;
|
|
289 |
*z++ = 0;
|
|
290 |
}else{
|
|
291 |
assert( desiredEnc==SQLITE_UTF8 );
|
|
292 |
if( pMem->enc==SQLITE_UTF16LE ){
|
|
293 |
/* UTF-16 Little-endian -> UTF-8 */
|
|
294 |
while( zIn<zTerm ){
|
|
295 |
READ_UTF16LE(zIn, c);
|
|
296 |
WRITE_UTF8(z, c);
|
|
297 |
}
|
|
298 |
}else{
|
|
299 |
/* UTF-16 Little-endian -> UTF-8 */
|
|
300 |
while( zIn<zTerm ){
|
|
301 |
READ_UTF16BE(zIn, c);
|
|
302 |
WRITE_UTF8(z, c);
|
|
303 |
}
|
|
304 |
}
|
|
305 |
pMem->n = z - zOut;
|
|
306 |
}
|
|
307 |
*z = 0;
|
|
308 |
assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
|
|
309 |
|
|
310 |
sqlite3VdbeMemRelease(pMem);
|
|
311 |
pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
|
|
312 |
pMem->enc = desiredEnc;
|
|
313 |
if( zOut==zShort ){
|
|
314 |
memcpy(pMem->zShort, zOut, len);
|
|
315 |
zOut = (u8*)pMem->zShort;
|
|
316 |
pMem->flags |= (MEM_Term|MEM_Short);
|
|
317 |
}else{
|
|
318 |
pMem->flags |= (MEM_Term|MEM_Dyn);
|
|
319 |
}
|
|
320 |
pMem->z = (char*)zOut;
|
|
321 |
|
|
322 |
translate_out:
|
|
323 |
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
|
324 |
{
|
|
325 |
char zBuf[100];
|
|
326 |
sqlite3VdbeMemPrettyPrint(pMem, zBuf);
|
|
327 |
fprintf(stderr, "OUTPUT: %s\n", zBuf);
|
|
328 |
}
|
|
329 |
#endif
|
|
330 |
return SQLITE_OK;
|
|
331 |
}
|
|
332 |
|
|
333 |
/*
|
|
334 |
** This routine checks for a byte-order mark at the beginning of the
|
|
335 |
** UTF-16 string stored in *pMem. If one is present, it is removed and
|
|
336 |
** the encoding of the Mem adjusted. This routine does not do any
|
|
337 |
** byte-swapping, it just sets Mem.enc appropriately.
|
|
338 |
**
|
|
339 |
** The allocation (static, dynamic etc.) and encoding of the Mem may be
|
|
340 |
** changed by this function.
|
|
341 |
*/
|
|
342 |
int sqlite3VdbeMemHandleBom(Mem *pMem){
|
|
343 |
int rc = SQLITE_OK;
|
|
344 |
u8 bom = 0;
|
|
345 |
|
|
346 |
if( pMem->n<0 || pMem->n>1 ){
|
|
347 |
u8 b1 = *(u8 *)pMem->z;
|
|
348 |
u8 b2 = *(((u8 *)pMem->z) + 1);
|
|
349 |
if( b1==0xFE && b2==0xFF ){
|
|
350 |
bom = SQLITE_UTF16BE;
|
|
351 |
}
|
|
352 |
if( b1==0xFF && b2==0xFE ){
|
|
353 |
bom = SQLITE_UTF16LE;
|
|
354 |
}
|
|
355 |
}
|
|
356 |
|
|
357 |
if( bom ){
|
|
358 |
/* This function is called as soon as a string is stored in a Mem*,
|
|
359 |
** from within sqlite3VdbeMemSetStr(). At that point it is not possible
|
|
360 |
** for the string to be stored in Mem.zShort, or for it to be stored
|
|
361 |
** in dynamic memory with no destructor.
|
|
362 |
*/
|
|
363 |
assert( !(pMem->flags&MEM_Short) );
|
|
364 |
assert( !(pMem->flags&MEM_Dyn) || pMem->xDel );
|
|
365 |
if( pMem->flags & MEM_Dyn ){
|
|
366 |
void (*xDel)(void*) = pMem->xDel;
|
|
367 |
char *z = pMem->z;
|
|
368 |
pMem->z = 0;
|
|
369 |
pMem->xDel = 0;
|
|
370 |
rc = sqlite3VdbeMemSetStr(pMem, &z[2], pMem->n-2, bom,
|
|
371 |
SQLITE_TRANSIENT);
|
|
372 |
xDel(z);
|
|
373 |
}else{
|
|
374 |
rc = sqlite3VdbeMemSetStr(pMem, &pMem->z[2], pMem->n-2, bom,
|
|
375 |
SQLITE_TRANSIENT);
|
|
376 |
}
|
|
377 |
}
|
|
378 |
return rc;
|
|
379 |
}
|
|
380 |
#endif /* SQLITE_OMIT_UTF16 */
|
|
381 |
|
|
382 |
/*
|
|
383 |
** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
|
|
384 |
** return the number of unicode characters in pZ up to (but not including)
|
|
385 |
** the first 0x00 byte. If nByte is not less than zero, return the
|
|
386 |
** number of unicode characters in the first nByte of pZ (or up to
|
|
387 |
** the first 0x00, whichever comes first).
|
|
388 |
*/
|
|
389 |
int sqlite3Utf8CharLen(const char *zIn, int nByte){
|
|
390 |
int r = 0;
|
|
391 |
const u8 *z = (const u8*)zIn;
|
|
392 |
const u8 *zTerm;
|
|
393 |
if( nByte>=0 ){
|
|
394 |
zTerm = &z[nByte];
|
|
395 |
}else{
|
|
396 |
zTerm = (const u8*)(-1);
|
|
397 |
}
|
|
398 |
assert( z<=zTerm );
|
|
399 |
while( *z!=0 && z<zTerm ){
|
|
400 |
SQLITE_SKIP_UTF8(z);
|
|
401 |
r++;
|
|
402 |
}
|
|
403 |
return r;
|
|
404 |
}
|
|
405 |
|
|
406 |
/* This test function is not currently used by the automated test-suite.
|
|
407 |
** Hence it is only available in debug builds.
|
|
408 |
*/
|
|
409 |
#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
|
|
410 |
/*
|
|
411 |
** Translate UTF-8 to UTF-8.
|
|
412 |
**
|
|
413 |
** This has the effect of making sure that the string is well-formed
|
|
414 |
** UTF-8. Miscoded characters are removed.
|
|
415 |
**
|
|
416 |
** The translation is done in-place (since it is impossible for the
|
|
417 |
** correct UTF-8 encoding to be longer than a malformed encoding).
|
|
418 |
*/
|
|
419 |
int sqlite3Utf8To8(unsigned char *zIn){
|
|
420 |
unsigned char *zOut = zIn;
|
|
421 |
unsigned char *zStart = zIn;
|
|
422 |
unsigned char *zTerm;
|
|
423 |
u32 c;
|
|
424 |
|
|
425 |
while( zIn[0] ){
|
|
426 |
c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
|
|
427 |
if( c!=0xfffd ){
|
|
428 |
WRITE_UTF8(zOut, c);
|
|
429 |
}
|
|
430 |
}
|
|
431 |
*zOut = 0;
|
|
432 |
return zOut - zStart;
|
|
433 |
}
|
|
434 |
#endif
|
|
435 |
|
|
436 |
#ifndef SQLITE_OMIT_UTF16
|
|
437 |
/*
|
|
438 |
** Convert a UTF-16 string in the native encoding into a UTF-8 string.
|
|
439 |
** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
|
|
440 |
** be freed by the calling function.
|
|
441 |
**
|
|
442 |
** NULL is returned if there is an allocation error.
|
|
443 |
*/
|
|
444 |
char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
|
|
445 |
Mem m;
|
|
446 |
memset(&m, 0, sizeof(m));
|
|
447 |
m.db = db;
|
|
448 |
sqlite3VdbeMemSetStr(&m, (const char*)z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
|
|
449 |
sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
|
|
450 |
if( db->mallocFailed ){
|
|
451 |
sqlite3VdbeMemRelease(&m);
|
|
452 |
m.z = 0;
|
|
453 |
}
|
|
454 |
assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
|
|
455 |
assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
|
|
456 |
return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
|
|
457 |
}
|
|
458 |
|
|
459 |
/*
|
|
460 |
** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
|
|
461 |
** return the number of bytes up to (but not including), the first pair
|
|
462 |
** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
|
|
463 |
** then return the number of bytes in the first nChar unicode characters
|
|
464 |
** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
|
|
465 |
*/
|
|
466 |
int sqlite3Utf16ByteLen(const void *zIn, int nChar){
|
|
467 |
unsigned int c = 1;
|
|
468 |
char const *z = (const char*)zIn;
|
|
469 |
int n = 0;
|
|
470 |
if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
|
|
471 |
/* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
|
|
472 |
** and in other parts of this file means that at one branch will
|
|
473 |
** not be covered by coverage testing on any single host. But coverage
|
|
474 |
** will be complete if the tests are run on both a little-endian and
|
|
475 |
** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
|
|
476 |
** macros are constant at compile time the compiler can determine
|
|
477 |
** which branch will be followed. It is therefore assumed that no runtime
|
|
478 |
** penalty is paid for this "if" statement.
|
|
479 |
*/
|
|
480 |
while( c && ((nChar<0) || n<nChar) ){
|
|
481 |
READ_UTF16BE(z, c);
|
|
482 |
n++;
|
|
483 |
}
|
|
484 |
}else{
|
|
485 |
while( c && ((nChar<0) || n<nChar) ){
|
|
486 |
READ_UTF16LE(z, c);
|
|
487 |
n++;
|
|
488 |
}
|
|
489 |
}
|
|
490 |
return (z-(char const *)zIn)-((c==0)?2:0);
|
|
491 |
}
|
|
492 |
|
|
493 |
#if defined(SQLITE_TEST)
|
|
494 |
/*
|
|
495 |
** This routine is called from the TCL test function "translate_selftest".
|
|
496 |
** It checks that the primitives for serializing and deserializing
|
|
497 |
** characters in each encoding are inverses of each other.
|
|
498 |
*/
|
|
499 |
void sqlite3UtfSelfTest(){
|
|
500 |
unsigned int i, t;
|
|
501 |
unsigned char zBuf[20];
|
|
502 |
unsigned char *z;
|
|
503 |
unsigned char *zTerm;
|
|
504 |
int n;
|
|
505 |
unsigned int c;
|
|
506 |
|
|
507 |
for(i=0; i<0x00110000; i++){
|
|
508 |
z = zBuf;
|
|
509 |
WRITE_UTF8(z, i);
|
|
510 |
n = z-zBuf;
|
|
511 |
z[0] = 0;
|
|
512 |
zTerm = z;
|
|
513 |
z = zBuf;
|
|
514 |
c = sqlite3Utf8Read(z, zTerm, (const u8**)&z);
|
|
515 |
t = i;
|
|
516 |
if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
|
|
517 |
if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
|
|
518 |
assert( c==t );
|
|
519 |
assert( (z-zBuf)==n );
|
|
520 |
}
|
|
521 |
for(i=0; i<0x00110000; i++){
|
|
522 |
if( i>=0xD800 && i<0xE000 ) continue;
|
|
523 |
z = zBuf;
|
|
524 |
WRITE_UTF16LE(z, i);
|
|
525 |
n = z-zBuf;
|
|
526 |
z[0] = 0;
|
|
527 |
z = zBuf;
|
|
528 |
READ_UTF16LE(z, c);
|
|
529 |
assert( c==i );
|
|
530 |
assert( (z-zBuf)==n );
|
|
531 |
}
|
|
532 |
for(i=0; i<0x00110000; i++){
|
|
533 |
if( i>=0xD800 && i<0xE000 ) continue;
|
|
534 |
z = zBuf;
|
|
535 |
WRITE_UTF16BE(z, i);
|
|
536 |
n = z-zBuf;
|
|
537 |
z[0] = 0;
|
|
538 |
z = zBuf;
|
|
539 |
READ_UTF16BE(z, c);
|
|
540 |
assert( c==i );
|
|
541 |
assert( (z-zBuf)==n );
|
|
542 |
}
|
|
543 |
}
|
|
544 |
#endif /* SQLITE_TEST */
|
|
545 |
#endif /* SQLITE_OMIT_UTF16 */
|