engine/sqlite/src/select.cpp
changeset 2 29cda98b007e
equal deleted inserted replaced
1:5f8e5adbbed9 2:29cda98b007e
       
     1 /*
       
     2 ** 2001 September 15
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** This file contains C code routines that are called by the parser
       
    13 ** to handle SELECT statements in SQLite.
       
    14 **
       
    15 ** $Id: select.cpp 1282 2008-11-13 09:31:33Z LarsPson $
       
    16 */
       
    17 #include "sqliteInt.h"
       
    18 
       
    19 
       
    20 /*
       
    21 ** Delete all the content of a Select structure but do not deallocate
       
    22 ** the select structure itself.
       
    23 */
       
    24 static void clearSelect(Select *p){
       
    25   sqlite3ExprListDelete(p->pEList);
       
    26   sqlite3SrcListDelete(p->pSrc);
       
    27   sqlite3ExprDelete(p->pWhere);
       
    28   sqlite3ExprListDelete(p->pGroupBy);
       
    29   sqlite3ExprDelete(p->pHaving);
       
    30   sqlite3ExprListDelete(p->pOrderBy);
       
    31   sqlite3SelectDelete(p->pPrior);
       
    32   sqlite3ExprDelete(p->pLimit);
       
    33   sqlite3ExprDelete(p->pOffset);
       
    34 }
       
    35 
       
    36 
       
    37 /*
       
    38 ** Allocate a new Select structure and return a pointer to that
       
    39 ** structure.
       
    40 */
       
    41 Select *sqlite3SelectNew(
       
    42   Parse *pParse,        /* Parsing context */
       
    43   ExprList *pEList,     /* which columns to include in the result */
       
    44   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
       
    45   Expr *pWhere,         /* the WHERE clause */
       
    46   ExprList *pGroupBy,   /* the GROUP BY clause */
       
    47   Expr *pHaving,        /* the HAVING clause */
       
    48   ExprList *pOrderBy,   /* the ORDER BY clause */
       
    49   int isDistinct,       /* true if the DISTINCT keyword is present */
       
    50   Expr *pLimit,         /* LIMIT value.  NULL means not used */
       
    51   Expr *pOffset         /* OFFSET value.  NULL means no offset */
       
    52 ){
       
    53   Select *pNew;
       
    54   Select standin;
       
    55   sqlite3 *db = pParse->db;
       
    56   pNew = (Select*)sqlite3DbMallocZero(db, sizeof(*pNew) );
       
    57   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
       
    58   if( pNew==0 ){
       
    59     pNew = &standin;
       
    60     memset(pNew, 0, sizeof(*pNew));
       
    61   }
       
    62   if( pEList==0 ){
       
    63     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
       
    64   }
       
    65   pNew->pEList = pEList;
       
    66   pNew->pSrc = pSrc;
       
    67   pNew->pWhere = pWhere;
       
    68   pNew->pGroupBy = pGroupBy;
       
    69   pNew->pHaving = pHaving;
       
    70   pNew->pOrderBy = pOrderBy;
       
    71   pNew->isDistinct = isDistinct;
       
    72   pNew->op = TK_SELECT;
       
    73   assert( pOffset==0 || pLimit!=0 );
       
    74   pNew->pLimit = pLimit;
       
    75   pNew->pOffset = pOffset;
       
    76   pNew->iLimit = -1;
       
    77   pNew->iOffset = -1;
       
    78   pNew->addrOpenEphm[0] = -1;
       
    79   pNew->addrOpenEphm[1] = -1;
       
    80   pNew->addrOpenEphm[2] = -1;
       
    81   if( pNew==&standin) {
       
    82     clearSelect(pNew);
       
    83     pNew = 0;
       
    84   }
       
    85   return pNew;
       
    86 }
       
    87 
       
    88 /*
       
    89 ** Delete the given Select structure and all of its substructures.
       
    90 */
       
    91 void sqlite3SelectDelete(Select *p){
       
    92   if( p ){
       
    93     clearSelect(p);
       
    94     sqlite3_free(p);
       
    95   }
       
    96 }
       
    97 
       
    98 /*
       
    99 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
       
   100 ** type of join.  Return an integer constant that expresses that type
       
   101 ** in terms of the following bit values:
       
   102 **
       
   103 **     JT_INNER
       
   104 **     JT_CROSS
       
   105 **     JT_OUTER
       
   106 **     JT_NATURAL
       
   107 **     JT_LEFT
       
   108 **     JT_RIGHT
       
   109 **
       
   110 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
       
   111 **
       
   112 ** If an illegal or unsupported join type is seen, then still return
       
   113 ** a join type, but put an error in the pParse structure.
       
   114 */
       
   115 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
       
   116   int jointype = 0;
       
   117   Token *apAll[3];
       
   118   Token *p;
       
   119   static const struct {
       
   120     const char zKeyword[8];
       
   121     u8 nChar;
       
   122     u8 code;
       
   123   } keywords[] = {
       
   124     { "natural", 7, JT_NATURAL },
       
   125     { "left",    4, JT_LEFT|JT_OUTER },
       
   126     { "right",   5, JT_RIGHT|JT_OUTER },
       
   127     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
       
   128     { "outer",   5, JT_OUTER },
       
   129     { "inner",   5, JT_INNER },
       
   130     { "cross",   5, JT_INNER|JT_CROSS },
       
   131   };
       
   132   int i, j;
       
   133   apAll[0] = pA;
       
   134   apAll[1] = pB;
       
   135   apAll[2] = pC;
       
   136   for(i=0; i<3 && apAll[i]; i++){
       
   137     p = apAll[i];
       
   138     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
       
   139       if( p->n==keywords[j].nChar 
       
   140           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
       
   141         jointype |= keywords[j].code;
       
   142         break;
       
   143       }
       
   144     }
       
   145     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
       
   146       jointype |= JT_ERROR;
       
   147       break;
       
   148     }
       
   149   }
       
   150   if(
       
   151      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
       
   152      (jointype & JT_ERROR)!=0
       
   153   ){
       
   154     const char *zSp1 = " ";
       
   155     const char *zSp2 = " ";
       
   156     if( pB==0 ){ zSp1++; }
       
   157     if( pC==0 ){ zSp2++; }
       
   158     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
       
   159        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
       
   160     jointype = JT_INNER;
       
   161   }else if( jointype & JT_RIGHT ){
       
   162     sqlite3ErrorMsg(pParse, 
       
   163       "RIGHT and FULL OUTER JOINs are not currently supported");
       
   164     jointype = JT_INNER;
       
   165   }
       
   166   return jointype;
       
   167 }
       
   168 
       
   169 /*
       
   170 ** Return the index of a column in a table.  Return -1 if the column
       
   171 ** is not contained in the table.
       
   172 */
       
   173 static int columnIndex(Table *pTab, const char *zCol){
       
   174   int i;
       
   175   for(i=0; i<pTab->nCol; i++){
       
   176     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
       
   177   }
       
   178   return -1;
       
   179 }
       
   180 
       
   181 /*
       
   182 ** Set the value of a token to a '\000'-terminated string.
       
   183 */
       
   184 static void setToken(Token *p, const char *z){
       
   185   p->z = (u8*)z;
       
   186   p->n = z ? strlen(z) : 0;
       
   187   p->dyn = 0;
       
   188 }
       
   189 
       
   190 /*
       
   191 ** Set the token to the double-quoted and escaped version of the string pointed
       
   192 ** to by z. For example;
       
   193 **
       
   194 **    {a"bc}  ->  {"a""bc"}
       
   195 */
       
   196 static void setQuotedToken(Parse *pParse, Token *p, const char *z){
       
   197   p->z = (u8 *)sqlite3MPrintf(0, "\"%w\"", z);
       
   198   p->dyn = 1;
       
   199   if( p->z ){
       
   200     p->n = strlen((char *)p->z);
       
   201   }else{
       
   202     pParse->db->mallocFailed = 1;
       
   203   }
       
   204 }
       
   205 
       
   206 /*
       
   207 ** Create an expression node for an identifier with the name of zName
       
   208 */
       
   209 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
       
   210   Token dummy;
       
   211   setToken(&dummy, zName);
       
   212   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
       
   213 }
       
   214 
       
   215 
       
   216 /*
       
   217 ** Add a term to the WHERE expression in *ppExpr that requires the
       
   218 ** zCol column to be equal in the two tables pTab1 and pTab2.
       
   219 */
       
   220 static void addWhereTerm(
       
   221   Parse *pParse,           /* Parsing context */
       
   222   const char *zCol,        /* Name of the column */
       
   223   const Table *pTab1,      /* First table */
       
   224   const char *zAlias1,     /* Alias for first table.  May be NULL */
       
   225   const Table *pTab2,      /* Second table */
       
   226   const char *zAlias2,     /* Alias for second table.  May be NULL */
       
   227   int iRightJoinTable,     /* VDBE cursor for the right table */
       
   228   Expr **ppExpr            /* Add the equality term to this expression */
       
   229 ){
       
   230   Expr *pE1a, *pE1b, *pE1c;
       
   231   Expr *pE2a, *pE2b, *pE2c;
       
   232   Expr *pE;
       
   233 
       
   234   pE1a = sqlite3CreateIdExpr(pParse, zCol);
       
   235   pE2a = sqlite3CreateIdExpr(pParse, zCol);
       
   236   if( zAlias1==0 ){
       
   237     zAlias1 = pTab1->zName;
       
   238   }
       
   239   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
       
   240   if( zAlias2==0 ){
       
   241     zAlias2 = pTab2->zName;
       
   242   }
       
   243   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
       
   244   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
       
   245   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
       
   246   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
       
   247   if( pE ){
       
   248     ExprSetProperty(pE, EP_FromJoin);
       
   249     pE->iRightJoinTable = iRightJoinTable;
       
   250   }
       
   251   *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
       
   252 }
       
   253 
       
   254 /*
       
   255 ** Set the EP_FromJoin property on all terms of the given expression.
       
   256 ** And set the Expr.iRightJoinTable to iTable for every term in the
       
   257 ** expression.
       
   258 **
       
   259 ** The EP_FromJoin property is used on terms of an expression to tell
       
   260 ** the LEFT OUTER JOIN processing logic that this term is part of the
       
   261 ** join restriction specified in the ON or USING clause and not a part
       
   262 ** of the more general WHERE clause.  These terms are moved over to the
       
   263 ** WHERE clause during join processing but we need to remember that they
       
   264 ** originated in the ON or USING clause.
       
   265 **
       
   266 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
       
   267 ** expression depends on table iRightJoinTable even if that table is not
       
   268 ** explicitly mentioned in the expression.  That information is needed
       
   269 ** for cases like this:
       
   270 **
       
   271 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
       
   272 **
       
   273 ** The where clause needs to defer the handling of the t1.x=5
       
   274 ** term until after the t2 loop of the join.  In that way, a
       
   275 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
       
   276 ** defer the handling of t1.x=5, it will be processed immediately
       
   277 ** after the t1 loop and rows with t1.x!=5 will never appear in
       
   278 ** the output, which is incorrect.
       
   279 */
       
   280 static void setJoinExpr(Expr *p, int iTable){
       
   281   while( p ){
       
   282     ExprSetProperty(p, EP_FromJoin);
       
   283     p->iRightJoinTable = iTable;
       
   284     setJoinExpr(p->pLeft, iTable);
       
   285     p = p->pRight;
       
   286   } 
       
   287 }
       
   288 
       
   289 /*
       
   290 ** This routine processes the join information for a SELECT statement.
       
   291 ** ON and USING clauses are converted into extra terms of the WHERE clause.
       
   292 ** NATURAL joins also create extra WHERE clause terms.
       
   293 **
       
   294 ** The terms of a FROM clause are contained in the Select.pSrc structure.
       
   295 ** The left most table is the first entry in Select.pSrc.  The right-most
       
   296 ** table is the last entry.  The join operator is held in the entry to
       
   297 ** the left.  Thus entry 0 contains the join operator for the join between
       
   298 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
       
   299 ** also attached to the left entry.
       
   300 **
       
   301 ** This routine returns the number of errors encountered.
       
   302 */
       
   303 static int sqliteProcessJoin(Parse *pParse, Select *p){
       
   304   SrcList *pSrc;                  /* All tables in the FROM clause */
       
   305   int i, j;                       /* Loop counters */
       
   306   SrcList::SrcList_item *pLeft;     /* Left table being joined */
       
   307   SrcList::SrcList_item *pRight;    /* Right table being joined */
       
   308 
       
   309   pSrc = p->pSrc;
       
   310   pLeft = &pSrc->a[0];
       
   311   pRight = &pLeft[1];
       
   312   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
       
   313     Table *pLeftTab = pLeft->pTab;
       
   314     Table *pRightTab = pRight->pTab;
       
   315 
       
   316     if( pLeftTab==0 || pRightTab==0 ) continue;
       
   317 
       
   318     /* When the NATURAL keyword is present, add WHERE clause terms for
       
   319     ** every column that the two tables have in common.
       
   320     */
       
   321     if( pRight->jointype & JT_NATURAL ){
       
   322       if( pRight->pOn || pRight->pUsing ){
       
   323         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
       
   324            "an ON or USING clause", 0);
       
   325         return 1;
       
   326       }
       
   327       for(j=0; j<pLeftTab->nCol; j++){
       
   328         char *zName = pLeftTab->aCol[j].zName;
       
   329         if( columnIndex(pRightTab, zName)>=0 ){
       
   330           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
       
   331                               pRightTab, pRight->zAlias,
       
   332                               pRight->iCursor, &p->pWhere);
       
   333           
       
   334         }
       
   335       }
       
   336     }
       
   337 
       
   338     /* Disallow both ON and USING clauses in the same join
       
   339     */
       
   340     if( pRight->pOn && pRight->pUsing ){
       
   341       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
       
   342         "clauses in the same join");
       
   343       return 1;
       
   344     }
       
   345 
       
   346     /* Add the ON clause to the end of the WHERE clause, connected by
       
   347     ** an AND operator.
       
   348     */
       
   349     if( pRight->pOn ){
       
   350       setJoinExpr(pRight->pOn, pRight->iCursor);
       
   351       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
       
   352       pRight->pOn = 0;
       
   353     }
       
   354 
       
   355     /* Create extra terms on the WHERE clause for each column named
       
   356     ** in the USING clause.  Example: If the two tables to be joined are 
       
   357     ** A and B and the USING clause names X, Y, and Z, then add this
       
   358     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
       
   359     ** Report an error if any column mentioned in the USING clause is
       
   360     ** not contained in both tables to be joined.
       
   361     */
       
   362     if( pRight->pUsing ){
       
   363       IdList *pList = pRight->pUsing;
       
   364       for(j=0; j<pList->nId; j++){
       
   365         char *zName = pList->a[j].zName;
       
   366         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
       
   367           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
       
   368             "not present in both tables", zName);
       
   369           return 1;
       
   370         }
       
   371         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
       
   372                             pRightTab, pRight->zAlias,
       
   373                             pRight->iCursor, &p->pWhere);
       
   374       }
       
   375     }
       
   376   }
       
   377   return 0;
       
   378 }
       
   379 
       
   380 /*
       
   381 ** Insert code into "v" that will push the record on the top of the
       
   382 ** stack into the sorter.
       
   383 */
       
   384 static void pushOntoSorter(
       
   385   Parse *pParse,         /* Parser context */
       
   386   ExprList *pOrderBy,    /* The ORDER BY clause */
       
   387   Select *pSelect        /* The whole SELECT statement */
       
   388 ){
       
   389   Vdbe *v = pParse->pVdbe;
       
   390   sqlite3ExprCodeExprList(pParse, pOrderBy);
       
   391   sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
       
   392   sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
       
   393   sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
       
   394   sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
       
   395   if( pSelect->iLimit>=0 ){
       
   396     int addr1, addr2;
       
   397     addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
       
   398     sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
       
   399     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
       
   400     sqlite3VdbeJumpHere(v, addr1);
       
   401     sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
       
   402     sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
       
   403     sqlite3VdbeJumpHere(v, addr2);
       
   404     pSelect->iLimit = -1;
       
   405   }
       
   406 }
       
   407 
       
   408 /*
       
   409 ** Add code to implement the OFFSET
       
   410 */
       
   411 static void codeOffset(
       
   412   Vdbe *v,          /* Generate code into this VM */
       
   413   Select *p,        /* The SELECT statement being coded */
       
   414   int iContinue,    /* Jump here to skip the current record */
       
   415   int nPop          /* Number of times to pop stack when jumping */
       
   416 ){
       
   417   if( p->iOffset>=0 && iContinue!=0 ){
       
   418     int addr;
       
   419     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
       
   420     addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
       
   421     if( nPop>0 ){
       
   422       sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
       
   423     }
       
   424     sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
       
   425     VdbeComment((v, "# skip OFFSET records"));
       
   426     sqlite3VdbeJumpHere(v, addr);
       
   427   }
       
   428 }
       
   429 
       
   430 /*
       
   431 ** Add code that will check to make sure the top N elements of the
       
   432 ** stack are distinct.  iTab is a sorting index that holds previously
       
   433 ** seen combinations of the N values.  A new entry is made in iTab
       
   434 ** if the current N values are new.
       
   435 **
       
   436 ** A jump to addrRepeat is made and the N+1 values are popped from the
       
   437 ** stack if the top N elements are not distinct.
       
   438 */
       
   439 static void codeDistinct(
       
   440   Vdbe *v,           /* Generate code into this VM */
       
   441   int iTab,          /* A sorting index used to test for distinctness */
       
   442   int addrRepeat,    /* Jump to here if not distinct */
       
   443   int N              /* The top N elements of the stack must be distinct */
       
   444 ){
       
   445   sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
       
   446   sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
       
   447   sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
       
   448   sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
       
   449   VdbeComment((v, "# skip indistinct records"));
       
   450   sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
       
   451 }
       
   452 
       
   453 /*
       
   454 ** Generate an error message when a SELECT is used within a subexpression
       
   455 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
       
   456 ** column.  We do this in a subroutine because the error occurs in multiple
       
   457 ** places.
       
   458 */
       
   459 static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){
       
   460   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
       
   461     sqlite3ErrorMsg(pParse, "only a single result allowed for "
       
   462        "a SELECT that is part of an expression");
       
   463     return 1;
       
   464   }else{
       
   465     return 0;
       
   466   }
       
   467 }
       
   468 
       
   469 /*
       
   470 ** This routine generates the code for the inside of the inner loop
       
   471 ** of a SELECT.
       
   472 **
       
   473 ** If srcTab and nColumn are both zero, then the pEList expressions
       
   474 ** are evaluated in order to get the data for this row.  If nColumn>0
       
   475 ** then data is pulled from srcTab and pEList is used only to get the
       
   476 ** datatypes for each column.
       
   477 */
       
   478 static int selectInnerLoop(
       
   479   Parse *pParse,          /* The parser context */
       
   480   Select *p,              /* The complete select statement being coded */
       
   481   ExprList *pEList,       /* List of values being extracted */
       
   482   int srcTab,             /* Pull data from this table */
       
   483   int nColumn,            /* Number of columns in the source table */
       
   484   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
       
   485   int distinct,           /* If >=0, make sure results are distinct */
       
   486   int eDest,              /* How to dispose of the results */
       
   487   int iParm,              /* An argument to the disposal method */
       
   488   int iContinue,          /* Jump here to continue with next row */
       
   489   int iBreak,             /* Jump here to break out of the inner loop */
       
   490   char *aff               /* affinity string if eDest is SRT_Union */
       
   491 ){
       
   492   Vdbe *v = pParse->pVdbe;
       
   493   int i;
       
   494   int hasDistinct;        /* True if the DISTINCT keyword is present */
       
   495 
       
   496   if( v==0 ) return 0;
       
   497   assert( pEList!=0 );
       
   498 
       
   499   /* If there was a LIMIT clause on the SELECT statement, then do the check
       
   500   ** to see if this row should be output.
       
   501   */
       
   502   hasDistinct = distinct>=0 && pEList->nExpr>0;
       
   503   if( pOrderBy==0 && !hasDistinct ){
       
   504     codeOffset(v, p, iContinue, 0);
       
   505   }
       
   506 
       
   507   /* Pull the requested columns.
       
   508   */
       
   509   if( nColumn>0 ){
       
   510     for(i=0; i<nColumn; i++){
       
   511       sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
       
   512     }
       
   513   }else{
       
   514     nColumn = pEList->nExpr;
       
   515     sqlite3ExprCodeExprList(pParse, pEList);
       
   516   }
       
   517 
       
   518   /* If the DISTINCT keyword was present on the SELECT statement
       
   519   ** and this row has been seen before, then do not make this row
       
   520   ** part of the result.
       
   521   */
       
   522   if( hasDistinct ){
       
   523     assert( pEList!=0 );
       
   524     assert( pEList->nExpr==nColumn );
       
   525     codeDistinct(v, distinct, iContinue, nColumn);
       
   526     if( pOrderBy==0 ){
       
   527       codeOffset(v, p, iContinue, nColumn);
       
   528     }
       
   529   }
       
   530 
       
   531   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
       
   532     return 0;
       
   533   }
       
   534 
       
   535   switch( eDest ){
       
   536     /* In this mode, write each query result to the key of the temporary
       
   537     ** table iParm.
       
   538     */
       
   539 #ifndef SQLITE_OMIT_COMPOUND_SELECT
       
   540     case SRT_Union: {
       
   541       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
       
   542       if( aff ){
       
   543         sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
       
   544       }
       
   545       sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
       
   546       break;
       
   547     }
       
   548 
       
   549     /* Construct a record from the query result, but instead of
       
   550     ** saving that record, use it as a key to delete elements from
       
   551     ** the temporary table iParm.
       
   552     */
       
   553     case SRT_Except: {
       
   554       int addr;
       
   555       addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
       
   556       sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
       
   557       sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
       
   558       sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
       
   559       break;
       
   560     }
       
   561 #endif
       
   562 
       
   563     /* Store the result as data using a unique key.
       
   564     */
       
   565     case SRT_Table:
       
   566     case SRT_EphemTab: {
       
   567       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
       
   568       if( pOrderBy ){
       
   569         pushOntoSorter(pParse, pOrderBy, p);
       
   570       }else{
       
   571         sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
       
   572         sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
       
   573         sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
       
   574       }
       
   575       break;
       
   576     }
       
   577 
       
   578 #ifndef SQLITE_OMIT_SUBQUERY
       
   579     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
       
   580     ** then there should be a single item on the stack.  Write this
       
   581     ** item into the set table with bogus data.
       
   582     */
       
   583     case SRT_Set: {
       
   584       int addr1 = sqlite3VdbeCurrentAddr(v);
       
   585       int addr2;
       
   586 
       
   587       assert( nColumn==1 );
       
   588       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
       
   589       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
   590       addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
       
   591       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff);
       
   592       if( pOrderBy ){
       
   593         /* At first glance you would think we could optimize out the
       
   594         ** ORDER BY in this case since the order of entries in the set
       
   595         ** does not matter.  But there might be a LIMIT clause, in which
       
   596         ** case the order does matter */
       
   597         pushOntoSorter(pParse, pOrderBy, p);
       
   598       }else{
       
   599         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
       
   600         sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
       
   601       }
       
   602       sqlite3VdbeJumpHere(v, addr2);
       
   603       break;
       
   604     }
       
   605 
       
   606     /* If any row exist in the result set, record that fact and abort.
       
   607     */
       
   608     case SRT_Exists: {
       
   609       sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
       
   610       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
       
   611       /* The LIMIT clause will terminate the loop for us */
       
   612       break;
       
   613     }
       
   614 
       
   615     /* If this is a scalar select that is part of an expression, then
       
   616     ** store the results in the appropriate memory cell and break out
       
   617     ** of the scan loop.
       
   618     */
       
   619     case SRT_Mem: {
       
   620       assert( nColumn==1 );
       
   621       if( pOrderBy ){
       
   622         pushOntoSorter(pParse, pOrderBy, p);
       
   623       }else{
       
   624         sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
       
   625         /* The LIMIT clause will jump out of the loop for us */
       
   626       }
       
   627       break;
       
   628     }
       
   629 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
       
   630 
       
   631     /* Send the data to the callback function or to a subroutine.  In the
       
   632     ** case of a subroutine, the subroutine itself is responsible for
       
   633     ** popping the data from the stack.
       
   634     */
       
   635     case SRT_Subroutine:
       
   636     case SRT_Callback: {
       
   637       if( pOrderBy ){
       
   638         sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
       
   639         pushOntoSorter(pParse, pOrderBy, p);
       
   640       }else if( eDest==SRT_Subroutine ){
       
   641         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
       
   642       }else{
       
   643         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
       
   644       }
       
   645       break;
       
   646     }
       
   647 
       
   648 #if !defined(SQLITE_OMIT_TRIGGER)
       
   649     /* Discard the results.  This is used for SELECT statements inside
       
   650     ** the body of a TRIGGER.  The purpose of such selects is to call
       
   651     ** user-defined functions that have side effects.  We do not care
       
   652     ** about the actual results of the select.
       
   653     */
       
   654     default: {
       
   655       assert( eDest==SRT_Discard );
       
   656       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
       
   657       break;
       
   658     }
       
   659 #endif
       
   660   }
       
   661 
       
   662   /* Jump to the end of the loop if the LIMIT is reached.
       
   663   */
       
   664   if( p->iLimit>=0 && pOrderBy==0 ){
       
   665     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
       
   666     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
       
   667   }
       
   668   return 0;
       
   669 }
       
   670 
       
   671 /*
       
   672 ** Given an expression list, generate a KeyInfo structure that records
       
   673 ** the collating sequence for each expression in that expression list.
       
   674 **
       
   675 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
       
   676 ** KeyInfo structure is appropriate for initializing a virtual index to
       
   677 ** implement that clause.  If the ExprList is the result set of a SELECT
       
   678 ** then the KeyInfo structure is appropriate for initializing a virtual
       
   679 ** index to implement a DISTINCT test.
       
   680 **
       
   681 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
       
   682 ** function is responsible for seeing that this structure is eventually
       
   683 ** freed.  Add the KeyInfo structure to the P3 field of an opcode using
       
   684 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
       
   685 */
       
   686 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
       
   687   sqlite3 *db = pParse->db;
       
   688   int nExpr;
       
   689   KeyInfo *pInfo;
       
   690   ExprList::ExprList_item *pItem;
       
   691   int i;
       
   692 
       
   693   nExpr = pList->nExpr;
       
   694   pInfo = (KeyInfo*)sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
       
   695   if( pInfo ){
       
   696     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
       
   697     pInfo->nField = nExpr;
       
   698     pInfo->enc = ENC(db);
       
   699     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
       
   700       CollSeq *pColl;
       
   701       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
       
   702       if( !pColl ){
       
   703         pColl = db->pDfltColl;
       
   704       }
       
   705       pInfo->aColl[i] = pColl;
       
   706       pInfo->aSortOrder[i] = pItem->sortOrder;
       
   707     }
       
   708   }
       
   709   return pInfo;
       
   710 }
       
   711 
       
   712 
       
   713 /*
       
   714 ** If the inner loop was generated using a non-null pOrderBy argument,
       
   715 ** then the results were placed in a sorter.  After the loop is terminated
       
   716 ** we need to run the sorter and output the results.  The following
       
   717 ** routine generates the code needed to do that.
       
   718 */
       
   719 static void generateSortTail(
       
   720   Parse *pParse,   /* Parsing context */
       
   721   Select *p,       /* The SELECT statement */
       
   722   Vdbe *v,         /* Generate code into this VDBE */
       
   723   int nColumn,     /* Number of columns of data */
       
   724   int eDest,       /* Write the sorted results here */
       
   725   int iParm        /* Optional parameter associated with eDest */
       
   726 ){
       
   727   int brk = sqlite3VdbeMakeLabel(v);
       
   728   int cont = sqlite3VdbeMakeLabel(v);
       
   729   int addr;
       
   730   int iTab;
       
   731   int pseudoTab = 0;
       
   732   ExprList *pOrderBy = p->pOrderBy;
       
   733 
       
   734   iTab = pOrderBy->iECursor;
       
   735   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
       
   736     pseudoTab = pParse->nTab++;
       
   737     sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
       
   738     sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
       
   739   }
       
   740   addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
       
   741   codeOffset(v, p, cont, 0);
       
   742   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
       
   743     sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
       
   744   }
       
   745   sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
       
   746   switch( eDest ){
       
   747     case SRT_Table:
       
   748     case SRT_EphemTab: {
       
   749       sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
       
   750       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
       
   751       sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
       
   752       break;
       
   753     }
       
   754 #ifndef SQLITE_OMIT_SUBQUERY
       
   755     case SRT_Set: {
       
   756       assert( nColumn==1 );
       
   757       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
       
   758       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
   759       sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
       
   760       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
       
   761       sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
       
   762       break;
       
   763     }
       
   764     case SRT_Mem: {
       
   765       assert( nColumn==1 );
       
   766       sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
       
   767       /* The LIMIT clause will terminate the loop for us */
       
   768       break;
       
   769     }
       
   770 #endif
       
   771     case SRT_Callback:
       
   772     case SRT_Subroutine: {
       
   773       int i;
       
   774       sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
       
   775       for(i=0; i<nColumn; i++){
       
   776         sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
       
   777       }
       
   778       if( eDest==SRT_Callback ){
       
   779         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
       
   780       }else{
       
   781         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
       
   782       }
       
   783       break;
       
   784     }
       
   785     default: {
       
   786       /* Do nothing */
       
   787       break;
       
   788     }
       
   789   }
       
   790 
       
   791   /* Jump to the end of the loop when the LIMIT is reached
       
   792   */
       
   793   if( p->iLimit>=0 ){
       
   794     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
       
   795     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
       
   796   }
       
   797 
       
   798   /* The bottom of the loop
       
   799   */
       
   800   sqlite3VdbeResolveLabel(v, cont);
       
   801   sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
       
   802   sqlite3VdbeResolveLabel(v, brk);
       
   803   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
       
   804     sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
       
   805   }
       
   806 
       
   807 }
       
   808 
       
   809 /*
       
   810 ** Return a pointer to a string containing the 'declaration type' of the
       
   811 ** expression pExpr. The string may be treated as static by the caller.
       
   812 **
       
   813 ** The declaration type is the exact datatype definition extracted from the
       
   814 ** original CREATE TABLE statement if the expression is a column. The
       
   815 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
       
   816 ** is considered a column can be complex in the presence of subqueries. The
       
   817 ** result-set expression in all of the following SELECT statements is 
       
   818 ** considered a column by this function.
       
   819 **
       
   820 **   SELECT col FROM tbl;
       
   821 **   SELECT (SELECT col FROM tbl;
       
   822 **   SELECT (SELECT col FROM tbl);
       
   823 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
       
   824 ** 
       
   825 ** The declaration type for any expression other than a column is NULL.
       
   826 */
       
   827 static const char *columnType(
       
   828   NameContext *pNC, 
       
   829   Expr *pExpr,
       
   830   const char **pzOriginDb,
       
   831   const char **pzOriginTab,
       
   832   const char **pzOriginCol
       
   833 ){
       
   834   char const *zType = 0;
       
   835   char const *zOriginDb = 0;
       
   836   char const *zOriginTab = 0;
       
   837   char const *zOriginCol = 0;
       
   838   int j;
       
   839   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
       
   840 
       
   841   switch( pExpr->op ){
       
   842     case TK_AGG_COLUMN:
       
   843     case TK_COLUMN: {
       
   844       /* The expression is a column. Locate the table the column is being
       
   845       ** extracted from in NameContext.pSrcList. This table may be real
       
   846       ** database table or a subquery.
       
   847       */
       
   848       Table *pTab = 0;            /* Table structure column is extracted from */
       
   849       Select *pS = 0;             /* Select the column is extracted from */
       
   850       int iCol = pExpr->iColumn;  /* Index of column in pTab */
       
   851       while( pNC && !pTab ){
       
   852         SrcList *pTabList = pNC->pSrcList;
       
   853         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
       
   854         if( j<pTabList->nSrc ){
       
   855           pTab = pTabList->a[j].pTab;
       
   856           pS = pTabList->a[j].pSelect;
       
   857         }else{
       
   858           pNC = pNC->pNext;
       
   859         }
       
   860       }
       
   861 
       
   862       if( pTab==0 ){
       
   863         /* FIX ME:
       
   864         ** This can occurs if you have something like "SELECT new.x;" inside
       
   865         ** a trigger.  In other words, if you reference the special "new"
       
   866         ** table in the result set of a select.  We do not have a good way
       
   867         ** to find the actual table type, so call it "TEXT".  This is really
       
   868         ** something of a bug, but I do not know how to fix it.
       
   869         **
       
   870         ** This code does not produce the correct answer - it just prevents
       
   871         ** a segfault.  See ticket #1229.
       
   872         */
       
   873         zType = "TEXT";
       
   874         break;
       
   875       }
       
   876 
       
   877       assert( pTab );
       
   878       if( pS ){
       
   879         /* The "table" is actually a sub-select or a view in the FROM clause
       
   880         ** of the SELECT statement. Return the declaration type and origin
       
   881         ** data for the result-set column of the sub-select.
       
   882         */
       
   883         if( iCol>=0 && iCol<pS->pEList->nExpr ){
       
   884           /* If iCol is less than zero, then the expression requests the
       
   885           ** rowid of the sub-select or view. This expression is legal (see 
       
   886           ** test case misc2.2.2) - it always evaluates to NULL.
       
   887           */
       
   888           NameContext sNC;
       
   889           Expr *p = pS->pEList->a[iCol].pExpr;
       
   890           sNC.pSrcList = pS->pSrc;
       
   891           sNC.pNext = 0;
       
   892           sNC.pParse = pNC->pParse;
       
   893           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
       
   894         }
       
   895       }else if( pTab->pSchema ){
       
   896         /* A real table */
       
   897         assert( !pS );
       
   898         if( iCol<0 ) iCol = pTab->iPKey;
       
   899         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
       
   900         if( iCol<0 ){
       
   901           zType = "INTEGER";
       
   902           zOriginCol = "rowid";
       
   903         }else{
       
   904           zType = pTab->aCol[iCol].zType;
       
   905           zOriginCol = pTab->aCol[iCol].zName;
       
   906         }
       
   907         zOriginTab = pTab->zName;
       
   908         if( pNC->pParse ){
       
   909           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
       
   910           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
       
   911         }
       
   912       }
       
   913       break;
       
   914     }
       
   915 #ifndef SQLITE_OMIT_SUBQUERY
       
   916     case TK_SELECT: {
       
   917       /* The expression is a sub-select. Return the declaration type and
       
   918       ** origin info for the single column in the result set of the SELECT
       
   919       ** statement.
       
   920       */
       
   921       NameContext sNC;
       
   922       Select *pS = pExpr->pSelect;
       
   923       Expr *p = pS->pEList->a[0].pExpr;
       
   924       sNC.pSrcList = pS->pSrc;
       
   925       sNC.pNext = pNC;
       
   926       sNC.pParse = pNC->pParse;
       
   927       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
       
   928       break;
       
   929     }
       
   930 #endif
       
   931   }
       
   932   
       
   933   if( pzOriginDb ){
       
   934     assert( pzOriginTab && pzOriginCol );
       
   935     *pzOriginDb = zOriginDb;
       
   936     *pzOriginTab = zOriginTab;
       
   937     *pzOriginCol = zOriginCol;
       
   938   }
       
   939   return zType;
       
   940 }
       
   941 
       
   942 /*
       
   943 ** Generate code that will tell the VDBE the declaration types of columns
       
   944 ** in the result set.
       
   945 */
       
   946 static void generateColumnTypes(
       
   947   Parse *pParse,      /* Parser context */
       
   948   SrcList *pTabList,  /* List of tables */
       
   949   ExprList *pEList    /* Expressions defining the result set */
       
   950 ){
       
   951   Vdbe *v = pParse->pVdbe;
       
   952   int i;
       
   953   NameContext sNC;
       
   954   sNC.pSrcList = pTabList;
       
   955   sNC.pParse = pParse;
       
   956   for(i=0; i<pEList->nExpr; i++){
       
   957     Expr *p = pEList->a[i].pExpr;
       
   958     const char *zOrigDb = 0;
       
   959     const char *zOrigTab = 0;
       
   960     const char *zOrigCol = 0;
       
   961     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
       
   962 
       
   963     /* The vdbe must make its own copy of the column-type and other 
       
   964     ** column specific strings, in case the schema is reset before this
       
   965     ** virtual machine is deleted.
       
   966     */
       
   967     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
       
   968     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
       
   969     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
       
   970     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
       
   971   }
       
   972 }
       
   973 
       
   974 /*
       
   975 ** Generate code that will tell the VDBE the names of columns
       
   976 ** in the result set.  This information is used to provide the
       
   977 ** azCol[] values in the callback.
       
   978 */
       
   979 static void generateColumnNames(
       
   980   Parse *pParse,      /* Parser context */
       
   981   SrcList *pTabList,  /* List of tables */
       
   982   ExprList *pEList    /* Expressions defining the result set */
       
   983 ){
       
   984   Vdbe *v = pParse->pVdbe;
       
   985   int i, j;
       
   986   sqlite3 *db = pParse->db;
       
   987   int fullNames, shortNames;
       
   988 
       
   989 #ifndef SQLITE_OMIT_EXPLAIN
       
   990   /* If this is an EXPLAIN, skip this step */
       
   991   if( pParse->explain ){
       
   992     return;
       
   993   }
       
   994 #endif
       
   995 
       
   996   assert( v!=0 );
       
   997   if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
       
   998   pParse->colNamesSet = 1;
       
   999   fullNames = (db->flags & SQLITE_FullColNames)!=0;
       
  1000   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
       
  1001   sqlite3VdbeSetNumCols(v, pEList->nExpr);
       
  1002   for(i=0; i<pEList->nExpr; i++){
       
  1003     Expr *p;
       
  1004     p = pEList->a[i].pExpr;
       
  1005     if( p==0 ) continue;
       
  1006     if( pEList->a[i].zName ){
       
  1007       char *zName = pEList->a[i].zName;
       
  1008       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
       
  1009       continue;
       
  1010     }
       
  1011     if( p->op==TK_COLUMN && pTabList ){
       
  1012       Table *pTab;
       
  1013       char *zCol;
       
  1014       int iCol = p->iColumn;
       
  1015       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
       
  1016       assert( j<pTabList->nSrc );
       
  1017       pTab = pTabList->a[j].pTab;
       
  1018       if( iCol<0 ) iCol = pTab->iPKey;
       
  1019       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
       
  1020       if( iCol<0 ){
       
  1021         zCol = "rowid";
       
  1022       }else{
       
  1023         zCol = pTab->aCol[iCol].zName;
       
  1024       }
       
  1025       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
       
  1026         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
       
  1027       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
       
  1028         char *zName = 0;
       
  1029         char *zTab;
       
  1030  
       
  1031         zTab = pTabList->a[j].zAlias;
       
  1032         if( fullNames || zTab==0 ) zTab = pTab->zName;
       
  1033         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
       
  1034         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
       
  1035       }else{
       
  1036         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
       
  1037       }
       
  1038     }else if( p->span.z && p->span.z[0] ){
       
  1039       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
       
  1040       /* sqlite3VdbeCompressSpace(v, addr); */
       
  1041     }else{
       
  1042       char zName[30];
       
  1043       assert( p->op!=TK_COLUMN || pTabList==0 );
       
  1044       sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
       
  1045       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
       
  1046     }
       
  1047   }
       
  1048   generateColumnTypes(pParse, pTabList, pEList);
       
  1049 }
       
  1050 
       
  1051 #ifndef SQLITE_OMIT_COMPOUND_SELECT
       
  1052 /*
       
  1053 ** Name of the connection operator, used for error messages.
       
  1054 */
       
  1055 static const char *selectOpName(int id){
       
  1056   char *z;
       
  1057   switch( id ){
       
  1058     case TK_ALL:       z = "UNION ALL";   break;
       
  1059     case TK_INTERSECT: z = "INTERSECT";   break;
       
  1060     case TK_EXCEPT:    z = "EXCEPT";      break;
       
  1061     default:           z = "UNION";       break;
       
  1062   }
       
  1063   return z;
       
  1064 }
       
  1065 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
       
  1066 
       
  1067 /*
       
  1068 ** Forward declaration
       
  1069 */
       
  1070 static int prepSelectStmt(Parse*, Select*);
       
  1071 
       
  1072 /*
       
  1073 ** Given a SELECT statement, generate a Table structure that describes
       
  1074 ** the result set of that SELECT.
       
  1075 */
       
  1076 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
       
  1077   Table *pTab;
       
  1078   int i, j;
       
  1079   ExprList *pEList;
       
  1080   Column *aCol, *pCol;
       
  1081   sqlite3 *db = pParse->db;
       
  1082 
       
  1083   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
       
  1084   if( prepSelectStmt(pParse, pSelect) ){
       
  1085     return 0;
       
  1086   }
       
  1087   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
       
  1088     return 0;
       
  1089   }
       
  1090   pTab = (Table*)sqlite3DbMallocZero(db, sizeof(Table) );
       
  1091   if( pTab==0 ){
       
  1092     return 0;
       
  1093   }
       
  1094   pTab->nRef = 1;
       
  1095   pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
       
  1096   pEList = pSelect->pEList;
       
  1097   pTab->nCol = pEList->nExpr;
       
  1098   assert( pTab->nCol>0 );
       
  1099   pTab->aCol = aCol = (Column*)sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
       
  1100   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
       
  1101     Expr *p, *pR;
       
  1102     char *zType;
       
  1103     char *zName;
       
  1104     int nName;
       
  1105     CollSeq *pColl;
       
  1106     int cnt;
       
  1107     NameContext sNC;
       
  1108     
       
  1109     /* Get an appropriate name for the column
       
  1110     */
       
  1111     p = pEList->a[i].pExpr;
       
  1112     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
       
  1113     if( (zName = pEList->a[i].zName)!=0 ){
       
  1114       /* If the column contains an "AS <name>" phrase, use <name> as the name */
       
  1115       zName = sqlite3DbStrDup(db, zName);
       
  1116     }else if( p->op==TK_DOT 
       
  1117               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
       
  1118       /* For columns of the from A.B use B as the name */
       
  1119       zName = sqlite3MPrintf(db, "%T", &pR->token);
       
  1120     }else if( p->span.z && p->span.z[0] ){
       
  1121       /* Use the original text of the column expression as its name */
       
  1122       zName = sqlite3MPrintf(db, "%T", &p->span);
       
  1123     }else{
       
  1124       /* If all else fails, make up a name */
       
  1125       zName = sqlite3MPrintf(db, "column%d", i+1);
       
  1126     }
       
  1127     if( !zName || db->mallocFailed ){
       
  1128       db->mallocFailed = 1;
       
  1129       sqlite3_free(zName);
       
  1130       sqlite3DeleteTable(pTab);
       
  1131       return 0;
       
  1132     }
       
  1133     sqlite3Dequote(zName);
       
  1134 
       
  1135     /* Make sure the column name is unique.  If the name is not unique,
       
  1136     ** append a integer to the name so that it becomes unique.
       
  1137     */
       
  1138     nName = strlen(zName);
       
  1139     for(j=cnt=0; j<i; j++){
       
  1140       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
       
  1141         zName[nName] = 0;
       
  1142         zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt);
       
  1143         j = -1;
       
  1144         if( zName==0 ) break;
       
  1145       }
       
  1146     }
       
  1147     pCol->zName = zName;
       
  1148 
       
  1149     /* Get the typename, type affinity, and collating sequence for the
       
  1150     ** column.
       
  1151     */
       
  1152     memset(&sNC, 0, sizeof(sNC));
       
  1153     sNC.pSrcList = pSelect->pSrc;
       
  1154     zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
       
  1155     pCol->zType = zType;
       
  1156     pCol->affinity = sqlite3ExprAffinity(p);
       
  1157     pColl = sqlite3ExprCollSeq(pParse, p);
       
  1158     if( pColl ){
       
  1159       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
       
  1160     }
       
  1161   }
       
  1162   pTab->iPKey = -1;
       
  1163   return pTab;
       
  1164 }
       
  1165 
       
  1166 /*
       
  1167 ** Prepare a SELECT statement for processing by doing the following
       
  1168 ** things:
       
  1169 **
       
  1170 **    (1)  Make sure VDBE cursor numbers have been assigned to every
       
  1171 **         element of the FROM clause.
       
  1172 **
       
  1173 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
       
  1174 **         defines FROM clause.  When views appear in the FROM clause,
       
  1175 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
       
  1176 **         that implements the view.  A copy is made of the view's SELECT
       
  1177 **         statement so that we can freely modify or delete that statement
       
  1178 **         without worrying about messing up the presistent representation
       
  1179 **         of the view.
       
  1180 **
       
  1181 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
       
  1182 **         on joins and the ON and USING clause of joins.
       
  1183 **
       
  1184 **    (4)  Scan the list of columns in the result set (pEList) looking
       
  1185 **         for instances of the "*" operator or the TABLE.* operator.
       
  1186 **         If found, expand each "*" to be every column in every table
       
  1187 **         and TABLE.* to be every column in TABLE.
       
  1188 **
       
  1189 ** Return 0 on success.  If there are problems, leave an error message
       
  1190 ** in pParse and return non-zero.
       
  1191 */
       
  1192 static int prepSelectStmt(Parse *pParse, Select *p){
       
  1193   int i, j, k, rc;
       
  1194   SrcList *pTabList;
       
  1195   ExprList *pEList;
       
  1196   SrcList::SrcList_item *pFrom;
       
  1197   sqlite3 *db = pParse->db;
       
  1198 
       
  1199   if( p==0 || p->pSrc==0 || db->mallocFailed ){
       
  1200     return 1;
       
  1201   }
       
  1202   pTabList = p->pSrc;
       
  1203   pEList = p->pEList;
       
  1204 
       
  1205   /* Make sure cursor numbers have been assigned to all entries in
       
  1206   ** the FROM clause of the SELECT statement.
       
  1207   */
       
  1208   sqlite3SrcListAssignCursors(pParse, p->pSrc);
       
  1209 
       
  1210   /* Look up every table named in the FROM clause of the select.  If
       
  1211   ** an entry of the FROM clause is a subquery instead of a table or view,
       
  1212   ** then create a transient table structure to describe the subquery.
       
  1213   */
       
  1214      Table *pTab;
       
  1215  for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
       
  1216     if( pFrom->pTab!=0 ){
       
  1217       /* This statement has already been prepared.  There is no need
       
  1218       ** to go further. */
       
  1219       assert( i==0 );
       
  1220       return 0;
       
  1221     }
       
  1222     if( pFrom->zName==0 ){
       
  1223 #ifndef SQLITE_OMIT_SUBQUERY
       
  1224       /* A sub-query in the FROM clause of a SELECT */
       
  1225       assert( pFrom->pSelect!=0 );
       
  1226       if( pFrom->zAlias==0 ){
       
  1227         pFrom->zAlias =
       
  1228           sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
       
  1229       }
       
  1230       assert( pFrom->pTab==0 );
       
  1231       pFrom->pTab = pTab = 
       
  1232         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
       
  1233       if( pTab==0 ){
       
  1234         return 1;
       
  1235       }
       
  1236       /* The isEphem flag indicates that the Table structure has been
       
  1237       ** dynamically allocated and may be freed at any time.  In other words,
       
  1238       ** pTab is not pointing to a persistent table structure that defines
       
  1239       ** part of the schema. */
       
  1240       pTab->isEphem = 1;
       
  1241 #endif
       
  1242     }else{
       
  1243       /* An ordinary table or view name in the FROM clause */
       
  1244       assert( pFrom->pTab==0 );
       
  1245       pFrom->pTab = pTab = 
       
  1246         sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
       
  1247       if( pTab==0 ){
       
  1248         return 1;
       
  1249       }
       
  1250       pTab->nRef++;
       
  1251 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
       
  1252       if( pTab->pSelect || IsVirtual(pTab) ){
       
  1253         /* We reach here if the named table is a really a view */
       
  1254         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
       
  1255           return 1;
       
  1256         }
       
  1257         /* If pFrom->pSelect!=0 it means we are dealing with a
       
  1258         ** view within a view.  The SELECT structure has already been
       
  1259         ** copied by the outer view so we can skip the copy step here
       
  1260         ** in the inner view.
       
  1261         */
       
  1262         if( pFrom->pSelect==0 ){
       
  1263           pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
       
  1264         }
       
  1265       }
       
  1266 #endif
       
  1267     }
       
  1268   }
       
  1269 
       
  1270   /* Process NATURAL keywords, and ON and USING clauses of joins.
       
  1271   */
       
  1272   if( sqliteProcessJoin(pParse, p) ) return 1;
       
  1273 
       
  1274   /* For every "*" that occurs in the column list, insert the names of
       
  1275   ** all columns in all tables.  And for every TABLE.* insert the names
       
  1276   ** of all columns in TABLE.  The parser inserted a special expression
       
  1277   ** with the TK_ALL operator for each "*" that it found in the column list.
       
  1278   ** The following code just has to locate the TK_ALL expressions and expand
       
  1279   ** each one to the list of all columns in all tables.
       
  1280   **
       
  1281   ** The first loop just checks to see if there are any "*" operators
       
  1282   ** that need expanding.
       
  1283   */
       
  1284   for(k=0; k<pEList->nExpr; k++){
       
  1285     Expr *pE = pEList->a[k].pExpr;
       
  1286     if( pE->op==TK_ALL ) break;
       
  1287     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
       
  1288          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
       
  1289   }
       
  1290   rc = 0;
       
  1291   if( k<pEList->nExpr ){
       
  1292     /*
       
  1293     ** If we get here it means the result set contains one or more "*"
       
  1294     ** operators that need to be expanded.  Loop through each expression
       
  1295     ** in the result set and expand them one by one.
       
  1296     */
       
  1297 	  ExprList::ExprList_item *a = pEList->a;
       
  1298     ExprList *pNew = 0;
       
  1299     int flags = pParse->db->flags;
       
  1300     int longNames = (flags & SQLITE_FullColNames)!=0 &&
       
  1301                       (flags & SQLITE_ShortColNames)==0;
       
  1302 
       
  1303     for(k=0; k<pEList->nExpr; k++){
       
  1304       Expr *pE = a[k].pExpr;
       
  1305       if( pE->op!=TK_ALL &&
       
  1306            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
       
  1307         /* This particular expression does not need to be expanded.
       
  1308         */
       
  1309         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
       
  1310         if( pNew ){
       
  1311           pNew->a[pNew->nExpr-1].zName = a[k].zName;
       
  1312         }else{
       
  1313           rc = 1;
       
  1314         }
       
  1315         a[k].pExpr = 0;
       
  1316         a[k].zName = 0;
       
  1317       }else{
       
  1318         /* This expression is a "*" or a "TABLE.*" and needs to be
       
  1319         ** expanded. */
       
  1320         int tableSeen = 0;      /* Set to 1 when TABLE matches */
       
  1321         char *zTName;            /* text of name of TABLE */
       
  1322         if( pE->op==TK_DOT && pE->pLeft ){
       
  1323           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
       
  1324         }else{
       
  1325           zTName = 0;
       
  1326         }
       
  1327         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
       
  1328           Table *pTab = pFrom->pTab;
       
  1329           char *zTabName = pFrom->zAlias;
       
  1330           if( zTabName==0 || zTabName[0]==0 ){ 
       
  1331             zTabName = pTab->zName;
       
  1332           }
       
  1333           if( zTName && (zTabName==0 || zTabName[0]==0 || 
       
  1334                  sqlite3StrICmp(zTName, zTabName)!=0) ){
       
  1335             continue;
       
  1336           }
       
  1337           tableSeen = 1;
       
  1338           for(j=0; j<pTab->nCol; j++){
       
  1339             Expr *pExpr, *pRight;
       
  1340             char *zName = pTab->aCol[j].zName;
       
  1341 
       
  1342             /* If a column is marked as 'hidden' (currently only possible
       
  1343             ** for virtual tables), do not include it in the expanded
       
  1344             ** result-set list.
       
  1345             */
       
  1346             if( IsHiddenColumn(&pTab->aCol[j]) ){
       
  1347               assert(IsVirtual(pTab));
       
  1348               continue;
       
  1349             }
       
  1350 
       
  1351             if( i>0 ){
       
  1352 				SrcList::SrcList_item *pLeft = &pTabList->a[i-1];
       
  1353               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
       
  1354                         columnIndex(pLeft->pTab, zName)>=0 ){
       
  1355                 /* In a NATURAL join, omit the join columns from the 
       
  1356                 ** table on the right */
       
  1357                 continue;
       
  1358               }
       
  1359               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
       
  1360                 /* In a join with a USING clause, omit columns in the
       
  1361                 ** using clause from the table on the right. */
       
  1362                 continue;
       
  1363               }
       
  1364             }
       
  1365             pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
       
  1366             if( pRight==0 ) break;
       
  1367             setQuotedToken(pParse, &pRight->token, zName);
       
  1368             if( zTabName && (longNames || pTabList->nSrc>1) ){
       
  1369               Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
       
  1370               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
       
  1371               if( pExpr==0 ) break;
       
  1372               setQuotedToken(pParse, &pLeft->token, zTabName);
       
  1373               setToken(&pExpr->span, 
       
  1374                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
       
  1375               pExpr->span.dyn = 1;
       
  1376               pExpr->token.z = 0;
       
  1377               pExpr->token.n = 0;
       
  1378               pExpr->token.dyn = 0;
       
  1379             }else{
       
  1380               pExpr = pRight;
       
  1381               pExpr->span = pExpr->token;
       
  1382               pExpr->span.dyn = 0;
       
  1383             }
       
  1384             if( longNames ){
       
  1385               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
       
  1386             }else{
       
  1387               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
       
  1388             }
       
  1389           }
       
  1390         }
       
  1391         if( !tableSeen ){
       
  1392           if( zTName ){
       
  1393             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
       
  1394           }else{
       
  1395             sqlite3ErrorMsg(pParse, "no tables specified");
       
  1396           }
       
  1397           rc = 1;
       
  1398         }
       
  1399         sqlite3_free(zTName);
       
  1400       }
       
  1401     }
       
  1402     sqlite3ExprListDelete(pEList);
       
  1403     p->pEList = pNew;
       
  1404   }
       
  1405   if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){
       
  1406     sqlite3ErrorMsg(pParse, "too many columns in result set");
       
  1407     rc = SQLITE_ERROR;
       
  1408   }
       
  1409   if( db->mallocFailed ){
       
  1410     rc = SQLITE_NOMEM;
       
  1411   }
       
  1412   return rc;
       
  1413 }
       
  1414 
       
  1415 /*
       
  1416 ** pE is a pointer to an expression which is a single term in
       
  1417 ** ORDER BY or GROUP BY clause.
       
  1418 **
       
  1419 ** If pE evaluates to an integer constant i, then return i.
       
  1420 ** This is an indication to the caller that it should sort
       
  1421 ** by the i-th column of the result set.
       
  1422 **
       
  1423 ** If pE is a well-formed expression and the SELECT statement
       
  1424 ** is not compound, then return 0.  This indicates to the
       
  1425 ** caller that it should sort by the value of the ORDER BY
       
  1426 ** expression.
       
  1427 **
       
  1428 ** If the SELECT is compound, then attempt to match pE against
       
  1429 ** result set columns in the left-most SELECT statement.  Return
       
  1430 ** the index i of the matching column, as an indication to the 
       
  1431 ** caller that it should sort by the i-th column.  If there is
       
  1432 ** no match, return -1 and leave an error message in pParse.
       
  1433 */
       
  1434 static int matchOrderByTermToExprList(
       
  1435   Parse *pParse,     /* Parsing context for error messages */
       
  1436   Select *pSelect,   /* The SELECT statement with the ORDER BY clause */
       
  1437   Expr *pE,          /* The specific ORDER BY term */
       
  1438   int idx,           /* When ORDER BY term is this */
       
  1439   int isCompound,    /* True if this is a compound SELECT */
       
  1440   u8 *pHasAgg        /* True if expression contains aggregate functions */
       
  1441 ){
       
  1442   int i;             /* Loop counter */
       
  1443   ExprList *pEList;  /* The columns of the result set */
       
  1444   NameContext nc;    /* Name context for resolving pE */
       
  1445 
       
  1446 
       
  1447   /* If the term is an integer constant, return the value of that
       
  1448   ** constant */
       
  1449   pEList = pSelect->pEList;
       
  1450   if( sqlite3ExprIsInteger(pE, &i) ){
       
  1451     if( i<=0 ){
       
  1452       /* If i is too small, make it too big.  That way the calling
       
  1453       ** function still sees a value that is out of range, but does
       
  1454       ** not confuse the column number with 0 or -1 result code.
       
  1455       */
       
  1456       i = pEList->nExpr+1;
       
  1457     }
       
  1458     return i;
       
  1459   }
       
  1460 
       
  1461   /* If the term is a simple identifier that try to match that identifier
       
  1462   ** against a column name in the result set.
       
  1463   */
       
  1464   if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){
       
  1465     sqlite3 *db = pParse->db;
       
  1466     char *zCol = sqlite3NameFromToken(db, &pE->token);
       
  1467     if( zCol==0 ){
       
  1468       return -1;
       
  1469     }
       
  1470     for(i=0; i<pEList->nExpr; i++){
       
  1471       char *zAs = pEList->a[i].zName;
       
  1472       if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
       
  1473         sqlite3_free(zCol);
       
  1474         return i+1;
       
  1475       }
       
  1476     }
       
  1477     sqlite3_free(zCol);
       
  1478   }
       
  1479 
       
  1480   /* Resolve all names in the ORDER BY term expression
       
  1481   */
       
  1482   memset(&nc, 0, sizeof(nc));
       
  1483   nc.pParse = pParse;
       
  1484   nc.pSrcList = pSelect->pSrc;
       
  1485   nc.pEList = pEList;
       
  1486   nc.allowAgg = 1;
       
  1487   nc.nErr = 0;
       
  1488   if( sqlite3ExprResolveNames(&nc, pE) ){
       
  1489     if( isCompound ){
       
  1490       sqlite3ErrorClear(pParse);
       
  1491       return 0;
       
  1492     }else{
       
  1493       return -1;
       
  1494     }
       
  1495   }
       
  1496   if( nc.hasAgg && pHasAgg ){
       
  1497     *pHasAgg = 1;
       
  1498   }
       
  1499 
       
  1500   /* For a compound SELECT, we need to try to match the ORDER BY
       
  1501   ** expression against an expression in the result set
       
  1502   */
       
  1503   if( isCompound ){
       
  1504     for(i=0; i<pEList->nExpr; i++){
       
  1505       if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
       
  1506         return i+1;
       
  1507       }
       
  1508     }
       
  1509   }
       
  1510   return 0;
       
  1511 }
       
  1512 
       
  1513 
       
  1514 /*
       
  1515 ** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement.
       
  1516 ** Return the number of errors seen.
       
  1517 **
       
  1518 ** Every term of the ORDER BY or GROUP BY clause needs to be an
       
  1519 ** expression.  If any expression is an integer constant, then
       
  1520 ** that expression is replaced by the corresponding 
       
  1521 ** expression from the result set.
       
  1522 */
       
  1523 static int processOrderGroupBy(
       
  1524   Parse *pParse,        /* Parsing context.  Leave error messages here */
       
  1525   Select *pSelect,      /* The SELECT statement containing the clause */
       
  1526   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
       
  1527   int isOrder,          /* 1 for ORDER BY.  0 for GROUP BY */
       
  1528   u8 *pHasAgg           /* Set to TRUE if any term contains an aggregate */
       
  1529 ){
       
  1530   int i;
       
  1531   sqlite3 *db = pParse->db;
       
  1532   ExprList *pEList;
       
  1533 
       
  1534   if( pOrderBy==0 ) return 0;
       
  1535   if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
       
  1536     const char *zType = isOrder ? "ORDER" : "GROUP";
       
  1537     sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
       
  1538     return 1;
       
  1539   }
       
  1540   pEList = pSelect->pEList;
       
  1541   if( pEList==0 ){
       
  1542     return 0;
       
  1543   }
       
  1544   for(i=0; i<pOrderBy->nExpr; i++){
       
  1545     int iCol;
       
  1546     Expr *pE = pOrderBy->a[i].pExpr;
       
  1547     iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
       
  1548     if( iCol<0 ){
       
  1549       return 1;
       
  1550     }
       
  1551     if( iCol>pEList->nExpr ){
       
  1552       const char *zType = isOrder ? "ORDER" : "GROUP";
       
  1553       sqlite3ErrorMsg(pParse, 
       
  1554          "%r %s BY term out of range - should be "
       
  1555          "between 1 and %d", i+1, zType, pEList->nExpr);
       
  1556       return 1;
       
  1557     }
       
  1558     if( iCol>0 ){
       
  1559       CollSeq *pColl = pE->pColl;
       
  1560       int flags = pE->flags & EP_ExpCollate;
       
  1561       sqlite3ExprDelete(pE);
       
  1562       pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr);
       
  1563       pOrderBy->a[i].pExpr = pE;
       
  1564       if( pColl && flags ){
       
  1565         pE->pColl = pColl;
       
  1566         pE->flags |= flags;
       
  1567       }
       
  1568     }
       
  1569   }
       
  1570   return 0;
       
  1571 }
       
  1572 
       
  1573 /*
       
  1574 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
       
  1575 ** the number of errors seen.
       
  1576 **
       
  1577 ** The processing depends on whether the SELECT is simple or compound.
       
  1578 ** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY
       
  1579 ** clause needs to be an expression.  If any expression is an integer
       
  1580 ** constant, then that expression is replaced by the corresponding 
       
  1581 ** expression from the result set.
       
  1582 **
       
  1583 ** For compound SELECT statements, every expression needs to be of
       
  1584 ** type TK_COLUMN with a iTable value as given in the 4th parameter.
       
  1585 ** If any expression is an integer, that becomes the column number.
       
  1586 ** Otherwise, match the expression against result set columns from
       
  1587 ** the left-most SELECT.
       
  1588 */
       
  1589 static int processCompoundOrderBy(
       
  1590   Parse *pParse,        /* Parsing context.  Leave error messages here */
       
  1591   Select *pSelect,      /* The SELECT statement containing the ORDER BY */
       
  1592   int iTable            /* Output table for compound SELECT statements */
       
  1593 ){
       
  1594   int i;
       
  1595   ExprList *pOrderBy;
       
  1596   ExprList *pEList;
       
  1597   sqlite3 *db;
       
  1598   int moreToDo = 1;
       
  1599 
       
  1600   pOrderBy = pSelect->pOrderBy;
       
  1601   if( pOrderBy==0 ) return 0;
       
  1602   if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
       
  1603     sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
       
  1604     return 1;
       
  1605   }
       
  1606   db = pParse->db;
       
  1607   for(i=0; i<pOrderBy->nExpr; i++){
       
  1608     pOrderBy->a[i].done = 0;
       
  1609   }
       
  1610   while( pSelect->pPrior ){
       
  1611     pSelect = pSelect->pPrior;
       
  1612   }
       
  1613   while( pSelect && moreToDo ){
       
  1614     moreToDo = 0;
       
  1615     for(i=0; i<pOrderBy->nExpr; i++){
       
  1616       int iCol;
       
  1617       Expr *pE, *pDup;
       
  1618       if( pOrderBy->a[i].done ) continue;
       
  1619       pE = pOrderBy->a[i].pExpr;
       
  1620       pDup = sqlite3ExprDup(db, pE);
       
  1621       if( pDup==0 ){
       
  1622         return 1;
       
  1623       }
       
  1624       iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
       
  1625       sqlite3ExprDelete(pDup);
       
  1626       if( iCol<0 ){
       
  1627         return 1;
       
  1628       }
       
  1629       pEList = pSelect->pEList;
       
  1630       if( pEList==0 ){
       
  1631         return 1;
       
  1632       }
       
  1633       if( iCol>pEList->nExpr ){
       
  1634         sqlite3ErrorMsg(pParse, 
       
  1635            "%r ORDER BY term out of range - should be "
       
  1636            "between 1 and %d", i+1, pEList->nExpr);
       
  1637         return 1;
       
  1638       }
       
  1639       if( iCol>0 ){
       
  1640         pE->op = TK_COLUMN;
       
  1641         pE->iTable = iTable;
       
  1642         pE->iAgg = -1;
       
  1643         pE->iColumn = iCol-1;
       
  1644         pE->pTab = 0;
       
  1645         pOrderBy->a[i].done = 1;
       
  1646       }else{
       
  1647         moreToDo = 1;
       
  1648       }
       
  1649     }
       
  1650     pSelect = pSelect->pNext;
       
  1651   }
       
  1652   for(i=0; i<pOrderBy->nExpr; i++){
       
  1653     if( pOrderBy->a[i].done==0 ){
       
  1654       sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
       
  1655             "column in the result set", i+1);
       
  1656       return 1;
       
  1657     }
       
  1658   }
       
  1659   return 0;
       
  1660 }
       
  1661 
       
  1662 /*
       
  1663 ** Get a VDBE for the given parser context.  Create a new one if necessary.
       
  1664 ** If an error occurs, return NULL and leave a message in pParse.
       
  1665 */
       
  1666 Vdbe *sqlite3GetVdbe(Parse *pParse){
       
  1667   Vdbe *v = pParse->pVdbe;
       
  1668   if( v==0 ){
       
  1669     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
       
  1670   }
       
  1671   return v;
       
  1672 }
       
  1673 
       
  1674 
       
  1675 /*
       
  1676 ** Compute the iLimit and iOffset fields of the SELECT based on the
       
  1677 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
       
  1678 ** that appear in the original SQL statement after the LIMIT and OFFSET
       
  1679 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset 
       
  1680 ** are the integer memory register numbers for counters used to compute 
       
  1681 ** the limit and offset.  If there is no limit and/or offset, then 
       
  1682 ** iLimit and iOffset are negative.
       
  1683 **
       
  1684 ** This routine changes the values of iLimit and iOffset only if
       
  1685 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
       
  1686 ** iOffset should have been preset to appropriate default values
       
  1687 ** (usually but not always -1) prior to calling this routine.
       
  1688 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
       
  1689 ** redefined.  The UNION ALL operator uses this property to force
       
  1690 ** the reuse of the same limit and offset registers across multiple
       
  1691 ** SELECT statements.
       
  1692 */
       
  1693 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
       
  1694   Vdbe *v = 0;
       
  1695   int iLimit = 0;
       
  1696   int iOffset;
       
  1697   int addr1, addr2;
       
  1698 
       
  1699   /* 
       
  1700   ** "LIMIT -1" always shows all rows.  There is some
       
  1701   ** contraversy about what the correct behavior should be.
       
  1702   ** The current implementation interprets "LIMIT 0" to mean
       
  1703   ** no rows.
       
  1704   */
       
  1705   if( p->pLimit ){
       
  1706     p->iLimit = iLimit = pParse->nMem;
       
  1707     pParse->nMem += 2;
       
  1708     v = sqlite3GetVdbe(pParse);
       
  1709     if( v==0 ) return;
       
  1710     sqlite3ExprCode(pParse, p->pLimit);
       
  1711     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
       
  1712     sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1);
       
  1713     VdbeComment((v, "# LIMIT counter"));
       
  1714     sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
       
  1715     sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0);
       
  1716   }
       
  1717   if( p->pOffset ){
       
  1718     p->iOffset = iOffset = pParse->nMem++;
       
  1719     v = sqlite3GetVdbe(pParse);
       
  1720     if( v==0 ) return;
       
  1721     sqlite3ExprCode(pParse, p->pOffset);
       
  1722     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
       
  1723     sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
       
  1724     VdbeComment((v, "# OFFSET counter"));
       
  1725     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
       
  1726     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  1727     sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
       
  1728     sqlite3VdbeJumpHere(v, addr1);
       
  1729     if( p->pLimit ){
       
  1730       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
       
  1731     }
       
  1732   }
       
  1733   if( p->pLimit ){
       
  1734     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
       
  1735     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
       
  1736     sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
       
  1737     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
       
  1738     sqlite3VdbeJumpHere(v, addr1);
       
  1739     sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
       
  1740     VdbeComment((v, "# LIMIT+OFFSET"));
       
  1741     sqlite3VdbeJumpHere(v, addr2);
       
  1742   }
       
  1743 }
       
  1744 
       
  1745 /*
       
  1746 ** Allocate a virtual index to use for sorting.
       
  1747 */
       
  1748 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
       
  1749   if( pOrderBy ){
       
  1750     int addr;
       
  1751     assert( pOrderBy->iECursor==0 );
       
  1752     pOrderBy->iECursor = pParse->nTab++;
       
  1753     addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
       
  1754                             pOrderBy->iECursor, pOrderBy->nExpr+1);
       
  1755     assert( p->addrOpenEphm[2] == -1 );
       
  1756     p->addrOpenEphm[2] = addr;
       
  1757   }
       
  1758 }
       
  1759 
       
  1760 #ifndef SQLITE_OMIT_COMPOUND_SELECT
       
  1761 /*
       
  1762 ** Return the appropriate collating sequence for the iCol-th column of
       
  1763 ** the result set for the compound-select statement "p".  Return NULL if
       
  1764 ** the column has no default collating sequence.
       
  1765 **
       
  1766 ** The collating sequence for the compound select is taken from the
       
  1767 ** left-most term of the select that has a collating sequence.
       
  1768 */
       
  1769 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
       
  1770   CollSeq *pRet;
       
  1771   if( p->pPrior ){
       
  1772     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
       
  1773   }else{
       
  1774     pRet = 0;
       
  1775   }
       
  1776   if( pRet==0 ){
       
  1777     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
       
  1778   }
       
  1779   return pRet;
       
  1780 }
       
  1781 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
       
  1782 
       
  1783 #ifndef SQLITE_OMIT_COMPOUND_SELECT
       
  1784 /*
       
  1785 ** This routine is called to process a query that is really the union
       
  1786 ** or intersection of two or more separate queries.
       
  1787 **
       
  1788 ** "p" points to the right-most of the two queries.  the query on the
       
  1789 ** left is p->pPrior.  The left query could also be a compound query
       
  1790 ** in which case this routine will be called recursively. 
       
  1791 **
       
  1792 ** The results of the total query are to be written into a destination
       
  1793 ** of type eDest with parameter iParm.
       
  1794 **
       
  1795 ** Example 1:  Consider a three-way compound SQL statement.
       
  1796 **
       
  1797 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
       
  1798 **
       
  1799 ** This statement is parsed up as follows:
       
  1800 **
       
  1801 **     SELECT c FROM t3
       
  1802 **      |
       
  1803 **      `----->  SELECT b FROM t2
       
  1804 **                |
       
  1805 **                `------>  SELECT a FROM t1
       
  1806 **
       
  1807 ** The arrows in the diagram above represent the Select.pPrior pointer.
       
  1808 ** So if this routine is called with p equal to the t3 query, then
       
  1809 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
       
  1810 **
       
  1811 ** Notice that because of the way SQLite parses compound SELECTs, the
       
  1812 ** individual selects always group from left to right.
       
  1813 */
       
  1814 static int multiSelect(
       
  1815   Parse *pParse,        /* Parsing context */
       
  1816   Select *p,            /* The right-most of SELECTs to be coded */
       
  1817   int eDest,            /* \___  Store query results as specified */
       
  1818   int iParm,            /* /     by these two parameters.         */
       
  1819   char *aff             /* If eDest is SRT_Union, the affinity string */
       
  1820 ){
       
  1821   int rc = SQLITE_OK;   /* Success code from a subroutine */
       
  1822   Select *pPrior;       /* Another SELECT immediately to our left */
       
  1823   Vdbe *v;              /* Generate code to this VDBE */
       
  1824   int nCol;             /* Number of columns in the result set */
       
  1825   ExprList *pOrderBy;   /* The ORDER BY clause on p */
       
  1826   int aSetP2[2];        /* Set P2 value of these op to number of columns */
       
  1827   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
       
  1828 
       
  1829   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
       
  1830   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
       
  1831   */
       
  1832   if( p==0 || p->pPrior==0 ){
       
  1833     rc = 1;
       
  1834     goto multi_select_end;
       
  1835   }
       
  1836   pPrior = p->pPrior;
       
  1837   assert( pPrior->pRightmost!=pPrior );
       
  1838   assert( pPrior->pRightmost==p->pRightmost );
       
  1839   if( pPrior->pOrderBy ){
       
  1840     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
       
  1841       selectOpName(p->op));
       
  1842     rc = 1;
       
  1843     goto multi_select_end;
       
  1844   }
       
  1845   if( pPrior->pLimit ){
       
  1846     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
       
  1847       selectOpName(p->op));
       
  1848     rc = 1;
       
  1849     goto multi_select_end;
       
  1850   }
       
  1851 
       
  1852   /* Make sure we have a valid query engine.  If not, create a new one.
       
  1853   */
       
  1854   v = sqlite3GetVdbe(pParse);
       
  1855   if( v==0 ){
       
  1856     rc = 1;
       
  1857     goto multi_select_end;
       
  1858   }
       
  1859 
       
  1860   /* Create the destination temporary table if necessary
       
  1861   */
       
  1862   if( eDest==SRT_EphemTab ){
       
  1863     assert( p->pEList );
       
  1864     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
       
  1865     aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
       
  1866     eDest = SRT_Table;
       
  1867   }
       
  1868 
       
  1869   /* Generate code for the left and right SELECT statements.
       
  1870   */
       
  1871   pOrderBy = p->pOrderBy;
       
  1872   switch( p->op ){
       
  1873     case TK_ALL: {
       
  1874       if( pOrderBy==0 ){
       
  1875         int addr = 0;
       
  1876         assert( !pPrior->pLimit );
       
  1877         pPrior->pLimit = p->pLimit;
       
  1878         pPrior->pOffset = p->pOffset;
       
  1879         rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
       
  1880         p->pLimit = 0;
       
  1881         p->pOffset = 0;
       
  1882         if( rc ){
       
  1883           goto multi_select_end;
       
  1884         }
       
  1885         p->pPrior = 0;
       
  1886         p->iLimit = pPrior->iLimit;
       
  1887         p->iOffset = pPrior->iOffset;
       
  1888         if( p->iLimit>=0 ){
       
  1889           addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
       
  1890           VdbeComment((v, "# Jump ahead if LIMIT reached"));
       
  1891         }
       
  1892         rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
       
  1893         p->pPrior = pPrior;
       
  1894         if( rc ){
       
  1895           goto multi_select_end;
       
  1896         }
       
  1897         if( addr ){
       
  1898           sqlite3VdbeJumpHere(v, addr);
       
  1899         }
       
  1900         break;
       
  1901       }
       
  1902       /* For UNION ALL ... ORDER BY fall through to the next case */
       
  1903     }
       
  1904     case TK_EXCEPT:
       
  1905     case TK_UNION: {
       
  1906       int unionTab;    /* Cursor number of the temporary table holding result */
       
  1907       int op = 0;      /* One of the SRT_ operations to apply to self */
       
  1908       int priorOp;     /* The SRT_ operation to apply to prior selects */
       
  1909       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
       
  1910       int addr;
       
  1911 
       
  1912       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
       
  1913       if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
       
  1914         /* We can reuse a temporary table generated by a SELECT to our
       
  1915         ** right.
       
  1916         */
       
  1917         unionTab = iParm;
       
  1918       }else{
       
  1919         /* We will need to create our own temporary table to hold the
       
  1920         ** intermediate results.
       
  1921         */
       
  1922         unionTab = pParse->nTab++;
       
  1923         if( processCompoundOrderBy(pParse, p, unionTab) ){
       
  1924           rc = 1;
       
  1925           goto multi_select_end;
       
  1926         }
       
  1927         addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
       
  1928         if( priorOp==SRT_Table ){
       
  1929           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
       
  1930           aSetP2[nSetP2++] = addr;
       
  1931         }else{
       
  1932           assert( p->addrOpenEphm[0] == -1 );
       
  1933           p->addrOpenEphm[0] = addr;
       
  1934           p->pRightmost->usesEphm = 1;
       
  1935         }
       
  1936         createSortingIndex(pParse, p, pOrderBy);
       
  1937         assert( p->pEList );
       
  1938       }
       
  1939 
       
  1940       /* Code the SELECT statements to our left
       
  1941       */
       
  1942       assert( !pPrior->pOrderBy );
       
  1943       rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
       
  1944       if( rc ){
       
  1945         goto multi_select_end;
       
  1946       }
       
  1947 
       
  1948       /* Code the current SELECT statement
       
  1949       */
       
  1950       switch( p->op ){
       
  1951          case TK_EXCEPT:  op = SRT_Except;   break;
       
  1952          case TK_UNION:   op = SRT_Union;    break;
       
  1953          case TK_ALL:     op = SRT_Table;    break;
       
  1954       }
       
  1955       p->pPrior = 0;
       
  1956       p->pOrderBy = 0;
       
  1957       p->disallowOrderBy = pOrderBy!=0;
       
  1958       pLimit = p->pLimit;
       
  1959       p->pLimit = 0;
       
  1960       pOffset = p->pOffset;
       
  1961       p->pOffset = 0;
       
  1962       rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
       
  1963       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
       
  1964       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
       
  1965       sqlite3ExprListDelete(p->pOrderBy);
       
  1966       p->pPrior = pPrior;
       
  1967       p->pOrderBy = pOrderBy;
       
  1968       sqlite3ExprDelete(p->pLimit);
       
  1969       p->pLimit = pLimit;
       
  1970       p->pOffset = pOffset;
       
  1971       p->iLimit = -1;
       
  1972       p->iOffset = -1;
       
  1973       if( rc ){
       
  1974         goto multi_select_end;
       
  1975       }
       
  1976 
       
  1977 
       
  1978       /* Convert the data in the temporary table into whatever form
       
  1979       ** it is that we currently need.
       
  1980       */      
       
  1981       if( eDest!=priorOp || unionTab!=iParm ){
       
  1982         int iCont, iBreak, iStart;
       
  1983         assert( p->pEList );
       
  1984         if( eDest==SRT_Callback ){
       
  1985           Select *pFirst = p;
       
  1986           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
       
  1987           generateColumnNames(pParse, 0, pFirst->pEList);
       
  1988         }
       
  1989         iBreak = sqlite3VdbeMakeLabel(v);
       
  1990         iCont = sqlite3VdbeMakeLabel(v);
       
  1991         computeLimitRegisters(pParse, p, iBreak);
       
  1992         sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
       
  1993         iStart = sqlite3VdbeCurrentAddr(v);
       
  1994         rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
       
  1995                              pOrderBy, -1, eDest, iParm, 
       
  1996                              iCont, iBreak, 0);
       
  1997         if( rc ){
       
  1998           rc = 1;
       
  1999           goto multi_select_end;
       
  2000         }
       
  2001         sqlite3VdbeResolveLabel(v, iCont);
       
  2002         sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
       
  2003         sqlite3VdbeResolveLabel(v, iBreak);
       
  2004         sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
       
  2005       }
       
  2006       break;
       
  2007     }
       
  2008     case TK_INTERSECT: {
       
  2009       int tab1, tab2;
       
  2010       int iCont, iBreak, iStart;
       
  2011       Expr *pLimit, *pOffset;
       
  2012       int addr;
       
  2013 
       
  2014       /* INTERSECT is different from the others since it requires
       
  2015       ** two temporary tables.  Hence it has its own case.  Begin
       
  2016       ** by allocating the tables we will need.
       
  2017       */
       
  2018       tab1 = pParse->nTab++;
       
  2019       tab2 = pParse->nTab++;
       
  2020       if( processCompoundOrderBy(pParse, p, tab1) ){
       
  2021         rc = 1;
       
  2022         goto multi_select_end;
       
  2023       }
       
  2024       createSortingIndex(pParse, p, pOrderBy);
       
  2025 
       
  2026       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
       
  2027       assert( p->addrOpenEphm[0] == -1 );
       
  2028       p->addrOpenEphm[0] = addr;
       
  2029       p->pRightmost->usesEphm = 1;
       
  2030       assert( p->pEList );
       
  2031 
       
  2032       /* Code the SELECTs to our left into temporary table "tab1".
       
  2033       */
       
  2034       rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
       
  2035       if( rc ){
       
  2036         goto multi_select_end;
       
  2037       }
       
  2038 
       
  2039       /* Code the current SELECT into temporary table "tab2"
       
  2040       */
       
  2041       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
       
  2042       assert( p->addrOpenEphm[1] == -1 );
       
  2043       p->addrOpenEphm[1] = addr;
       
  2044       p->pPrior = 0;
       
  2045       pLimit = p->pLimit;
       
  2046       p->pLimit = 0;
       
  2047       pOffset = p->pOffset;
       
  2048       p->pOffset = 0;
       
  2049       rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
       
  2050       p->pPrior = pPrior;
       
  2051       sqlite3ExprDelete(p->pLimit);
       
  2052       p->pLimit = pLimit;
       
  2053       p->pOffset = pOffset;
       
  2054       if( rc ){
       
  2055         goto multi_select_end;
       
  2056       }
       
  2057 
       
  2058       /* Generate code to take the intersection of the two temporary
       
  2059       ** tables.
       
  2060       */
       
  2061       assert( p->pEList );
       
  2062       if( eDest==SRT_Callback ){
       
  2063         Select *pFirst = p;
       
  2064         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
       
  2065         generateColumnNames(pParse, 0, pFirst->pEList);
       
  2066       }
       
  2067       iBreak = sqlite3VdbeMakeLabel(v);
       
  2068       iCont = sqlite3VdbeMakeLabel(v);
       
  2069       computeLimitRegisters(pParse, p, iBreak);
       
  2070       sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
       
  2071       iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
       
  2072       sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
       
  2073       rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
       
  2074                              pOrderBy, -1, eDest, iParm, 
       
  2075                              iCont, iBreak, 0);
       
  2076       if( rc ){
       
  2077         rc = 1;
       
  2078         goto multi_select_end;
       
  2079       }
       
  2080       sqlite3VdbeResolveLabel(v, iCont);
       
  2081       sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
       
  2082       sqlite3VdbeResolveLabel(v, iBreak);
       
  2083       sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
       
  2084       sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
       
  2085       break;
       
  2086     }
       
  2087   }
       
  2088 
       
  2089   /* Make sure all SELECTs in the statement have the same number of elements
       
  2090   ** in their result sets.
       
  2091   */
       
  2092   assert( p->pEList && pPrior->pEList );
       
  2093   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
       
  2094     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
       
  2095       " do not have the same number of result columns", selectOpName(p->op));
       
  2096     rc = 1;
       
  2097     goto multi_select_end;
       
  2098   }
       
  2099 
       
  2100   /* Set the number of columns in temporary tables
       
  2101   */
       
  2102   nCol = p->pEList->nExpr;
       
  2103   while( nSetP2 ){
       
  2104     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
       
  2105   }
       
  2106 
       
  2107   /* Compute collating sequences used by either the ORDER BY clause or
       
  2108   ** by any temporary tables needed to implement the compound select.
       
  2109   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
       
  2110   ** ORDER BY processing if there is an ORDER BY clause.
       
  2111   **
       
  2112   ** This section is run by the right-most SELECT statement only.
       
  2113   ** SELECT statements to the left always skip this part.  The right-most
       
  2114   ** SELECT might also skip this part if it has no ORDER BY clause and
       
  2115   ** no temp tables are required.
       
  2116   */
       
  2117   if( pOrderBy || p->usesEphm ){
       
  2118     int i;                        /* Loop counter */
       
  2119     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
       
  2120     Select *pLoop;                /* For looping through SELECT statements */
       
  2121     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
       
  2122     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
       
  2123     CollSeq **aCopy;              /* A copy of pKeyInfo->aColl[] */
       
  2124 
       
  2125     assert( p->pRightmost==p );
       
  2126     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
       
  2127     pKeyInfo = (KeyInfo*)sqlite3DbMallocZero(pParse->db,
       
  2128                        sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
       
  2129     if( !pKeyInfo ){
       
  2130       rc = SQLITE_NOMEM;
       
  2131       goto multi_select_end;
       
  2132     }
       
  2133 
       
  2134     pKeyInfo->enc = ENC(pParse->db);
       
  2135     pKeyInfo->nField = nCol;
       
  2136 
       
  2137     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
       
  2138       *apColl = multiSelectCollSeq(pParse, p, i);
       
  2139       if( 0==*apColl ){
       
  2140         *apColl = pParse->db->pDfltColl;
       
  2141       }
       
  2142     }
       
  2143 
       
  2144     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
       
  2145       for(i=0; i<2; i++){
       
  2146         int addr = pLoop->addrOpenEphm[i];
       
  2147         if( addr<0 ){
       
  2148           /* If [0] is unused then [1] is also unused.  So we can
       
  2149           ** always safely abort as soon as the first unused slot is found */
       
  2150           assert( pLoop->addrOpenEphm[1]<0 );
       
  2151           break;
       
  2152         }
       
  2153         sqlite3VdbeChangeP2(v, addr, nCol);
       
  2154         sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
       
  2155         pLoop->addrOpenEphm[i] = -1;
       
  2156       }
       
  2157     }
       
  2158 
       
  2159     if( pOrderBy ){
       
  2160 		ExprList::ExprList_item *pOTerm = pOrderBy->a;
       
  2161       int nOrderByExpr = pOrderBy->nExpr;
       
  2162       int addr;
       
  2163       u8 *pSortOrder;
       
  2164 
       
  2165       /* Reuse the same pKeyInfo for the ORDER BY as was used above for
       
  2166       ** the compound select statements.  Except we have to change out the
       
  2167       ** pKeyInfo->aColl[] values.  Some of the aColl[] values will be
       
  2168       ** reused when constructing the pKeyInfo for the ORDER BY, so make
       
  2169       ** a copy.  Sufficient space to hold both the nCol entries for
       
  2170       ** the compound select and the nOrderbyExpr entries for the ORDER BY
       
  2171       ** was allocated above.  But we need to move the compound select
       
  2172       ** entries out of the way before constructing the ORDER BY entries.
       
  2173       ** Move the compound select entries into aCopy[] where they can be
       
  2174       ** accessed and reused when constructing the ORDER BY entries.
       
  2175       ** Because nCol might be greater than or less than nOrderByExpr
       
  2176       ** we have to use memmove() when doing the copy.
       
  2177       */
       
  2178       aCopy = &pKeyInfo->aColl[nOrderByExpr];
       
  2179       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
       
  2180       memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
       
  2181 
       
  2182       apColl = pKeyInfo->aColl;
       
  2183       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
       
  2184         Expr *pExpr = pOTerm->pExpr;
       
  2185         if( (pExpr->flags & EP_ExpCollate) ){
       
  2186           assert( pExpr->pColl!=0 );
       
  2187           *apColl = pExpr->pColl;
       
  2188         }else{
       
  2189           *apColl = aCopy[pExpr->iColumn];
       
  2190         }
       
  2191         *pSortOrder = pOTerm->sortOrder;
       
  2192       }
       
  2193       assert( p->pRightmost==p );
       
  2194       assert( p->addrOpenEphm[2]>=0 );
       
  2195       addr = p->addrOpenEphm[2];
       
  2196       sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
       
  2197       pKeyInfo->nField = nOrderByExpr;
       
  2198       sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
       
  2199       pKeyInfo = 0;
       
  2200       generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
       
  2201     }
       
  2202 
       
  2203     sqlite3_free(pKeyInfo);
       
  2204   }
       
  2205 
       
  2206 multi_select_end:
       
  2207   return rc;
       
  2208 }
       
  2209 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
       
  2210 
       
  2211 #ifndef SQLITE_OMIT_VIEW
       
  2212 /* Forward Declarations */
       
  2213 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
       
  2214 static void substSelect(sqlite3*, Select *, int, ExprList *);
       
  2215 
       
  2216 /*
       
  2217 ** Scan through the expression pExpr.  Replace every reference to
       
  2218 ** a column in table number iTable with a copy of the iColumn-th
       
  2219 ** entry in pEList.  (But leave references to the ROWID column 
       
  2220 ** unchanged.)
       
  2221 **
       
  2222 ** This routine is part of the flattening procedure.  A subquery
       
  2223 ** whose result set is defined by pEList appears as entry in the
       
  2224 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
       
  2225 ** FORM clause entry is iTable.  This routine make the necessary 
       
  2226 ** changes to pExpr so that it refers directly to the source table
       
  2227 ** of the subquery rather the result set of the subquery.
       
  2228 */
       
  2229 static void substExpr(
       
  2230   sqlite3 *db,        /* Report malloc errors to this connection */
       
  2231   Expr *pExpr,        /* Expr in which substitution occurs */
       
  2232   int iTable,         /* Table to be substituted */
       
  2233   ExprList *pEList    /* Substitute expressions */
       
  2234 ){
       
  2235   if( pExpr==0 ) return;
       
  2236   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
       
  2237     if( pExpr->iColumn<0 ){
       
  2238       pExpr->op = TK_NULL;
       
  2239     }else{
       
  2240       Expr *pNew;
       
  2241       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
       
  2242       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
       
  2243       pNew = pEList->a[pExpr->iColumn].pExpr;
       
  2244       assert( pNew!=0 );
       
  2245       pExpr->op = pNew->op;
       
  2246       assert( pExpr->pLeft==0 );
       
  2247       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
       
  2248       assert( pExpr->pRight==0 );
       
  2249       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
       
  2250       assert( pExpr->pList==0 );
       
  2251       pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
       
  2252       pExpr->iTable = pNew->iTable;
       
  2253       pExpr->pTab = pNew->pTab;
       
  2254       pExpr->iColumn = pNew->iColumn;
       
  2255       pExpr->iAgg = pNew->iAgg;
       
  2256       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
       
  2257       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
       
  2258       pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
       
  2259       pExpr->flags = pNew->flags;
       
  2260     }
       
  2261   }else{
       
  2262     substExpr(db, pExpr->pLeft, iTable, pEList);
       
  2263     substExpr(db, pExpr->pRight, iTable, pEList);
       
  2264     substSelect(db, pExpr->pSelect, iTable, pEList);
       
  2265     substExprList(db, pExpr->pList, iTable, pEList);
       
  2266   }
       
  2267 }
       
  2268 static void substExprList(
       
  2269   sqlite3 *db,         /* Report malloc errors here */
       
  2270   ExprList *pList,     /* List to scan and in which to make substitutes */
       
  2271   int iTable,          /* Table to be substituted */
       
  2272   ExprList *pEList     /* Substitute values */
       
  2273 ){
       
  2274   int i;
       
  2275   if( pList==0 ) return;
       
  2276   for(i=0; i<pList->nExpr; i++){
       
  2277     substExpr(db, pList->a[i].pExpr, iTable, pEList);
       
  2278   }
       
  2279 }
       
  2280 static void substSelect(
       
  2281   sqlite3 *db,         /* Report malloc errors here */
       
  2282   Select *p,           /* SELECT statement in which to make substitutions */
       
  2283   int iTable,          /* Table to be replaced */
       
  2284   ExprList *pEList     /* Substitute values */
       
  2285 ){
       
  2286   if( !p ) return;
       
  2287   substExprList(db, p->pEList, iTable, pEList);
       
  2288   substExprList(db, p->pGroupBy, iTable, pEList);
       
  2289   substExprList(db, p->pOrderBy, iTable, pEList);
       
  2290   substExpr(db, p->pHaving, iTable, pEList);
       
  2291   substExpr(db, p->pWhere, iTable, pEList);
       
  2292   substSelect(db, p->pPrior, iTable, pEList);
       
  2293 }
       
  2294 #endif /* !defined(SQLITE_OMIT_VIEW) */
       
  2295 
       
  2296 #ifndef SQLITE_OMIT_VIEW
       
  2297 /*
       
  2298 ** This routine attempts to flatten subqueries in order to speed
       
  2299 ** execution.  It returns 1 if it makes changes and 0 if no flattening
       
  2300 ** occurs.
       
  2301 **
       
  2302 ** To understand the concept of flattening, consider the following
       
  2303 ** query:
       
  2304 **
       
  2305 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
       
  2306 **
       
  2307 ** The default way of implementing this query is to execute the
       
  2308 ** subquery first and store the results in a temporary table, then
       
  2309 ** run the outer query on that temporary table.  This requires two
       
  2310 ** passes over the data.  Furthermore, because the temporary table
       
  2311 ** has no indices, the WHERE clause on the outer query cannot be
       
  2312 ** optimized.
       
  2313 **
       
  2314 ** This routine attempts to rewrite queries such as the above into
       
  2315 ** a single flat select, like this:
       
  2316 **
       
  2317 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
       
  2318 **
       
  2319 ** The code generated for this simpification gives the same result
       
  2320 ** but only has to scan the data once.  And because indices might 
       
  2321 ** exist on the table t1, a complete scan of the data might be
       
  2322 ** avoided.
       
  2323 **
       
  2324 ** Flattening is only attempted if all of the following are true:
       
  2325 **
       
  2326 **   (1)  The subquery and the outer query do not both use aggregates.
       
  2327 **
       
  2328 **   (2)  The subquery is not an aggregate or the outer query is not a join.
       
  2329 **
       
  2330 **   (3)  The subquery is not the right operand of a left outer join, or
       
  2331 **        the subquery is not itself a join.  (Ticket #306)
       
  2332 **
       
  2333 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
       
  2334 **
       
  2335 **   (5)  The subquery is not DISTINCT or the outer query does not use
       
  2336 **        aggregates.
       
  2337 **
       
  2338 **   (6)  The subquery does not use aggregates or the outer query is not
       
  2339 **        DISTINCT.
       
  2340 **
       
  2341 **   (7)  The subquery has a FROM clause.
       
  2342 **
       
  2343 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
       
  2344 **
       
  2345 **   (9)  The subquery does not use LIMIT or the outer query does not use
       
  2346 **        aggregates.
       
  2347 **
       
  2348 **  (10)  The subquery does not use aggregates or the outer query does not
       
  2349 **        use LIMIT.
       
  2350 **
       
  2351 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
       
  2352 **
       
  2353 **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
       
  2354 **        subquery has no WHERE clause.  (added by ticket #350)
       
  2355 **
       
  2356 **  (13)  The subquery and outer query do not both use LIMIT
       
  2357 **
       
  2358 **  (14)  The subquery does not use OFFSET
       
  2359 **
       
  2360 **  (15)  The outer query is not part of a compound select or the
       
  2361 **        subquery does not have both an ORDER BY and a LIMIT clause.
       
  2362 **        (See ticket #2339)
       
  2363 **
       
  2364 ** In this routine, the "p" parameter is a pointer to the outer query.
       
  2365 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
       
  2366 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
       
  2367 **
       
  2368 ** If flattening is not attempted, this routine is a no-op and returns 0.
       
  2369 ** If flattening is attempted this routine returns 1.
       
  2370 **
       
  2371 ** All of the expression analysis must occur on both the outer query and
       
  2372 ** the subquery before this routine runs.
       
  2373 */
       
  2374 static int flattenSubquery(
       
  2375   sqlite3 *db,         /* Database connection */
       
  2376   Select *p,           /* The parent or outer SELECT statement */
       
  2377   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
       
  2378   int isAgg,           /* True if outer SELECT uses aggregate functions */
       
  2379   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
       
  2380 ){
       
  2381   Select *pSub;       /* The inner query or "subquery" */
       
  2382   SrcList *pSrc;      /* The FROM clause of the outer query */
       
  2383   SrcList *pSubSrc;   /* The FROM clause of the subquery */
       
  2384   ExprList *pList;    /* The result set of the outer query */
       
  2385   int iParent;        /* VDBE cursor number of the pSub result set temp table */
       
  2386   int i;              /* Loop counter */
       
  2387   Expr *pWhere;                    /* The WHERE clause */
       
  2388   SrcList::SrcList_item *pSubitem;   /* The subquery */
       
  2389 
       
  2390   /* Check to see if flattening is permitted.  Return 0 if not.
       
  2391   */
       
  2392   if( p==0 ) return 0;
       
  2393   pSrc = p->pSrc;
       
  2394   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
       
  2395   pSubitem = &pSrc->a[iFrom];
       
  2396   pSub = pSubitem->pSelect;
       
  2397   assert( pSub!=0 );
       
  2398   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
       
  2399   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
       
  2400   pSubSrc = pSub->pSrc;
       
  2401   assert( pSubSrc );
       
  2402   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
       
  2403   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
       
  2404   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
       
  2405   ** became arbitrary expressions, we were forced to add restrictions (13)
       
  2406   ** and (14). */
       
  2407   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
       
  2408   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
       
  2409   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
       
  2410     return 0;                                            /* Restriction (15) */
       
  2411   }
       
  2412   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
       
  2413   if( (pSub->isDistinct || pSub->pLimit) 
       
  2414          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
       
  2415      return 0;       
       
  2416   }
       
  2417   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
       
  2418   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
       
  2419      return 0;                                           /* Restriction (11) */
       
  2420   }
       
  2421 
       
  2422   /* Restriction 3:  If the subquery is a join, make sure the subquery is 
       
  2423   ** not used as the right operand of an outer join.  Examples of why this
       
  2424   ** is not allowed:
       
  2425   **
       
  2426   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
       
  2427   **
       
  2428   ** If we flatten the above, we would get
       
  2429   **
       
  2430   **         (t1 LEFT OUTER JOIN t2) JOIN t3
       
  2431   **
       
  2432   ** which is not at all the same thing.
       
  2433   */
       
  2434   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
       
  2435     return 0;
       
  2436   }
       
  2437 
       
  2438   /* Restriction 12:  If the subquery is the right operand of a left outer
       
  2439   ** join, make sure the subquery has no WHERE clause.
       
  2440   ** An examples of why this is not allowed:
       
  2441   **
       
  2442   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
       
  2443   **
       
  2444   ** If we flatten the above, we would get
       
  2445   **
       
  2446   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
       
  2447   **
       
  2448   ** But the t2.x>0 test will always fail on a NULL row of t2, which
       
  2449   ** effectively converts the OUTER JOIN into an INNER JOIN.
       
  2450   */
       
  2451   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
       
  2452     return 0;
       
  2453   }
       
  2454 
       
  2455   /* If we reach this point, it means flattening is permitted for the
       
  2456   ** iFrom-th entry of the FROM clause in the outer query.
       
  2457   */
       
  2458 
       
  2459   /* Move all of the FROM elements of the subquery into the
       
  2460   ** the FROM clause of the outer query.  Before doing this, remember
       
  2461   ** the cursor number for the original outer query FROM element in
       
  2462   ** iParent.  The iParent cursor will never be used.  Subsequent code
       
  2463   ** will scan expressions looking for iParent references and replace
       
  2464   ** those references with expressions that resolve to the subquery FROM
       
  2465   ** elements we are now copying in.
       
  2466   */
       
  2467   iParent = pSubitem->iCursor;
       
  2468   {
       
  2469     int nSubSrc = pSubSrc->nSrc;
       
  2470     int jointype = pSubitem->jointype;
       
  2471 
       
  2472     sqlite3DeleteTable(pSubitem->pTab);
       
  2473     sqlite3_free(pSubitem->zDatabase);
       
  2474     sqlite3_free(pSubitem->zName);
       
  2475     sqlite3_free(pSubitem->zAlias);
       
  2476     pSubitem->pTab = 0;
       
  2477     pSubitem->zDatabase = 0;
       
  2478     pSubitem->zName = 0;
       
  2479     pSubitem->zAlias = 0;
       
  2480     if( nSubSrc>1 ){
       
  2481       int extra = nSubSrc - 1;
       
  2482       for(i=1; i<nSubSrc; i++){
       
  2483         pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
       
  2484         if( pSrc==0 ){
       
  2485           p->pSrc = 0;
       
  2486           return 1;
       
  2487         }
       
  2488       }
       
  2489       p->pSrc = pSrc;
       
  2490       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
       
  2491         pSrc->a[i] = pSrc->a[i-extra];
       
  2492       }
       
  2493     }
       
  2494     for(i=0; i<nSubSrc; i++){
       
  2495       pSrc->a[i+iFrom] = pSubSrc->a[i];
       
  2496       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
       
  2497     }
       
  2498     pSrc->a[iFrom].jointype = jointype;
       
  2499   }
       
  2500 
       
  2501   /* Now begin substituting subquery result set expressions for 
       
  2502   ** references to the iParent in the outer query.
       
  2503   ** 
       
  2504   ** Example:
       
  2505   **
       
  2506   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
       
  2507   **   \                     \_____________ subquery __________/          /
       
  2508   **    \_____________________ outer query ______________________________/
       
  2509   **
       
  2510   ** We look at every expression in the outer query and every place we see
       
  2511   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
       
  2512   */
       
  2513   pList = p->pEList;
       
  2514   for(i=0; i<pList->nExpr; i++){
       
  2515     Expr *pExpr;
       
  2516     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
       
  2517       pList->a[i].zName = 
       
  2518              sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
       
  2519     }
       
  2520   }
       
  2521   substExprList(db, p->pEList, iParent, pSub->pEList);
       
  2522   if( isAgg ){
       
  2523     substExprList(db, p->pGroupBy, iParent, pSub->pEList);
       
  2524     substExpr(db, p->pHaving, iParent, pSub->pEList);
       
  2525   }
       
  2526   if( pSub->pOrderBy ){
       
  2527     assert( p->pOrderBy==0 );
       
  2528     p->pOrderBy = pSub->pOrderBy;
       
  2529     pSub->pOrderBy = 0;
       
  2530   }else if( p->pOrderBy ){
       
  2531     substExprList(db, p->pOrderBy, iParent, pSub->pEList);
       
  2532   }
       
  2533   if( pSub->pWhere ){
       
  2534     pWhere = sqlite3ExprDup(db, pSub->pWhere);
       
  2535   }else{
       
  2536     pWhere = 0;
       
  2537   }
       
  2538   if( subqueryIsAgg ){
       
  2539     assert( p->pHaving==0 );
       
  2540     p->pHaving = p->pWhere;
       
  2541     p->pWhere = pWhere;
       
  2542     substExpr(db, p->pHaving, iParent, pSub->pEList);
       
  2543     p->pHaving = sqlite3ExprAnd(db, p->pHaving, 
       
  2544                                 sqlite3ExprDup(db, pSub->pHaving));
       
  2545     assert( p->pGroupBy==0 );
       
  2546     p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
       
  2547   }else{
       
  2548     substExpr(db, p->pWhere, iParent, pSub->pEList);
       
  2549     p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere);
       
  2550   }
       
  2551 
       
  2552   /* The flattened query is distinct if either the inner or the
       
  2553   ** outer query is distinct. 
       
  2554   */
       
  2555   p->isDistinct = p->isDistinct || pSub->isDistinct;
       
  2556 
       
  2557   /*
       
  2558   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
       
  2559   **
       
  2560   ** One is tempted to try to add a and b to combine the limits.  But this
       
  2561   ** does not work if either limit is negative.
       
  2562   */
       
  2563   if( pSub->pLimit ){
       
  2564     p->pLimit = pSub->pLimit;
       
  2565     pSub->pLimit = 0;
       
  2566   }
       
  2567 
       
  2568   /* Finially, delete what is left of the subquery and return
       
  2569   ** success.
       
  2570   */
       
  2571   sqlite3SelectDelete(pSub);
       
  2572   return 1;
       
  2573 }
       
  2574 #endif /* SQLITE_OMIT_VIEW */
       
  2575 
       
  2576 /*
       
  2577 ** Analyze the SELECT statement passed in as an argument to see if it
       
  2578 ** is a simple min() or max() query.  If it is and this query can be
       
  2579 ** satisfied using a single seek to the beginning or end of an index,
       
  2580 ** then generate the code for this SELECT and return 1.  If this is not a 
       
  2581 ** simple min() or max() query, then return 0;
       
  2582 **
       
  2583 ** A simply min() or max() query looks like this:
       
  2584 **
       
  2585 **    SELECT min(a) FROM table;
       
  2586 **    SELECT max(a) FROM table;
       
  2587 **
       
  2588 ** The query may have only a single table in its FROM argument.  There
       
  2589 ** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
       
  2590 ** be the min() or max() of a single column of the table.  The column
       
  2591 ** in the min() or max() function must be indexed.
       
  2592 **
       
  2593 ** The parameters to this routine are the same as for sqlite3Select().
       
  2594 ** See the header comment on that routine for additional information.
       
  2595 */
       
  2596 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
       
  2597   Expr *pExpr;
       
  2598   int iCol;
       
  2599   Table *pTab;
       
  2600   Index *pIdx;
       
  2601   int base;
       
  2602   Vdbe *v;
       
  2603   int seekOp;
       
  2604   ExprList *pEList, *pList, eList;
       
  2605   ExprList::ExprList_item eListItem;
       
  2606   SrcList *pSrc;
       
  2607   int brk;
       
  2608   int iDb;
       
  2609 
       
  2610   /* Check to see if this query is a simple min() or max() query.  Return
       
  2611   ** zero if it is  not.
       
  2612   */
       
  2613   if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
       
  2614   pSrc = p->pSrc;
       
  2615   if( pSrc->nSrc!=1 ) return 0;
       
  2616   pEList = p->pEList;
       
  2617   if( pEList->nExpr!=1 ) return 0;
       
  2618   pExpr = pEList->a[0].pExpr;
       
  2619   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
       
  2620   pList = pExpr->pList;
       
  2621   if( pList==0 || pList->nExpr!=1 ) return 0;
       
  2622   if( pExpr->token.n!=3 ) return 0;
       
  2623   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
       
  2624     seekOp = OP_Rewind;
       
  2625   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
       
  2626     seekOp = OP_Last;
       
  2627   }else{
       
  2628     return 0;
       
  2629   }
       
  2630   pExpr = pList->a[0].pExpr;
       
  2631   if( pExpr->op!=TK_COLUMN ) return 0;
       
  2632   iCol = pExpr->iColumn;
       
  2633   pTab = pSrc->a[0].pTab;
       
  2634 
       
  2635   /* This optimization cannot be used with virtual tables. */
       
  2636   if( IsVirtual(pTab) ) return 0;
       
  2637 
       
  2638   /* If we get to here, it means the query is of the correct form.
       
  2639   ** Check to make sure we have an index and make pIdx point to the
       
  2640   ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
       
  2641   ** key column, no index is necessary so set pIdx to NULL.  If no
       
  2642   ** usable index is found, return 0.
       
  2643   */
       
  2644   if( iCol<0 ){
       
  2645     pIdx = 0;
       
  2646   }else{
       
  2647     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
       
  2648     if( pColl==0 ) return 0;
       
  2649     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
       
  2650       assert( pIdx->nColumn>=1 );
       
  2651       if( pIdx->aiColumn[0]==iCol && 
       
  2652           0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
       
  2653         break;
       
  2654       }
       
  2655     }
       
  2656     if( pIdx==0 ) return 0;
       
  2657   }
       
  2658 
       
  2659   /* Identify column types if we will be using the callback.  This
       
  2660   ** step is skipped if the output is going to a table or a memory cell.
       
  2661   ** The column names have already been generated in the calling function.
       
  2662   */
       
  2663   v = sqlite3GetVdbe(pParse);
       
  2664   if( v==0 ) return 0;
       
  2665 
       
  2666   /* If the output is destined for a temporary table, open that table.
       
  2667   */
       
  2668   if( eDest==SRT_EphemTab ){
       
  2669     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
       
  2670   }
       
  2671 
       
  2672   /* Generating code to find the min or the max.  Basically all we have
       
  2673   ** to do is find the first or the last entry in the chosen index.  If
       
  2674   ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
       
  2675   ** or last entry in the main table.
       
  2676   */
       
  2677   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
       
  2678   assert( iDb>=0 || pTab->isEphem );
       
  2679   sqlite3CodeVerifySchema(pParse, iDb);
       
  2680   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
       
  2681   base = pSrc->a[0].iCursor;
       
  2682   brk = sqlite3VdbeMakeLabel(v);
       
  2683   computeLimitRegisters(pParse, p, brk);
       
  2684   if( pSrc->a[0].pSelect==0 ){
       
  2685     sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
       
  2686   }
       
  2687   if( pIdx==0 ){
       
  2688     sqlite3VdbeAddOp(v, seekOp, base, 0);
       
  2689   }else{
       
  2690     /* Even though the cursor used to open the index here is closed
       
  2691     ** as soon as a single value has been read from it, allocate it
       
  2692     ** using (pParse->nTab++) to prevent the cursor id from being 
       
  2693     ** reused. This is important for statements of the form 
       
  2694     ** "INSERT INTO x SELECT max() FROM x".
       
  2695     */
       
  2696     int iIdx;
       
  2697     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
       
  2698     iIdx = pParse->nTab++;
       
  2699     assert( pIdx->pSchema==pTab->pSchema );
       
  2700     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
       
  2701     sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 
       
  2702         (char*)pKey, P3_KEYINFO_HANDOFF);
       
  2703     if( seekOp==OP_Rewind ){
       
  2704       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
       
  2705       sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
       
  2706       seekOp = OP_MoveGt;
       
  2707     }
       
  2708     if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){
       
  2709       /* Ticket #2514: invert the seek operator if we are using
       
  2710       ** a descending index. */
       
  2711       if( seekOp==OP_Last ){
       
  2712         seekOp = OP_Rewind;
       
  2713       }else{
       
  2714         assert( seekOp==OP_MoveGt );
       
  2715         seekOp = OP_MoveLt;
       
  2716       }
       
  2717     }
       
  2718     sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
       
  2719     sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
       
  2720     sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
       
  2721     sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
       
  2722   }
       
  2723   eList.nExpr = 1;
       
  2724   memset(&eListItem, 0, sizeof(eListItem));
       
  2725   eList.a = &eListItem;
       
  2726   eList.a[0].pExpr = pExpr;
       
  2727   selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
       
  2728   sqlite3VdbeResolveLabel(v, brk);
       
  2729   sqlite3VdbeAddOp(v, OP_Close, base, 0);
       
  2730   
       
  2731   return 1;
       
  2732 }
       
  2733 
       
  2734 /*
       
  2735 ** This routine resolves any names used in the result set of the
       
  2736 ** supplied SELECT statement. If the SELECT statement being resolved
       
  2737 ** is a sub-select, then pOuterNC is a pointer to the NameContext 
       
  2738 ** of the parent SELECT.
       
  2739 */
       
  2740 int sqlite3SelectResolve(
       
  2741   Parse *pParse,         /* The parser context */
       
  2742   Select *p,             /* The SELECT statement being coded. */
       
  2743   NameContext *pOuterNC  /* The outer name context. May be NULL. */
       
  2744 ){
       
  2745   ExprList *pEList;          /* Result set. */
       
  2746   int i;                     /* For-loop variable used in multiple places */
       
  2747   NameContext sNC;           /* Local name-context */
       
  2748   ExprList *pGroupBy;        /* The group by clause */
       
  2749 
       
  2750   /* If this routine has run before, return immediately. */
       
  2751   if( p->isResolved ){
       
  2752     assert( !pOuterNC );
       
  2753     return SQLITE_OK;
       
  2754   }
       
  2755   p->isResolved = 1;
       
  2756 
       
  2757   /* If there have already been errors, do nothing. */
       
  2758   if( pParse->nErr>0 ){
       
  2759     return SQLITE_ERROR;
       
  2760   }
       
  2761 
       
  2762   /* Prepare the select statement. This call will allocate all cursors
       
  2763   ** required to handle the tables and subqueries in the FROM clause.
       
  2764   */
       
  2765   if( prepSelectStmt(pParse, p) ){
       
  2766     return SQLITE_ERROR;
       
  2767   }
       
  2768 
       
  2769   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
       
  2770   ** are not allowed to refer to any names, so pass an empty NameContext.
       
  2771   */
       
  2772   memset(&sNC, 0, sizeof(sNC));
       
  2773   sNC.pParse = pParse;
       
  2774   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
       
  2775       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
       
  2776     return SQLITE_ERROR;
       
  2777   }
       
  2778 
       
  2779   /* Set up the local name-context to pass to ExprResolveNames() to
       
  2780   ** resolve the expression-list.
       
  2781   */
       
  2782   sNC.allowAgg = 1;
       
  2783   sNC.pSrcList = p->pSrc;
       
  2784   sNC.pNext = pOuterNC;
       
  2785 
       
  2786   /* Resolve names in the result set. */
       
  2787   pEList = p->pEList;
       
  2788   if( !pEList ) return SQLITE_ERROR;
       
  2789   for(i=0; i<pEList->nExpr; i++){
       
  2790     Expr *pX = pEList->a[i].pExpr;
       
  2791     if( sqlite3ExprResolveNames(&sNC, pX) ){
       
  2792       return SQLITE_ERROR;
       
  2793     }
       
  2794   }
       
  2795 
       
  2796   /* If there are no aggregate functions in the result-set, and no GROUP BY 
       
  2797   ** expression, do not allow aggregates in any of the other expressions.
       
  2798   */
       
  2799   assert( !p->isAgg );
       
  2800   pGroupBy = p->pGroupBy;
       
  2801   if( pGroupBy || sNC.hasAgg ){
       
  2802     p->isAgg = 1;
       
  2803   }else{
       
  2804     sNC.allowAgg = 0;
       
  2805   }
       
  2806 
       
  2807   /* If a HAVING clause is present, then there must be a GROUP BY clause.
       
  2808   */
       
  2809   if( p->pHaving && !pGroupBy ){
       
  2810     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
       
  2811     return SQLITE_ERROR;
       
  2812   }
       
  2813 
       
  2814   /* Add the expression list to the name-context before parsing the
       
  2815   ** other expressions in the SELECT statement. This is so that
       
  2816   ** expressions in the WHERE clause (etc.) can refer to expressions by
       
  2817   ** aliases in the result set.
       
  2818   **
       
  2819   ** Minor point: If this is the case, then the expression will be
       
  2820   ** re-evaluated for each reference to it.
       
  2821   */
       
  2822   sNC.pEList = p->pEList;
       
  2823   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
       
  2824      sqlite3ExprResolveNames(&sNC, p->pHaving) ){
       
  2825     return SQLITE_ERROR;
       
  2826   }
       
  2827   if( p->pPrior==0 ){
       
  2828     if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){
       
  2829       return SQLITE_ERROR;
       
  2830     }
       
  2831   }
       
  2832   if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){
       
  2833     return SQLITE_ERROR;
       
  2834   }
       
  2835 
       
  2836   if( pParse->db->mallocFailed ){
       
  2837     return SQLITE_NOMEM;
       
  2838   }
       
  2839 
       
  2840   /* Make sure the GROUP BY clause does not contain aggregate functions.
       
  2841   */
       
  2842   if( pGroupBy ){
       
  2843 	  ExprList::ExprList_item *pItem;
       
  2844   
       
  2845     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
       
  2846       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
       
  2847         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
       
  2848             "the GROUP BY clause");
       
  2849         return SQLITE_ERROR;
       
  2850       }
       
  2851     }
       
  2852   }
       
  2853 
       
  2854   /* If this is one SELECT of a compound, be sure to resolve names
       
  2855   ** in the other SELECTs.
       
  2856   */
       
  2857   if( p->pPrior ){
       
  2858     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
       
  2859   }else{
       
  2860     return SQLITE_OK;
       
  2861   }
       
  2862 }
       
  2863 
       
  2864 /*
       
  2865 ** Reset the aggregate accumulator.
       
  2866 **
       
  2867 ** The aggregate accumulator is a set of memory cells that hold
       
  2868 ** intermediate results while calculating an aggregate.  This
       
  2869 ** routine simply stores NULLs in all of those memory cells.
       
  2870 */
       
  2871 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
       
  2872   Vdbe *v = pParse->pVdbe;
       
  2873   int i=0;
       
  2874   AggInfo::AggInfo_func *pFunc;
       
  2875   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
       
  2876     return;
       
  2877   }
       
  2878   for(i=0; i<pAggInfo->nColumn; i++){
       
  2879     sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
       
  2880   }
       
  2881   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
       
  2882     sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
       
  2883     if( pFunc->iDistinct>=0 ){
       
  2884       Expr *pE = pFunc->pExpr;
       
  2885       if( pE->pList==0 || pE->pList->nExpr!=1 ){
       
  2886         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
       
  2887            "by an expression");
       
  2888         pFunc->iDistinct = -1;
       
  2889       }else{
       
  2890         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
       
  2891         sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 
       
  2892                           (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
       
  2893       }
       
  2894     }
       
  2895   }
       
  2896 }
       
  2897 
       
  2898 /*
       
  2899 ** Invoke the OP_AggFinalize opcode for every aggregate function
       
  2900 ** in the AggInfo structure.
       
  2901 */
       
  2902 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
       
  2903   Vdbe *v = pParse->pVdbe;
       
  2904   int i;
       
  2905   AggInfo::AggInfo_func *pF;
       
  2906   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
       
  2907     ExprList *pList = pF->pExpr->pList;
       
  2908     sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
       
  2909                       (const char*)pF->pFunc, P3_FUNCDEF);
       
  2910   }
       
  2911 }
       
  2912 
       
  2913 /*
       
  2914 ** Update the accumulator memory cells for an aggregate based on
       
  2915 ** the current cursor position.
       
  2916 */
       
  2917 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
       
  2918   Vdbe *v = pParse->pVdbe;
       
  2919   int i;
       
  2920   AggInfo::AggInfo_func *pF;
       
  2921   AggInfo::AggInfo_col *pC;
       
  2922 
       
  2923   pAggInfo->directMode = 1;
       
  2924   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
       
  2925     int nArg;
       
  2926     int addrNext = 0;
       
  2927     ExprList *pList = pF->pExpr->pList;
       
  2928     if( pList ){
       
  2929       nArg = pList->nExpr;
       
  2930       sqlite3ExprCodeExprList(pParse, pList);
       
  2931     }else{
       
  2932       nArg = 0;
       
  2933     }
       
  2934     if( pF->iDistinct>=0 ){
       
  2935       addrNext = sqlite3VdbeMakeLabel(v);
       
  2936       assert( nArg==1 );
       
  2937       codeDistinct(v, pF->iDistinct, addrNext, 1);
       
  2938     }
       
  2939     if( pF->pFunc->needCollSeq ){
       
  2940       CollSeq *pColl = 0;
       
  2941 	  ExprList::ExprList_item *pItem;
       
  2942       int j;
       
  2943       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
       
  2944       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
       
  2945         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
       
  2946       }
       
  2947       if( !pColl ){
       
  2948         pColl = pParse->db->pDfltColl;
       
  2949       }
       
  2950       sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
       
  2951     }
       
  2952     sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (const char*)pF->pFunc, P3_FUNCDEF);
       
  2953     if( addrNext ){
       
  2954       sqlite3VdbeResolveLabel(v, addrNext);
       
  2955     }
       
  2956   }
       
  2957   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
       
  2958     sqlite3ExprCode(pParse, pC->pExpr);
       
  2959     sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
       
  2960   }
       
  2961   pAggInfo->directMode = 0;
       
  2962 }
       
  2963 
       
  2964 
       
  2965 /*
       
  2966 ** Generate code for the given SELECT statement.
       
  2967 **
       
  2968 ** The results are distributed in various ways depending on the
       
  2969 ** value of eDest and iParm.
       
  2970 **
       
  2971 **     eDest Value       Result
       
  2972 **     ------------    -------------------------------------------
       
  2973 **     SRT_Callback    Invoke the callback for each row of the result.
       
  2974 **
       
  2975 **     SRT_Mem         Store first result in memory cell iParm
       
  2976 **
       
  2977 **     SRT_Set         Store results as keys of table iParm.
       
  2978 **
       
  2979 **     SRT_Union       Store results as a key in a temporary table iParm
       
  2980 **
       
  2981 **     SRT_Except      Remove results from the temporary table iParm.
       
  2982 **
       
  2983 **     SRT_Table       Store results in temporary table iParm
       
  2984 **
       
  2985 ** The table above is incomplete.  Additional eDist value have be added
       
  2986 ** since this comment was written.  See the selectInnerLoop() function for
       
  2987 ** a complete listing of the allowed values of eDest and their meanings.
       
  2988 **
       
  2989 ** This routine returns the number of errors.  If any errors are
       
  2990 ** encountered, then an appropriate error message is left in
       
  2991 ** pParse->zErrMsg.
       
  2992 **
       
  2993 ** This routine does NOT free the Select structure passed in.  The
       
  2994 ** calling function needs to do that.
       
  2995 **
       
  2996 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
       
  2997 ** SELECT is a subquery.  This routine may try to combine this SELECT
       
  2998 ** with its parent to form a single flat query.  In so doing, it might
       
  2999 ** change the parent query from a non-aggregate to an aggregate query.
       
  3000 ** For that reason, the pParentAgg flag is passed as a pointer, so it
       
  3001 ** can be changed.
       
  3002 **
       
  3003 ** Example 1:   The meaning of the pParent parameter.
       
  3004 **
       
  3005 **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
       
  3006 **    \                      \_______ subquery _______/        /
       
  3007 **     \                                                      /
       
  3008 **      \____________________ outer query ___________________/
       
  3009 **
       
  3010 ** This routine is called for the outer query first.   For that call,
       
  3011 ** pParent will be NULL.  During the processing of the outer query, this 
       
  3012 ** routine is called recursively to handle the subquery.  For the recursive
       
  3013 ** call, pParent will point to the outer query.  Because the subquery is
       
  3014 ** the second element in a three-way join, the parentTab parameter will
       
  3015 ** be 1 (the 2nd value of a 0-indexed array.)
       
  3016 */
       
  3017 int sqlite3Select(
       
  3018   Parse *pParse,         /* The parser context */
       
  3019   Select *p,             /* The SELECT statement being coded. */
       
  3020   int eDest,             /* How to dispose of the results */
       
  3021   int iParm,             /* A parameter used by the eDest disposal method */
       
  3022   Select *pParent,       /* Another SELECT for which this is a sub-query */
       
  3023   int parentTab,         /* Index in pParent->pSrc of this query */
       
  3024   int *pParentAgg,       /* True if pParent uses aggregate functions */
       
  3025   char *aff              /* If eDest is SRT_Union, the affinity string */
       
  3026 ){
       
  3027   int i, j;              /* Loop counters */
       
  3028   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
       
  3029   Vdbe *v;               /* The virtual machine under construction */
       
  3030   int isAgg;             /* True for select lists like "count(*)" */
       
  3031   ExprList *pEList;      /* List of columns to extract. */
       
  3032   SrcList *pTabList;     /* List of tables to select from */
       
  3033   Expr *pWhere;          /* The WHERE clause.  May be NULL */
       
  3034   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
       
  3035   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
       
  3036   Expr *pHaving;         /* The HAVING clause.  May be NULL */
       
  3037   int isDistinct;        /* True if the DISTINCT keyword is present */
       
  3038   int distinct;          /* Table to use for the distinct set */
       
  3039   int rc = 1;            /* Value to return from this function */
       
  3040   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
       
  3041   AggInfo sAggInfo;      /* Information used by aggregate queries */
       
  3042   int iEnd;              /* Address of the end of the query */
       
  3043   sqlite3 *db;           /* The database connection */
       
  3044 
       
  3045   db = pParse->db;
       
  3046   if( p==0 || db->mallocFailed || pParse->nErr ){
       
  3047     return 1;
       
  3048   }
       
  3049   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
       
  3050   memset(&sAggInfo, 0, sizeof(sAggInfo));
       
  3051 
       
  3052   pOrderBy = p->pOrderBy;
       
  3053   if( IgnorableOrderby(eDest) ){
       
  3054     p->pOrderBy = 0;
       
  3055   }
       
  3056   if( sqlite3SelectResolve(pParse, p, 0) ){
       
  3057     goto select_end;
       
  3058   }
       
  3059   p->pOrderBy = pOrderBy;
       
  3060 
       
  3061 #ifndef SQLITE_OMIT_COMPOUND_SELECT
       
  3062   /* If there is are a sequence of queries, do the earlier ones first.
       
  3063   */
       
  3064   if( p->pPrior ){
       
  3065     if( p->pRightmost==0 ){
       
  3066       Select *pLoop, *pRight = 0;
       
  3067       int cnt = 0;
       
  3068       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
       
  3069         pLoop->pRightmost = p;
       
  3070         pLoop->pNext = pRight;
       
  3071         pRight = pLoop;
       
  3072       }
       
  3073       if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){
       
  3074         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
       
  3075         return 1;
       
  3076       }
       
  3077     }
       
  3078     return multiSelect(pParse, p, eDest, iParm, aff);
       
  3079   }
       
  3080 #endif
       
  3081 
       
  3082   /* Make local copies of the parameters for this query.
       
  3083   */
       
  3084   pTabList = p->pSrc;
       
  3085   pWhere = p->pWhere;
       
  3086   pGroupBy = p->pGroupBy;
       
  3087   pHaving = p->pHaving;
       
  3088   isAgg = p->isAgg;
       
  3089   isDistinct = p->isDistinct;
       
  3090   pEList = p->pEList;
       
  3091   if( pEList==0 ) goto select_end;
       
  3092 
       
  3093   /* 
       
  3094   ** Do not even attempt to generate any code if we have already seen
       
  3095   ** errors before this routine starts.
       
  3096   */
       
  3097   if( pParse->nErr>0 ) goto select_end;
       
  3098 
       
  3099   /* If writing to memory or generating a set
       
  3100   ** only a single column may be output.
       
  3101   */
       
  3102 #ifndef SQLITE_OMIT_SUBQUERY
       
  3103   if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
       
  3104     goto select_end;
       
  3105   }
       
  3106 #endif
       
  3107 
       
  3108   /* ORDER BY is ignored for some destinations.
       
  3109   */
       
  3110   if( IgnorableOrderby(eDest) ){
       
  3111     pOrderBy = 0;
       
  3112   }
       
  3113 
       
  3114   /* Begin generating code.
       
  3115   */
       
  3116   v = sqlite3GetVdbe(pParse);
       
  3117   if( v==0 ) goto select_end;
       
  3118 
       
  3119   /* Generate code for all sub-queries in the FROM clause
       
  3120   */
       
  3121 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
       
  3122   for(i=0; i<pTabList->nSrc; i++){
       
  3123     const char *zSavedAuthContext = 0;
       
  3124     int needRestoreContext;
       
  3125 	SrcList::SrcList_item *pItem = &pTabList->a[i];
       
  3126 
       
  3127     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
       
  3128     if( pItem->zName!=0 ){
       
  3129       zSavedAuthContext = pParse->zAuthContext;
       
  3130       pParse->zAuthContext = pItem->zName;
       
  3131       needRestoreContext = 1;
       
  3132     }else{
       
  3133       needRestoreContext = 0;
       
  3134     }
       
  3135 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
       
  3136     /* Increment Parse.nHeight by the height of the largest expression
       
  3137     ** tree refered to by this, the parent select. The child select
       
  3138     ** may contain expression trees of at most
       
  3139     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
       
  3140     ** more conservative than necessary, but much easier than enforcing
       
  3141     ** an exact limit.
       
  3142     */
       
  3143     pParse->nHeight += sqlite3SelectExprHeight(p);
       
  3144 #endif
       
  3145     sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 
       
  3146                  pItem->iCursor, p, i, &isAgg, 0);
       
  3147     if( db->mallocFailed ){
       
  3148       goto select_end;
       
  3149     }
       
  3150 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
       
  3151     pParse->nHeight -= sqlite3SelectExprHeight(p);
       
  3152 #endif
       
  3153     if( needRestoreContext ){
       
  3154       pParse->zAuthContext = zSavedAuthContext;
       
  3155     }
       
  3156     pTabList = p->pSrc;
       
  3157     pWhere = p->pWhere;
       
  3158     if( !IgnorableOrderby(eDest) ){
       
  3159       pOrderBy = p->pOrderBy;
       
  3160     }
       
  3161     pGroupBy = p->pGroupBy;
       
  3162     pHaving = p->pHaving;
       
  3163     isDistinct = p->isDistinct;
       
  3164   }
       
  3165 #endif
       
  3166 
       
  3167   /* Check for the special case of a min() or max() function by itself
       
  3168   ** in the result set.
       
  3169   */
       
  3170   if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
       
  3171     rc = 0;
       
  3172     goto select_end;
       
  3173   }
       
  3174 
       
  3175   /* Check to see if this is a subquery that can be "flattened" into its parent.
       
  3176   ** If flattening is a possiblity, do so and return immediately.  
       
  3177   */
       
  3178 #ifndef SQLITE_OMIT_VIEW
       
  3179   if( pParent && pParentAgg &&
       
  3180       flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){
       
  3181     if( isAgg ) *pParentAgg = 1;
       
  3182     goto select_end;
       
  3183   }
       
  3184 #endif
       
  3185 
       
  3186   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
       
  3187   ** GROUP BY may use an index, DISTINCT never does.
       
  3188   */
       
  3189   if( p->isDistinct && !p->isAgg && !p->pGroupBy ){
       
  3190     p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
       
  3191     pGroupBy = p->pGroupBy;
       
  3192     p->isDistinct = 0;
       
  3193     isDistinct = 0;
       
  3194   }
       
  3195 
       
  3196   /* If there is an ORDER BY clause, then this sorting
       
  3197   ** index might end up being unused if the data can be 
       
  3198   ** extracted in pre-sorted order.  If that is the case, then the
       
  3199   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
       
  3200   ** we figure out that the sorting index is not needed.  The addrSortIndex
       
  3201   ** variable is used to facilitate that change.
       
  3202   */
       
  3203   if( pOrderBy ){
       
  3204     KeyInfo *pKeyInfo;
       
  3205     if( pParse->nErr ){
       
  3206       goto select_end;
       
  3207     }
       
  3208     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
       
  3209     pOrderBy->iECursor = pParse->nTab++;
       
  3210     p->addrOpenEphm[2] = addrSortIndex =
       
  3211       sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
       
  3212   }else{
       
  3213     addrSortIndex = -1;
       
  3214   }
       
  3215 
       
  3216   /* If the output is destined for a temporary table, open that table.
       
  3217   */
       
  3218   if( eDest==SRT_EphemTab ){
       
  3219     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
       
  3220   }
       
  3221 
       
  3222   /* Set the limiter.
       
  3223   */
       
  3224   iEnd = sqlite3VdbeMakeLabel(v);
       
  3225   computeLimitRegisters(pParse, p, iEnd);
       
  3226 
       
  3227   /* Open a virtual index to use for the distinct set.
       
  3228   */
       
  3229   if( isDistinct ){
       
  3230     KeyInfo *pKeyInfo;
       
  3231     assert( isAgg || pGroupBy );
       
  3232     distinct = pParse->nTab++;
       
  3233     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
       
  3234     sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 
       
  3235                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
       
  3236   }else{
       
  3237     distinct = -1;
       
  3238   }
       
  3239 
       
  3240   /* Aggregate and non-aggregate queries are handled differently */
       
  3241   if( !isAgg && pGroupBy==0 ){
       
  3242     /* This case is for non-aggregate queries
       
  3243     ** Begin the database scan
       
  3244     */
       
  3245     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
       
  3246     if( pWInfo==0 ) goto select_end;
       
  3247 
       
  3248     /* If sorting index that was created by a prior OP_OpenEphemeral 
       
  3249     ** instruction ended up not being needed, then change the OP_OpenEphemeral
       
  3250     ** into an OP_Noop.
       
  3251     */
       
  3252     if( addrSortIndex>=0 && pOrderBy==0 ){
       
  3253       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
       
  3254       p->addrOpenEphm[2] = -1;
       
  3255     }
       
  3256 
       
  3257     /* Use the standard inner loop
       
  3258     */
       
  3259     assert(!isDistinct);
       
  3260     if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, eDest,
       
  3261                     iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
       
  3262        goto select_end;
       
  3263     }
       
  3264 
       
  3265     /* End the database scan loop.
       
  3266     */
       
  3267     sqlite3WhereEnd(pWInfo);
       
  3268   }else{
       
  3269     /* This is the processing for aggregate queries */
       
  3270     NameContext sNC;    /* Name context for processing aggregate information */
       
  3271     int iAMem;          /* First Mem address for storing current GROUP BY */
       
  3272     int iBMem;          /* First Mem address for previous GROUP BY */
       
  3273     int iUseFlag;       /* Mem address holding flag indicating that at least
       
  3274                         ** one row of the input to the aggregator has been
       
  3275                         ** processed */
       
  3276     int iAbortFlag;     /* Mem address which causes query abort if positive */
       
  3277     int groupBySort;    /* Rows come from source in GROUP BY order */
       
  3278 
       
  3279 
       
  3280     /* The following variables hold addresses or labels for parts of the
       
  3281     ** virtual machine program we are putting together */
       
  3282     int addrOutputRow;      /* Start of subroutine that outputs a result row */
       
  3283     int addrSetAbort;       /* Set the abort flag and return */
       
  3284     int addrInitializeLoop; /* Start of code that initializes the input loop */
       
  3285     int addrTopOfLoop;      /* Top of the input loop */
       
  3286     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
       
  3287     int addrProcessRow;     /* Code to process a single input row */
       
  3288     int addrEnd;            /* End of all processing */
       
  3289     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
       
  3290     int addrReset;          /* Subroutine for resetting the accumulator */
       
  3291 
       
  3292     addrEnd = sqlite3VdbeMakeLabel(v);
       
  3293 
       
  3294     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
       
  3295     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
       
  3296     ** SELECT statement.
       
  3297     */
       
  3298     memset(&sNC, 0, sizeof(sNC));
       
  3299     sNC.pParse = pParse;
       
  3300     sNC.pSrcList = pTabList;
       
  3301     sNC.pAggInfo = &sAggInfo;
       
  3302     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
       
  3303     sAggInfo.pGroupBy = pGroupBy;
       
  3304     if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
       
  3305       goto select_end;
       
  3306     }
       
  3307     if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
       
  3308       goto select_end;
       
  3309     }
       
  3310     if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
       
  3311       goto select_end;
       
  3312     }
       
  3313     sAggInfo.nAccumulator = sAggInfo.nColumn;
       
  3314     for(i=0; i<sAggInfo.nFunc; i++){
       
  3315       if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
       
  3316         goto select_end;
       
  3317       }
       
  3318     }
       
  3319     if( db->mallocFailed ) goto select_end;
       
  3320 
       
  3321     /* Processing for aggregates with GROUP BY is very different and
       
  3322     ** much more complex than aggregates without a GROUP BY.
       
  3323     */
       
  3324     if( pGroupBy ){
       
  3325       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
       
  3326 
       
  3327       /* Create labels that we will be needing
       
  3328       */
       
  3329      
       
  3330       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
       
  3331       addrGroupByChange = sqlite3VdbeMakeLabel(v);
       
  3332       addrProcessRow = sqlite3VdbeMakeLabel(v);
       
  3333 
       
  3334       /* If there is a GROUP BY clause we might need a sorting index to
       
  3335       ** implement it.  Allocate that sorting index now.  If it turns out
       
  3336       ** that we do not need it after all, the OpenEphemeral instruction
       
  3337       ** will be converted into a Noop.  
       
  3338       */
       
  3339       sAggInfo.sortingIdx = pParse->nTab++;
       
  3340       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
       
  3341       addrSortingIdx =
       
  3342           sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
       
  3343                          sAggInfo.nSortingColumn,
       
  3344                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
       
  3345 
       
  3346       /* Initialize memory locations used by GROUP BY aggregate processing
       
  3347       */
       
  3348       iUseFlag = pParse->nMem++;
       
  3349       iAbortFlag = pParse->nMem++;
       
  3350       iAMem = pParse->nMem;
       
  3351       pParse->nMem += pGroupBy->nExpr;
       
  3352       iBMem = pParse->nMem;
       
  3353       pParse->nMem += pGroupBy->nExpr;
       
  3354       sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
       
  3355       VdbeComment((v, "# clear abort flag"));
       
  3356       sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
       
  3357       VdbeComment((v, "# indicate accumulator empty"));
       
  3358       sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
       
  3359 
       
  3360       /* Generate a subroutine that outputs a single row of the result
       
  3361       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
       
  3362       ** is less than or equal to zero, the subroutine is a no-op.  If
       
  3363       ** the processing calls for the query to abort, this subroutine
       
  3364       ** increments the iAbortFlag memory location before returning in
       
  3365       ** order to signal the caller to abort.
       
  3366       */
       
  3367       addrSetAbort = sqlite3VdbeCurrentAddr(v);
       
  3368       sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
       
  3369       VdbeComment((v, "# set abort flag"));
       
  3370       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
       
  3371       addrOutputRow = sqlite3VdbeCurrentAddr(v);
       
  3372       sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
       
  3373       VdbeComment((v, "# Groupby result generator entry point"));
       
  3374       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
       
  3375       finalizeAggFunctions(pParse, &sAggInfo);
       
  3376       if( pHaving ){
       
  3377         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
       
  3378       }
       
  3379       rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
       
  3380                            distinct, eDest, iParm, 
       
  3381                            addrOutputRow+1, addrSetAbort, aff);
       
  3382       if( rc ){
       
  3383         goto select_end;
       
  3384       }
       
  3385       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
       
  3386       VdbeComment((v, "# end groupby result generator"));
       
  3387 
       
  3388       /* Generate a subroutine that will reset the group-by accumulator
       
  3389       */
       
  3390       addrReset = sqlite3VdbeCurrentAddr(v);
       
  3391       resetAccumulator(pParse, &sAggInfo);
       
  3392       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
       
  3393 
       
  3394       /* Begin a loop that will extract all source rows in GROUP BY order.
       
  3395       ** This might involve two separate loops with an OP_Sort in between, or
       
  3396       ** it might be a single loop that uses an index to extract information
       
  3397       ** in the right order to begin with.
       
  3398       */
       
  3399       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
       
  3400       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
       
  3401       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
       
  3402       if( pWInfo==0 ) goto select_end;
       
  3403       if( pGroupBy==0 ){
       
  3404         /* The optimizer is able to deliver rows in group by order so
       
  3405         ** we do not have to sort.  The OP_OpenEphemeral table will be
       
  3406         ** cancelled later because we still need to use the pKeyInfo
       
  3407         */
       
  3408         pGroupBy = p->pGroupBy;
       
  3409         groupBySort = 0;
       
  3410       }else{
       
  3411         /* Rows are coming out in undetermined order.  We have to push
       
  3412         ** each row into a sorting index, terminate the first loop,
       
  3413         ** then loop over the sorting index in order to get the output
       
  3414         ** in sorted order
       
  3415         */
       
  3416         groupBySort = 1;
       
  3417         sqlite3ExprCodeExprList(pParse, pGroupBy);
       
  3418         sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
       
  3419         j = pGroupBy->nExpr+1;
       
  3420         for(i=0; i<sAggInfo.nColumn; i++){
       
  3421 			AggInfo::AggInfo_col *pCol = &sAggInfo.aCol[i];
       
  3422           if( pCol->iSorterColumn<j ) continue;
       
  3423           sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
       
  3424           j++;
       
  3425         }
       
  3426         sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
       
  3427         sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
       
  3428         sqlite3WhereEnd(pWInfo);
       
  3429         sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
       
  3430         VdbeComment((v, "# GROUP BY sort"));
       
  3431         sAggInfo.useSortingIdx = 1;
       
  3432       }
       
  3433 
       
  3434       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
       
  3435       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
       
  3436       ** Then compare the current GROUP BY terms against the GROUP BY terms
       
  3437       ** from the previous row currently stored in a0, a1, a2...
       
  3438       */
       
  3439       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
       
  3440       for(j=0; j<pGroupBy->nExpr; j++){
       
  3441         if( groupBySort ){
       
  3442           sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
       
  3443         }else{
       
  3444           sAggInfo.directMode = 1;
       
  3445           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
       
  3446         }
       
  3447         sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
       
  3448       }
       
  3449       for(j=pGroupBy->nExpr-1; j>=0; j--){
       
  3450         if( j<pGroupBy->nExpr-1 ){
       
  3451           sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
       
  3452         }
       
  3453         sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
       
  3454         if( j==0 ){
       
  3455           sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
       
  3456         }else{
       
  3457           sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
       
  3458         }
       
  3459         sqlite3VdbeChangeP3(v, -1, (const char*)pKeyInfo->aColl[j], P3_COLLSEQ);
       
  3460       }
       
  3461 
       
  3462       /* Generate code that runs whenever the GROUP BY changes.
       
  3463       ** Change in the GROUP BY are detected by the previous code
       
  3464       ** block.  If there were no changes, this block is skipped.
       
  3465       **
       
  3466       ** This code copies current group by terms in b0,b1,b2,...
       
  3467       ** over to a0,a1,a2.  It then calls the output subroutine
       
  3468       ** and resets the aggregate accumulator registers in preparation
       
  3469       ** for the next GROUP BY batch.
       
  3470       */
       
  3471       sqlite3VdbeResolveLabel(v, addrGroupByChange);
       
  3472       for(j=0; j<pGroupBy->nExpr; j++){
       
  3473         sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
       
  3474       }
       
  3475       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
       
  3476       VdbeComment((v, "# output one row"));
       
  3477       sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
       
  3478       VdbeComment((v, "# check abort flag"));
       
  3479       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
       
  3480       VdbeComment((v, "# reset accumulator"));
       
  3481 
       
  3482       /* Update the aggregate accumulators based on the content of
       
  3483       ** the current row
       
  3484       */
       
  3485       sqlite3VdbeResolveLabel(v, addrProcessRow);
       
  3486       updateAccumulator(pParse, &sAggInfo);
       
  3487       sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
       
  3488       VdbeComment((v, "# indicate data in accumulator"));
       
  3489 
       
  3490       /* End of the loop
       
  3491       */
       
  3492       if( groupBySort ){
       
  3493         sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
       
  3494       }else{
       
  3495         sqlite3WhereEnd(pWInfo);
       
  3496         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
       
  3497       }
       
  3498 
       
  3499       /* Output the final row of result
       
  3500       */
       
  3501       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
       
  3502       VdbeComment((v, "# output final row"));
       
  3503       
       
  3504     } /* endif pGroupBy */
       
  3505     else {
       
  3506       /* This case runs if the aggregate has no GROUP BY clause.  The
       
  3507       ** processing is much simpler since there is only a single row
       
  3508       ** of output.
       
  3509       */
       
  3510       resetAccumulator(pParse, &sAggInfo);
       
  3511       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
       
  3512       if( pWInfo==0 ) goto select_end;
       
  3513       updateAccumulator(pParse, &sAggInfo);
       
  3514       sqlite3WhereEnd(pWInfo);
       
  3515       finalizeAggFunctions(pParse, &sAggInfo);
       
  3516       pOrderBy = 0;
       
  3517       if( pHaving ){
       
  3518         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
       
  3519       }
       
  3520       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
       
  3521                       eDest, iParm, addrEnd, addrEnd, aff);
       
  3522     }
       
  3523     sqlite3VdbeResolveLabel(v, addrEnd);
       
  3524     
       
  3525   } /* endif aggregate query */
       
  3526 
       
  3527   /* If there is an ORDER BY clause, then we need to sort the results
       
  3528   ** and send them to the callback one by one.
       
  3529   */
       
  3530   if( pOrderBy ){
       
  3531     generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
       
  3532   }
       
  3533 
       
  3534 #ifndef SQLITE_OMIT_SUBQUERY
       
  3535   /* If this was a subquery, we have now converted the subquery into a
       
  3536   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
       
  3537   ** this subquery from being evaluated again and to force the use of
       
  3538   ** the temporary table.
       
  3539   */
       
  3540   if( pParent ){
       
  3541     assert( pParent->pSrc->nSrc>parentTab );
       
  3542     assert( pParent->pSrc->a[parentTab].pSelect==p );
       
  3543     pParent->pSrc->a[parentTab].isPopulated = 1;
       
  3544   }
       
  3545 #endif
       
  3546 
       
  3547   /* Jump here to skip this query
       
  3548   */
       
  3549   sqlite3VdbeResolveLabel(v, iEnd);
       
  3550 
       
  3551   /* The SELECT was successfully coded.   Set the return code to 0
       
  3552   ** to indicate no errors.
       
  3553   */
       
  3554   rc = 0;
       
  3555 
       
  3556   /* Control jumps to here if an error is encountered above, or upon
       
  3557   ** successful coding of the SELECT.
       
  3558   */
       
  3559 select_end:
       
  3560 
       
  3561   /* Identify column names if we will be using them in a callback.  This
       
  3562   ** step is skipped if the output is going to some other destination.
       
  3563   */
       
  3564   if( rc==SQLITE_OK && eDest==SRT_Callback ){
       
  3565     generateColumnNames(pParse, pTabList, pEList);
       
  3566   }
       
  3567 
       
  3568   sqlite3_free(sAggInfo.aCol);
       
  3569   sqlite3_free(sAggInfo.aFunc);
       
  3570   return rc;
       
  3571 }
       
  3572 
       
  3573 #if defined(SQLITE_DEBUG)
       
  3574 /*
       
  3575 *******************************************************************************
       
  3576 ** The following code is used for testing and debugging only.  The code
       
  3577 ** that follows does not appear in normal builds.
       
  3578 **
       
  3579 ** These routines are used to print out the content of all or part of a 
       
  3580 ** parse structures such as Select or Expr.  Such printouts are useful
       
  3581 ** for helping to understand what is happening inside the code generator
       
  3582 ** during the execution of complex SELECT statements.
       
  3583 **
       
  3584 ** These routine are not called anywhere from within the normal
       
  3585 ** code base.  Then are intended to be called from within the debugger
       
  3586 ** or from temporary "printf" statements inserted for debugging.
       
  3587 */
       
  3588 void sqlite3PrintExpr(Expr *p){
       
  3589   if( p->token.z && p->token.n>0 ){
       
  3590     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
       
  3591   }else{
       
  3592     sqlite3DebugPrintf("(%d", p->op);
       
  3593   }
       
  3594   if( p->pLeft ){
       
  3595     sqlite3DebugPrintf(" ");
       
  3596     sqlite3PrintExpr(p->pLeft);
       
  3597   }
       
  3598   if( p->pRight ){
       
  3599     sqlite3DebugPrintf(" ");
       
  3600     sqlite3PrintExpr(p->pRight);
       
  3601   }
       
  3602   sqlite3DebugPrintf(")");
       
  3603 }
       
  3604 void sqlite3PrintExprList(ExprList *pList){
       
  3605   int i;
       
  3606   for(i=0; i<pList->nExpr; i++){
       
  3607     sqlite3PrintExpr(pList->a[i].pExpr);
       
  3608     if( i<pList->nExpr-1 ){
       
  3609       sqlite3DebugPrintf(", ");
       
  3610     }
       
  3611   }
       
  3612 }
       
  3613 void sqlite3PrintSelect(Select *p, int indent){
       
  3614   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
       
  3615   sqlite3PrintExprList(p->pEList);
       
  3616   sqlite3DebugPrintf("\n");
       
  3617   if( p->pSrc ){
       
  3618     char *zPrefix;
       
  3619     int i;
       
  3620     zPrefix = "FROM";
       
  3621     for(i=0; i<p->pSrc->nSrc; i++){
       
  3622       struct SrcList_item *pItem = &p->pSrc->a[i];
       
  3623       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
       
  3624       zPrefix = "";
       
  3625       if( pItem->pSelect ){
       
  3626         sqlite3DebugPrintf("(\n");
       
  3627         sqlite3PrintSelect(pItem->pSelect, indent+10);
       
  3628         sqlite3DebugPrintf("%*s)", indent+8, "");
       
  3629       }else if( pItem->zName ){
       
  3630         sqlite3DebugPrintf("%s", pItem->zName);
       
  3631       }
       
  3632       if( pItem->pTab ){
       
  3633         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
       
  3634       }
       
  3635       if( pItem->zAlias ){
       
  3636         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
       
  3637       }
       
  3638       if( i<p->pSrc->nSrc-1 ){
       
  3639         sqlite3DebugPrintf(",");
       
  3640       }
       
  3641       sqlite3DebugPrintf("\n");
       
  3642     }
       
  3643   }
       
  3644   if( p->pWhere ){
       
  3645     sqlite3DebugPrintf("%*s WHERE ", indent, "");
       
  3646     sqlite3PrintExpr(p->pWhere);
       
  3647     sqlite3DebugPrintf("\n");
       
  3648   }
       
  3649   if( p->pGroupBy ){
       
  3650     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
       
  3651     sqlite3PrintExprList(p->pGroupBy);
       
  3652     sqlite3DebugPrintf("\n");
       
  3653   }
       
  3654   if( p->pHaving ){
       
  3655     sqlite3DebugPrintf("%*s HAVING ", indent, "");
       
  3656     sqlite3PrintExpr(p->pHaving);
       
  3657     sqlite3DebugPrintf("\n");
       
  3658   }
       
  3659   if( p->pOrderBy ){
       
  3660     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
       
  3661     sqlite3PrintExprList(p->pOrderBy);
       
  3662     sqlite3DebugPrintf("\n");
       
  3663   }
       
  3664 }
       
  3665 /* End of the structure debug printing code
       
  3666 *****************************************************************************/
       
  3667 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */