engine/sqlite/src/select.cpp
changeset 2 29cda98b007e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/engine/sqlite/src/select.cpp	Thu Feb 25 14:29:19 2010 +0000
@@ -0,0 +1,3667 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code.  In place of
+** a legal notice, here is a blessing:
+**
+**    May you do good and not evil.
+**    May you find forgiveness for yourself and forgive others.
+**    May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle SELECT statements in SQLite.
+**
+** $Id: select.cpp 1282 2008-11-13 09:31:33Z LarsPson $
+*/
+#include "sqliteInt.h"
+
+
+/*
+** Delete all the content of a Select structure but do not deallocate
+** the select structure itself.
+*/
+static void clearSelect(Select *p){
+  sqlite3ExprListDelete(p->pEList);
+  sqlite3SrcListDelete(p->pSrc);
+  sqlite3ExprDelete(p->pWhere);
+  sqlite3ExprListDelete(p->pGroupBy);
+  sqlite3ExprDelete(p->pHaving);
+  sqlite3ExprListDelete(p->pOrderBy);
+  sqlite3SelectDelete(p->pPrior);
+  sqlite3ExprDelete(p->pLimit);
+  sqlite3ExprDelete(p->pOffset);
+}
+
+
+/*
+** Allocate a new Select structure and return a pointer to that
+** structure.
+*/
+Select *sqlite3SelectNew(
+  Parse *pParse,        /* Parsing context */
+  ExprList *pEList,     /* which columns to include in the result */
+  SrcList *pSrc,        /* the FROM clause -- which tables to scan */
+  Expr *pWhere,         /* the WHERE clause */
+  ExprList *pGroupBy,   /* the GROUP BY clause */
+  Expr *pHaving,        /* the HAVING clause */
+  ExprList *pOrderBy,   /* the ORDER BY clause */
+  int isDistinct,       /* true if the DISTINCT keyword is present */
+  Expr *pLimit,         /* LIMIT value.  NULL means not used */
+  Expr *pOffset         /* OFFSET value.  NULL means no offset */
+){
+  Select *pNew;
+  Select standin;
+  sqlite3 *db = pParse->db;
+  pNew = (Select*)sqlite3DbMallocZero(db, sizeof(*pNew) );
+  assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
+  if( pNew==0 ){
+    pNew = &standin;
+    memset(pNew, 0, sizeof(*pNew));
+  }
+  if( pEList==0 ){
+    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
+  }
+  pNew->pEList = pEList;
+  pNew->pSrc = pSrc;
+  pNew->pWhere = pWhere;
+  pNew->pGroupBy = pGroupBy;
+  pNew->pHaving = pHaving;
+  pNew->pOrderBy = pOrderBy;
+  pNew->isDistinct = isDistinct;
+  pNew->op = TK_SELECT;
+  assert( pOffset==0 || pLimit!=0 );
+  pNew->pLimit = pLimit;
+  pNew->pOffset = pOffset;
+  pNew->iLimit = -1;
+  pNew->iOffset = -1;
+  pNew->addrOpenEphm[0] = -1;
+  pNew->addrOpenEphm[1] = -1;
+  pNew->addrOpenEphm[2] = -1;
+  if( pNew==&standin) {
+    clearSelect(pNew);
+    pNew = 0;
+  }
+  return pNew;
+}
+
+/*
+** Delete the given Select structure and all of its substructures.
+*/
+void sqlite3SelectDelete(Select *p){
+  if( p ){
+    clearSelect(p);
+    sqlite3_free(p);
+  }
+}
+
+/*
+** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
+** type of join.  Return an integer constant that expresses that type
+** in terms of the following bit values:
+**
+**     JT_INNER
+**     JT_CROSS
+**     JT_OUTER
+**     JT_NATURAL
+**     JT_LEFT
+**     JT_RIGHT
+**
+** A full outer join is the combination of JT_LEFT and JT_RIGHT.
+**
+** If an illegal or unsupported join type is seen, then still return
+** a join type, but put an error in the pParse structure.
+*/
+int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
+  int jointype = 0;
+  Token *apAll[3];
+  Token *p;
+  static const struct {
+    const char zKeyword[8];
+    u8 nChar;
+    u8 code;
+  } keywords[] = {
+    { "natural", 7, JT_NATURAL },
+    { "left",    4, JT_LEFT|JT_OUTER },
+    { "right",   5, JT_RIGHT|JT_OUTER },
+    { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
+    { "outer",   5, JT_OUTER },
+    { "inner",   5, JT_INNER },
+    { "cross",   5, JT_INNER|JT_CROSS },
+  };
+  int i, j;
+  apAll[0] = pA;
+  apAll[1] = pB;
+  apAll[2] = pC;
+  for(i=0; i<3 && apAll[i]; i++){
+    p = apAll[i];
+    for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
+      if( p->n==keywords[j].nChar 
+          && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
+        jointype |= keywords[j].code;
+        break;
+      }
+    }
+    if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
+      jointype |= JT_ERROR;
+      break;
+    }
+  }
+  if(
+     (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
+     (jointype & JT_ERROR)!=0
+  ){
+    const char *zSp1 = " ";
+    const char *zSp2 = " ";
+    if( pB==0 ){ zSp1++; }
+    if( pC==0 ){ zSp2++; }
+    sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
+       "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
+    jointype = JT_INNER;
+  }else if( jointype & JT_RIGHT ){
+    sqlite3ErrorMsg(pParse, 
+      "RIGHT and FULL OUTER JOINs are not currently supported");
+    jointype = JT_INNER;
+  }
+  return jointype;
+}
+
+/*
+** Return the index of a column in a table.  Return -1 if the column
+** is not contained in the table.
+*/
+static int columnIndex(Table *pTab, const char *zCol){
+  int i;
+  for(i=0; i<pTab->nCol; i++){
+    if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
+  }
+  return -1;
+}
+
+/*
+** Set the value of a token to a '\000'-terminated string.
+*/
+static void setToken(Token *p, const char *z){
+  p->z = (u8*)z;
+  p->n = z ? strlen(z) : 0;
+  p->dyn = 0;
+}
+
+/*
+** Set the token to the double-quoted and escaped version of the string pointed
+** to by z. For example;
+**
+**    {a"bc}  ->  {"a""bc"}
+*/
+static void setQuotedToken(Parse *pParse, Token *p, const char *z){
+  p->z = (u8 *)sqlite3MPrintf(0, "\"%w\"", z);
+  p->dyn = 1;
+  if( p->z ){
+    p->n = strlen((char *)p->z);
+  }else{
+    pParse->db->mallocFailed = 1;
+  }
+}
+
+/*
+** Create an expression node for an identifier with the name of zName
+*/
+Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
+  Token dummy;
+  setToken(&dummy, zName);
+  return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
+}
+
+
+/*
+** Add a term to the WHERE expression in *ppExpr that requires the
+** zCol column to be equal in the two tables pTab1 and pTab2.
+*/
+static void addWhereTerm(
+  Parse *pParse,           /* Parsing context */
+  const char *zCol,        /* Name of the column */
+  const Table *pTab1,      /* First table */
+  const char *zAlias1,     /* Alias for first table.  May be NULL */
+  const Table *pTab2,      /* Second table */
+  const char *zAlias2,     /* Alias for second table.  May be NULL */
+  int iRightJoinTable,     /* VDBE cursor for the right table */
+  Expr **ppExpr            /* Add the equality term to this expression */
+){
+  Expr *pE1a, *pE1b, *pE1c;
+  Expr *pE2a, *pE2b, *pE2c;
+  Expr *pE;
+
+  pE1a = sqlite3CreateIdExpr(pParse, zCol);
+  pE2a = sqlite3CreateIdExpr(pParse, zCol);
+  if( zAlias1==0 ){
+    zAlias1 = pTab1->zName;
+  }
+  pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
+  if( zAlias2==0 ){
+    zAlias2 = pTab2->zName;
+  }
+  pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
+  pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
+  pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
+  pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
+  if( pE ){
+    ExprSetProperty(pE, EP_FromJoin);
+    pE->iRightJoinTable = iRightJoinTable;
+  }
+  *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
+}
+
+/*
+** Set the EP_FromJoin property on all terms of the given expression.
+** And set the Expr.iRightJoinTable to iTable for every term in the
+** expression.
+**
+** The EP_FromJoin property is used on terms of an expression to tell
+** the LEFT OUTER JOIN processing logic that this term is part of the
+** join restriction specified in the ON or USING clause and not a part
+** of the more general WHERE clause.  These terms are moved over to the
+** WHERE clause during join processing but we need to remember that they
+** originated in the ON or USING clause.
+**
+** The Expr.iRightJoinTable tells the WHERE clause processing that the
+** expression depends on table iRightJoinTable even if that table is not
+** explicitly mentioned in the expression.  That information is needed
+** for cases like this:
+**
+**    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
+**
+** The where clause needs to defer the handling of the t1.x=5
+** term until after the t2 loop of the join.  In that way, a
+** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
+** defer the handling of t1.x=5, it will be processed immediately
+** after the t1 loop and rows with t1.x!=5 will never appear in
+** the output, which is incorrect.
+*/
+static void setJoinExpr(Expr *p, int iTable){
+  while( p ){
+    ExprSetProperty(p, EP_FromJoin);
+    p->iRightJoinTable = iTable;
+    setJoinExpr(p->pLeft, iTable);
+    p = p->pRight;
+  } 
+}
+
+/*
+** This routine processes the join information for a SELECT statement.
+** ON and USING clauses are converted into extra terms of the WHERE clause.
+** NATURAL joins also create extra WHERE clause terms.
+**
+** The terms of a FROM clause are contained in the Select.pSrc structure.
+** The left most table is the first entry in Select.pSrc.  The right-most
+** table is the last entry.  The join operator is held in the entry to
+** the left.  Thus entry 0 contains the join operator for the join between
+** entries 0 and 1.  Any ON or USING clauses associated with the join are
+** also attached to the left entry.
+**
+** This routine returns the number of errors encountered.
+*/
+static int sqliteProcessJoin(Parse *pParse, Select *p){
+  SrcList *pSrc;                  /* All tables in the FROM clause */
+  int i, j;                       /* Loop counters */
+  SrcList::SrcList_item *pLeft;     /* Left table being joined */
+  SrcList::SrcList_item *pRight;    /* Right table being joined */
+
+  pSrc = p->pSrc;
+  pLeft = &pSrc->a[0];
+  pRight = &pLeft[1];
+  for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
+    Table *pLeftTab = pLeft->pTab;
+    Table *pRightTab = pRight->pTab;
+
+    if( pLeftTab==0 || pRightTab==0 ) continue;
+
+    /* When the NATURAL keyword is present, add WHERE clause terms for
+    ** every column that the two tables have in common.
+    */
+    if( pRight->jointype & JT_NATURAL ){
+      if( pRight->pOn || pRight->pUsing ){
+        sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
+           "an ON or USING clause", 0);
+        return 1;
+      }
+      for(j=0; j<pLeftTab->nCol; j++){
+        char *zName = pLeftTab->aCol[j].zName;
+        if( columnIndex(pRightTab, zName)>=0 ){
+          addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
+                              pRightTab, pRight->zAlias,
+                              pRight->iCursor, &p->pWhere);
+          
+        }
+      }
+    }
+
+    /* Disallow both ON and USING clauses in the same join
+    */
+    if( pRight->pOn && pRight->pUsing ){
+      sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
+        "clauses in the same join");
+      return 1;
+    }
+
+    /* Add the ON clause to the end of the WHERE clause, connected by
+    ** an AND operator.
+    */
+    if( pRight->pOn ){
+      setJoinExpr(pRight->pOn, pRight->iCursor);
+      p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
+      pRight->pOn = 0;
+    }
+
+    /* Create extra terms on the WHERE clause for each column named
+    ** in the USING clause.  Example: If the two tables to be joined are 
+    ** A and B and the USING clause names X, Y, and Z, then add this
+    ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
+    ** Report an error if any column mentioned in the USING clause is
+    ** not contained in both tables to be joined.
+    */
+    if( pRight->pUsing ){
+      IdList *pList = pRight->pUsing;
+      for(j=0; j<pList->nId; j++){
+        char *zName = pList->a[j].zName;
+        if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
+          sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
+            "not present in both tables", zName);
+          return 1;
+        }
+        addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
+                            pRightTab, pRight->zAlias,
+                            pRight->iCursor, &p->pWhere);
+      }
+    }
+  }
+  return 0;
+}
+
+/*
+** Insert code into "v" that will push the record on the top of the
+** stack into the sorter.
+*/
+static void pushOntoSorter(
+  Parse *pParse,         /* Parser context */
+  ExprList *pOrderBy,    /* The ORDER BY clause */
+  Select *pSelect        /* The whole SELECT statement */
+){
+  Vdbe *v = pParse->pVdbe;
+  sqlite3ExprCodeExprList(pParse, pOrderBy);
+  sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
+  sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
+  sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
+  sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
+  if( pSelect->iLimit>=0 ){
+    int addr1, addr2;
+    addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
+    sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
+    addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
+    sqlite3VdbeJumpHere(v, addr1);
+    sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
+    sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
+    sqlite3VdbeJumpHere(v, addr2);
+    pSelect->iLimit = -1;
+  }
+}
+
+/*
+** Add code to implement the OFFSET
+*/
+static void codeOffset(
+  Vdbe *v,          /* Generate code into this VM */
+  Select *p,        /* The SELECT statement being coded */
+  int iContinue,    /* Jump here to skip the current record */
+  int nPop          /* Number of times to pop stack when jumping */
+){
+  if( p->iOffset>=0 && iContinue!=0 ){
+    int addr;
+    sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
+    addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
+    if( nPop>0 ){
+      sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
+    }
+    sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
+    VdbeComment((v, "# skip OFFSET records"));
+    sqlite3VdbeJumpHere(v, addr);
+  }
+}
+
+/*
+** Add code that will check to make sure the top N elements of the
+** stack are distinct.  iTab is a sorting index that holds previously
+** seen combinations of the N values.  A new entry is made in iTab
+** if the current N values are new.
+**
+** A jump to addrRepeat is made and the N+1 values are popped from the
+** stack if the top N elements are not distinct.
+*/
+static void codeDistinct(
+  Vdbe *v,           /* Generate code into this VM */
+  int iTab,          /* A sorting index used to test for distinctness */
+  int addrRepeat,    /* Jump to here if not distinct */
+  int N              /* The top N elements of the stack must be distinct */
+){
+  sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
+  sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
+  sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
+  sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
+  VdbeComment((v, "# skip indistinct records"));
+  sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
+}
+
+/*
+** Generate an error message when a SELECT is used within a subexpression
+** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
+** column.  We do this in a subroutine because the error occurs in multiple
+** places.
+*/
+static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){
+  if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
+    sqlite3ErrorMsg(pParse, "only a single result allowed for "
+       "a SELECT that is part of an expression");
+    return 1;
+  }else{
+    return 0;
+  }
+}
+
+/*
+** This routine generates the code for the inside of the inner loop
+** of a SELECT.
+**
+** If srcTab and nColumn are both zero, then the pEList expressions
+** are evaluated in order to get the data for this row.  If nColumn>0
+** then data is pulled from srcTab and pEList is used only to get the
+** datatypes for each column.
+*/
+static int selectInnerLoop(
+  Parse *pParse,          /* The parser context */
+  Select *p,              /* The complete select statement being coded */
+  ExprList *pEList,       /* List of values being extracted */
+  int srcTab,             /* Pull data from this table */
+  int nColumn,            /* Number of columns in the source table */
+  ExprList *pOrderBy,     /* If not NULL, sort results using this key */
+  int distinct,           /* If >=0, make sure results are distinct */
+  int eDest,              /* How to dispose of the results */
+  int iParm,              /* An argument to the disposal method */
+  int iContinue,          /* Jump here to continue with next row */
+  int iBreak,             /* Jump here to break out of the inner loop */
+  char *aff               /* affinity string if eDest is SRT_Union */
+){
+  Vdbe *v = pParse->pVdbe;
+  int i;
+  int hasDistinct;        /* True if the DISTINCT keyword is present */
+
+  if( v==0 ) return 0;
+  assert( pEList!=0 );
+
+  /* If there was a LIMIT clause on the SELECT statement, then do the check
+  ** to see if this row should be output.
+  */
+  hasDistinct = distinct>=0 && pEList->nExpr>0;
+  if( pOrderBy==0 && !hasDistinct ){
+    codeOffset(v, p, iContinue, 0);
+  }
+
+  /* Pull the requested columns.
+  */
+  if( nColumn>0 ){
+    for(i=0; i<nColumn; i++){
+      sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
+    }
+  }else{
+    nColumn = pEList->nExpr;
+    sqlite3ExprCodeExprList(pParse, pEList);
+  }
+
+  /* If the DISTINCT keyword was present on the SELECT statement
+  ** and this row has been seen before, then do not make this row
+  ** part of the result.
+  */
+  if( hasDistinct ){
+    assert( pEList!=0 );
+    assert( pEList->nExpr==nColumn );
+    codeDistinct(v, distinct, iContinue, nColumn);
+    if( pOrderBy==0 ){
+      codeOffset(v, p, iContinue, nColumn);
+    }
+  }
+
+  if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
+    return 0;
+  }
+
+  switch( eDest ){
+    /* In this mode, write each query result to the key of the temporary
+    ** table iParm.
+    */
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+    case SRT_Union: {
+      sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
+      if( aff ){
+        sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
+      }
+      sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
+      break;
+    }
+
+    /* Construct a record from the query result, but instead of
+    ** saving that record, use it as a key to delete elements from
+    ** the temporary table iParm.
+    */
+    case SRT_Except: {
+      int addr;
+      addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
+      sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
+      sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
+      sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
+      break;
+    }
+#endif
+
+    /* Store the result as data using a unique key.
+    */
+    case SRT_Table:
+    case SRT_EphemTab: {
+      sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
+      if( pOrderBy ){
+        pushOntoSorter(pParse, pOrderBy, p);
+      }else{
+        sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
+        sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
+        sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
+      }
+      break;
+    }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+    ** then there should be a single item on the stack.  Write this
+    ** item into the set table with bogus data.
+    */
+    case SRT_Set: {
+      int addr1 = sqlite3VdbeCurrentAddr(v);
+      int addr2;
+
+      assert( nColumn==1 );
+      sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
+      sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
+      addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
+      p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff);
+      if( pOrderBy ){
+        /* At first glance you would think we could optimize out the
+        ** ORDER BY in this case since the order of entries in the set
+        ** does not matter.  But there might be a LIMIT clause, in which
+        ** case the order does matter */
+        pushOntoSorter(pParse, pOrderBy, p);
+      }else{
+        sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
+        sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
+      }
+      sqlite3VdbeJumpHere(v, addr2);
+      break;
+    }
+
+    /* If any row exist in the result set, record that fact and abort.
+    */
+    case SRT_Exists: {
+      sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
+      sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
+      /* The LIMIT clause will terminate the loop for us */
+      break;
+    }
+
+    /* If this is a scalar select that is part of an expression, then
+    ** store the results in the appropriate memory cell and break out
+    ** of the scan loop.
+    */
+    case SRT_Mem: {
+      assert( nColumn==1 );
+      if( pOrderBy ){
+        pushOntoSorter(pParse, pOrderBy, p);
+      }else{
+        sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
+        /* The LIMIT clause will jump out of the loop for us */
+      }
+      break;
+    }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+    /* Send the data to the callback function or to a subroutine.  In the
+    ** case of a subroutine, the subroutine itself is responsible for
+    ** popping the data from the stack.
+    */
+    case SRT_Subroutine:
+    case SRT_Callback: {
+      if( pOrderBy ){
+        sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
+        pushOntoSorter(pParse, pOrderBy, p);
+      }else if( eDest==SRT_Subroutine ){
+        sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
+      }else{
+        sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
+      }
+      break;
+    }
+
+#if !defined(SQLITE_OMIT_TRIGGER)
+    /* Discard the results.  This is used for SELECT statements inside
+    ** the body of a TRIGGER.  The purpose of such selects is to call
+    ** user-defined functions that have side effects.  We do not care
+    ** about the actual results of the select.
+    */
+    default: {
+      assert( eDest==SRT_Discard );
+      sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
+      break;
+    }
+#endif
+  }
+
+  /* Jump to the end of the loop if the LIMIT is reached.
+  */
+  if( p->iLimit>=0 && pOrderBy==0 ){
+    sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
+    sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
+  }
+  return 0;
+}
+
+/*
+** Given an expression list, generate a KeyInfo structure that records
+** the collating sequence for each expression in that expression list.
+**
+** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
+** KeyInfo structure is appropriate for initializing a virtual index to
+** implement that clause.  If the ExprList is the result set of a SELECT
+** then the KeyInfo structure is appropriate for initializing a virtual
+** index to implement a DISTINCT test.
+**
+** Space to hold the KeyInfo structure is obtain from malloc.  The calling
+** function is responsible for seeing that this structure is eventually
+** freed.  Add the KeyInfo structure to the P3 field of an opcode using
+** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
+*/
+static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
+  sqlite3 *db = pParse->db;
+  int nExpr;
+  KeyInfo *pInfo;
+  ExprList::ExprList_item *pItem;
+  int i;
+
+  nExpr = pList->nExpr;
+  pInfo = (KeyInfo*)sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
+  if( pInfo ){
+    pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
+    pInfo->nField = nExpr;
+    pInfo->enc = ENC(db);
+    for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
+      CollSeq *pColl;
+      pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
+      if( !pColl ){
+        pColl = db->pDfltColl;
+      }
+      pInfo->aColl[i] = pColl;
+      pInfo->aSortOrder[i] = pItem->sortOrder;
+    }
+  }
+  return pInfo;
+}
+
+
+/*
+** If the inner loop was generated using a non-null pOrderBy argument,
+** then the results were placed in a sorter.  After the loop is terminated
+** we need to run the sorter and output the results.  The following
+** routine generates the code needed to do that.
+*/
+static void generateSortTail(
+  Parse *pParse,   /* Parsing context */
+  Select *p,       /* The SELECT statement */
+  Vdbe *v,         /* Generate code into this VDBE */
+  int nColumn,     /* Number of columns of data */
+  int eDest,       /* Write the sorted results here */
+  int iParm        /* Optional parameter associated with eDest */
+){
+  int brk = sqlite3VdbeMakeLabel(v);
+  int cont = sqlite3VdbeMakeLabel(v);
+  int addr;
+  int iTab;
+  int pseudoTab = 0;
+  ExprList *pOrderBy = p->pOrderBy;
+
+  iTab = pOrderBy->iECursor;
+  if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
+    pseudoTab = pParse->nTab++;
+    sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
+    sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
+  }
+  addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
+  codeOffset(v, p, cont, 0);
+  if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
+    sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
+  }
+  sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
+  switch( eDest ){
+    case SRT_Table:
+    case SRT_EphemTab: {
+      sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
+      sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
+      sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND);
+      break;
+    }
+#ifndef SQLITE_OMIT_SUBQUERY
+    case SRT_Set: {
+      assert( nColumn==1 );
+      sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
+      sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
+      sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
+      sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1);
+      sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
+      break;
+    }
+    case SRT_Mem: {
+      assert( nColumn==1 );
+      sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
+      /* The LIMIT clause will terminate the loop for us */
+      break;
+    }
+#endif
+    case SRT_Callback:
+    case SRT_Subroutine: {
+      int i;
+      sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
+      for(i=0; i<nColumn; i++){
+        sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
+      }
+      if( eDest==SRT_Callback ){
+        sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
+      }else{
+        sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
+      }
+      break;
+    }
+    default: {
+      /* Do nothing */
+      break;
+    }
+  }
+
+  /* Jump to the end of the loop when the LIMIT is reached
+  */
+  if( p->iLimit>=0 ){
+    sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
+    sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
+  }
+
+  /* The bottom of the loop
+  */
+  sqlite3VdbeResolveLabel(v, cont);
+  sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
+  sqlite3VdbeResolveLabel(v, brk);
+  if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
+    sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
+  }
+
+}
+
+/*
+** Return a pointer to a string containing the 'declaration type' of the
+** expression pExpr. The string may be treated as static by the caller.
+**
+** The declaration type is the exact datatype definition extracted from the
+** original CREATE TABLE statement if the expression is a column. The
+** declaration type for a ROWID field is INTEGER. Exactly when an expression
+** is considered a column can be complex in the presence of subqueries. The
+** result-set expression in all of the following SELECT statements is 
+** considered a column by this function.
+**
+**   SELECT col FROM tbl;
+**   SELECT (SELECT col FROM tbl;
+**   SELECT (SELECT col FROM tbl);
+**   SELECT abc FROM (SELECT col AS abc FROM tbl);
+** 
+** The declaration type for any expression other than a column is NULL.
+*/
+static const char *columnType(
+  NameContext *pNC, 
+  Expr *pExpr,
+  const char **pzOriginDb,
+  const char **pzOriginTab,
+  const char **pzOriginCol
+){
+  char const *zType = 0;
+  char const *zOriginDb = 0;
+  char const *zOriginTab = 0;
+  char const *zOriginCol = 0;
+  int j;
+  if( pExpr==0 || pNC->pSrcList==0 ) return 0;
+
+  switch( pExpr->op ){
+    case TK_AGG_COLUMN:
+    case TK_COLUMN: {
+      /* The expression is a column. Locate the table the column is being
+      ** extracted from in NameContext.pSrcList. This table may be real
+      ** database table or a subquery.
+      */
+      Table *pTab = 0;            /* Table structure column is extracted from */
+      Select *pS = 0;             /* Select the column is extracted from */
+      int iCol = pExpr->iColumn;  /* Index of column in pTab */
+      while( pNC && !pTab ){
+        SrcList *pTabList = pNC->pSrcList;
+        for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
+        if( j<pTabList->nSrc ){
+          pTab = pTabList->a[j].pTab;
+          pS = pTabList->a[j].pSelect;
+        }else{
+          pNC = pNC->pNext;
+        }
+      }
+
+      if( pTab==0 ){
+        /* FIX ME:
+        ** This can occurs if you have something like "SELECT new.x;" inside
+        ** a trigger.  In other words, if you reference the special "new"
+        ** table in the result set of a select.  We do not have a good way
+        ** to find the actual table type, so call it "TEXT".  This is really
+        ** something of a bug, but I do not know how to fix it.
+        **
+        ** This code does not produce the correct answer - it just prevents
+        ** a segfault.  See ticket #1229.
+        */
+        zType = "TEXT";
+        break;
+      }
+
+      assert( pTab );
+      if( pS ){
+        /* The "table" is actually a sub-select or a view in the FROM clause
+        ** of the SELECT statement. Return the declaration type and origin
+        ** data for the result-set column of the sub-select.
+        */
+        if( iCol>=0 && iCol<pS->pEList->nExpr ){
+          /* If iCol is less than zero, then the expression requests the
+          ** rowid of the sub-select or view. This expression is legal (see 
+          ** test case misc2.2.2) - it always evaluates to NULL.
+          */
+          NameContext sNC;
+          Expr *p = pS->pEList->a[iCol].pExpr;
+          sNC.pSrcList = pS->pSrc;
+          sNC.pNext = 0;
+          sNC.pParse = pNC->pParse;
+          zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
+        }
+      }else if( pTab->pSchema ){
+        /* A real table */
+        assert( !pS );
+        if( iCol<0 ) iCol = pTab->iPKey;
+        assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+        if( iCol<0 ){
+          zType = "INTEGER";
+          zOriginCol = "rowid";
+        }else{
+          zType = pTab->aCol[iCol].zType;
+          zOriginCol = pTab->aCol[iCol].zName;
+        }
+        zOriginTab = pTab->zName;
+        if( pNC->pParse ){
+          int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
+          zOriginDb = pNC->pParse->db->aDb[iDb].zName;
+        }
+      }
+      break;
+    }
+#ifndef SQLITE_OMIT_SUBQUERY
+    case TK_SELECT: {
+      /* The expression is a sub-select. Return the declaration type and
+      ** origin info for the single column in the result set of the SELECT
+      ** statement.
+      */
+      NameContext sNC;
+      Select *pS = pExpr->pSelect;
+      Expr *p = pS->pEList->a[0].pExpr;
+      sNC.pSrcList = pS->pSrc;
+      sNC.pNext = pNC;
+      sNC.pParse = pNC->pParse;
+      zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
+      break;
+    }
+#endif
+  }
+  
+  if( pzOriginDb ){
+    assert( pzOriginTab && pzOriginCol );
+    *pzOriginDb = zOriginDb;
+    *pzOriginTab = zOriginTab;
+    *pzOriginCol = zOriginCol;
+  }
+  return zType;
+}
+
+/*
+** Generate code that will tell the VDBE the declaration types of columns
+** in the result set.
+*/
+static void generateColumnTypes(
+  Parse *pParse,      /* Parser context */
+  SrcList *pTabList,  /* List of tables */
+  ExprList *pEList    /* Expressions defining the result set */
+){
+  Vdbe *v = pParse->pVdbe;
+  int i;
+  NameContext sNC;
+  sNC.pSrcList = pTabList;
+  sNC.pParse = pParse;
+  for(i=0; i<pEList->nExpr; i++){
+    Expr *p = pEList->a[i].pExpr;
+    const char *zOrigDb = 0;
+    const char *zOrigTab = 0;
+    const char *zOrigCol = 0;
+    const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
+
+    /* The vdbe must make its own copy of the column-type and other 
+    ** column specific strings, in case the schema is reset before this
+    ** virtual machine is deleted.
+    */
+    sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
+    sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
+    sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
+    sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
+  }
+}
+
+/*
+** Generate code that will tell the VDBE the names of columns
+** in the result set.  This information is used to provide the
+** azCol[] values in the callback.
+*/
+static void generateColumnNames(
+  Parse *pParse,      /* Parser context */
+  SrcList *pTabList,  /* List of tables */
+  ExprList *pEList    /* Expressions defining the result set */
+){
+  Vdbe *v = pParse->pVdbe;
+  int i, j;
+  sqlite3 *db = pParse->db;
+  int fullNames, shortNames;
+
+#ifndef SQLITE_OMIT_EXPLAIN
+  /* If this is an EXPLAIN, skip this step */
+  if( pParse->explain ){
+    return;
+  }
+#endif
+
+  assert( v!=0 );
+  if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
+  pParse->colNamesSet = 1;
+  fullNames = (db->flags & SQLITE_FullColNames)!=0;
+  shortNames = (db->flags & SQLITE_ShortColNames)!=0;
+  sqlite3VdbeSetNumCols(v, pEList->nExpr);
+  for(i=0; i<pEList->nExpr; i++){
+    Expr *p;
+    p = pEList->a[i].pExpr;
+    if( p==0 ) continue;
+    if( pEList->a[i].zName ){
+      char *zName = pEList->a[i].zName;
+      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
+      continue;
+    }
+    if( p->op==TK_COLUMN && pTabList ){
+      Table *pTab;
+      char *zCol;
+      int iCol = p->iColumn;
+      for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
+      assert( j<pTabList->nSrc );
+      pTab = pTabList->a[j].pTab;
+      if( iCol<0 ) iCol = pTab->iPKey;
+      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+      if( iCol<0 ){
+        zCol = "rowid";
+      }else{
+        zCol = pTab->aCol[iCol].zName;
+      }
+      if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
+        sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
+      }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
+        char *zName = 0;
+        char *zTab;
+ 
+        zTab = pTabList->a[j].zAlias;
+        if( fullNames || zTab==0 ) zTab = pTab->zName;
+        sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
+        sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
+      }else{
+        sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
+      }
+    }else if( p->span.z && p->span.z[0] ){
+      sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
+      /* sqlite3VdbeCompressSpace(v, addr); */
+    }else{
+      char zName[30];
+      assert( p->op!=TK_COLUMN || pTabList==0 );
+      sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1);
+      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
+    }
+  }
+  generateColumnTypes(pParse, pTabList, pEList);
+}
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** Name of the connection operator, used for error messages.
+*/
+static const char *selectOpName(int id){
+  char *z;
+  switch( id ){
+    case TK_ALL:       z = "UNION ALL";   break;
+    case TK_INTERSECT: z = "INTERSECT";   break;
+    case TK_EXCEPT:    z = "EXCEPT";      break;
+    default:           z = "UNION";       break;
+  }
+  return z;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+/*
+** Forward declaration
+*/
+static int prepSelectStmt(Parse*, Select*);
+
+/*
+** Given a SELECT statement, generate a Table structure that describes
+** the result set of that SELECT.
+*/
+Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
+  Table *pTab;
+  int i, j;
+  ExprList *pEList;
+  Column *aCol, *pCol;
+  sqlite3 *db = pParse->db;
+
+  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+  if( prepSelectStmt(pParse, pSelect) ){
+    return 0;
+  }
+  if( sqlite3SelectResolve(pParse, pSelect, 0) ){
+    return 0;
+  }
+  pTab = (Table*)sqlite3DbMallocZero(db, sizeof(Table) );
+  if( pTab==0 ){
+    return 0;
+  }
+  pTab->nRef = 1;
+  pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
+  pEList = pSelect->pEList;
+  pTab->nCol = pEList->nExpr;
+  assert( pTab->nCol>0 );
+  pTab->aCol = aCol = (Column*)sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
+  for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
+    Expr *p, *pR;
+    char *zType;
+    char *zName;
+    int nName;
+    CollSeq *pColl;
+    int cnt;
+    NameContext sNC;
+    
+    /* Get an appropriate name for the column
+    */
+    p = pEList->a[i].pExpr;
+    assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
+    if( (zName = pEList->a[i].zName)!=0 ){
+      /* If the column contains an "AS <name>" phrase, use <name> as the name */
+      zName = sqlite3DbStrDup(db, zName);
+    }else if( p->op==TK_DOT 
+              && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
+      /* For columns of the from A.B use B as the name */
+      zName = sqlite3MPrintf(db, "%T", &pR->token);
+    }else if( p->span.z && p->span.z[0] ){
+      /* Use the original text of the column expression as its name */
+      zName = sqlite3MPrintf(db, "%T", &p->span);
+    }else{
+      /* If all else fails, make up a name */
+      zName = sqlite3MPrintf(db, "column%d", i+1);
+    }
+    if( !zName || db->mallocFailed ){
+      db->mallocFailed = 1;
+      sqlite3_free(zName);
+      sqlite3DeleteTable(pTab);
+      return 0;
+    }
+    sqlite3Dequote(zName);
+
+    /* Make sure the column name is unique.  If the name is not unique,
+    ** append a integer to the name so that it becomes unique.
+    */
+    nName = strlen(zName);
+    for(j=cnt=0; j<i; j++){
+      if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
+        zName[nName] = 0;
+        zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt);
+        j = -1;
+        if( zName==0 ) break;
+      }
+    }
+    pCol->zName = zName;
+
+    /* Get the typename, type affinity, and collating sequence for the
+    ** column.
+    */
+    memset(&sNC, 0, sizeof(sNC));
+    sNC.pSrcList = pSelect->pSrc;
+    zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
+    pCol->zType = zType;
+    pCol->affinity = sqlite3ExprAffinity(p);
+    pColl = sqlite3ExprCollSeq(pParse, p);
+    if( pColl ){
+      pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
+    }
+  }
+  pTab->iPKey = -1;
+  return pTab;
+}
+
+/*
+** Prepare a SELECT statement for processing by doing the following
+** things:
+**
+**    (1)  Make sure VDBE cursor numbers have been assigned to every
+**         element of the FROM clause.
+**
+**    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
+**         defines FROM clause.  When views appear in the FROM clause,
+**         fill pTabList->a[].pSelect with a copy of the SELECT statement
+**         that implements the view.  A copy is made of the view's SELECT
+**         statement so that we can freely modify or delete that statement
+**         without worrying about messing up the presistent representation
+**         of the view.
+**
+**    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
+**         on joins and the ON and USING clause of joins.
+**
+**    (4)  Scan the list of columns in the result set (pEList) looking
+**         for instances of the "*" operator or the TABLE.* operator.
+**         If found, expand each "*" to be every column in every table
+**         and TABLE.* to be every column in TABLE.
+**
+** Return 0 on success.  If there are problems, leave an error message
+** in pParse and return non-zero.
+*/
+static int prepSelectStmt(Parse *pParse, Select *p){
+  int i, j, k, rc;
+  SrcList *pTabList;
+  ExprList *pEList;
+  SrcList::SrcList_item *pFrom;
+  sqlite3 *db = pParse->db;
+
+  if( p==0 || p->pSrc==0 || db->mallocFailed ){
+    return 1;
+  }
+  pTabList = p->pSrc;
+  pEList = p->pEList;
+
+  /* Make sure cursor numbers have been assigned to all entries in
+  ** the FROM clause of the SELECT statement.
+  */
+  sqlite3SrcListAssignCursors(pParse, p->pSrc);
+
+  /* Look up every table named in the FROM clause of the select.  If
+  ** an entry of the FROM clause is a subquery instead of a table or view,
+  ** then create a transient table structure to describe the subquery.
+  */
+     Table *pTab;
+ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+    if( pFrom->pTab!=0 ){
+      /* This statement has already been prepared.  There is no need
+      ** to go further. */
+      assert( i==0 );
+      return 0;
+    }
+    if( pFrom->zName==0 ){
+#ifndef SQLITE_OMIT_SUBQUERY
+      /* A sub-query in the FROM clause of a SELECT */
+      assert( pFrom->pSelect!=0 );
+      if( pFrom->zAlias==0 ){
+        pFrom->zAlias =
+          sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
+      }
+      assert( pFrom->pTab==0 );
+      pFrom->pTab = pTab = 
+        sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
+      if( pTab==0 ){
+        return 1;
+      }
+      /* The isEphem flag indicates that the Table structure has been
+      ** dynamically allocated and may be freed at any time.  In other words,
+      ** pTab is not pointing to a persistent table structure that defines
+      ** part of the schema. */
+      pTab->isEphem = 1;
+#endif
+    }else{
+      /* An ordinary table or view name in the FROM clause */
+      assert( pFrom->pTab==0 );
+      pFrom->pTab = pTab = 
+        sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
+      if( pTab==0 ){
+        return 1;
+      }
+      pTab->nRef++;
+#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
+      if( pTab->pSelect || IsVirtual(pTab) ){
+        /* We reach here if the named table is a really a view */
+        if( sqlite3ViewGetColumnNames(pParse, pTab) ){
+          return 1;
+        }
+        /* If pFrom->pSelect!=0 it means we are dealing with a
+        ** view within a view.  The SELECT structure has already been
+        ** copied by the outer view so we can skip the copy step here
+        ** in the inner view.
+        */
+        if( pFrom->pSelect==0 ){
+          pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
+        }
+      }
+#endif
+    }
+  }
+
+  /* Process NATURAL keywords, and ON and USING clauses of joins.
+  */
+  if( sqliteProcessJoin(pParse, p) ) return 1;
+
+  /* For every "*" that occurs in the column list, insert the names of
+  ** all columns in all tables.  And for every TABLE.* insert the names
+  ** of all columns in TABLE.  The parser inserted a special expression
+  ** with the TK_ALL operator for each "*" that it found in the column list.
+  ** The following code just has to locate the TK_ALL expressions and expand
+  ** each one to the list of all columns in all tables.
+  **
+  ** The first loop just checks to see if there are any "*" operators
+  ** that need expanding.
+  */
+  for(k=0; k<pEList->nExpr; k++){
+    Expr *pE = pEList->a[k].pExpr;
+    if( pE->op==TK_ALL ) break;
+    if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
+         && pE->pLeft && pE->pLeft->op==TK_ID ) break;
+  }
+  rc = 0;
+  if( k<pEList->nExpr ){
+    /*
+    ** If we get here it means the result set contains one or more "*"
+    ** operators that need to be expanded.  Loop through each expression
+    ** in the result set and expand them one by one.
+    */
+	  ExprList::ExprList_item *a = pEList->a;
+    ExprList *pNew = 0;
+    int flags = pParse->db->flags;
+    int longNames = (flags & SQLITE_FullColNames)!=0 &&
+                      (flags & SQLITE_ShortColNames)==0;
+
+    for(k=0; k<pEList->nExpr; k++){
+      Expr *pE = a[k].pExpr;
+      if( pE->op!=TK_ALL &&
+           (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
+        /* This particular expression does not need to be expanded.
+        */
+        pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
+        if( pNew ){
+          pNew->a[pNew->nExpr-1].zName = a[k].zName;
+        }else{
+          rc = 1;
+        }
+        a[k].pExpr = 0;
+        a[k].zName = 0;
+      }else{
+        /* This expression is a "*" or a "TABLE.*" and needs to be
+        ** expanded. */
+        int tableSeen = 0;      /* Set to 1 when TABLE matches */
+        char *zTName;            /* text of name of TABLE */
+        if( pE->op==TK_DOT && pE->pLeft ){
+          zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
+        }else{
+          zTName = 0;
+        }
+        for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+          Table *pTab = pFrom->pTab;
+          char *zTabName = pFrom->zAlias;
+          if( zTabName==0 || zTabName[0]==0 ){ 
+            zTabName = pTab->zName;
+          }
+          if( zTName && (zTabName==0 || zTabName[0]==0 || 
+                 sqlite3StrICmp(zTName, zTabName)!=0) ){
+            continue;
+          }
+          tableSeen = 1;
+          for(j=0; j<pTab->nCol; j++){
+            Expr *pExpr, *pRight;
+            char *zName = pTab->aCol[j].zName;
+
+            /* If a column is marked as 'hidden' (currently only possible
+            ** for virtual tables), do not include it in the expanded
+            ** result-set list.
+            */
+            if( IsHiddenColumn(&pTab->aCol[j]) ){
+              assert(IsVirtual(pTab));
+              continue;
+            }
+
+            if( i>0 ){
+				SrcList::SrcList_item *pLeft = &pTabList->a[i-1];
+              if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
+                        columnIndex(pLeft->pTab, zName)>=0 ){
+                /* In a NATURAL join, omit the join columns from the 
+                ** table on the right */
+                continue;
+              }
+              if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
+                /* In a join with a USING clause, omit columns in the
+                ** using clause from the table on the right. */
+                continue;
+              }
+            }
+            pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
+            if( pRight==0 ) break;
+            setQuotedToken(pParse, &pRight->token, zName);
+            if( zTabName && (longNames || pTabList->nSrc>1) ){
+              Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
+              pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
+              if( pExpr==0 ) break;
+              setQuotedToken(pParse, &pLeft->token, zTabName);
+              setToken(&pExpr->span, 
+                  sqlite3MPrintf(db, "%s.%s", zTabName, zName));
+              pExpr->span.dyn = 1;
+              pExpr->token.z = 0;
+              pExpr->token.n = 0;
+              pExpr->token.dyn = 0;
+            }else{
+              pExpr = pRight;
+              pExpr->span = pExpr->token;
+              pExpr->span.dyn = 0;
+            }
+            if( longNames ){
+              pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
+            }else{
+              pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
+            }
+          }
+        }
+        if( !tableSeen ){
+          if( zTName ){
+            sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
+          }else{
+            sqlite3ErrorMsg(pParse, "no tables specified");
+          }
+          rc = 1;
+        }
+        sqlite3_free(zTName);
+      }
+    }
+    sqlite3ExprListDelete(pEList);
+    p->pEList = pNew;
+  }
+  if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){
+    sqlite3ErrorMsg(pParse, "too many columns in result set");
+    rc = SQLITE_ERROR;
+  }
+  if( db->mallocFailed ){
+    rc = SQLITE_NOMEM;
+  }
+  return rc;
+}
+
+/*
+** pE is a pointer to an expression which is a single term in
+** ORDER BY or GROUP BY clause.
+**
+** If pE evaluates to an integer constant i, then return i.
+** This is an indication to the caller that it should sort
+** by the i-th column of the result set.
+**
+** If pE is a well-formed expression and the SELECT statement
+** is not compound, then return 0.  This indicates to the
+** caller that it should sort by the value of the ORDER BY
+** expression.
+**
+** If the SELECT is compound, then attempt to match pE against
+** result set columns in the left-most SELECT statement.  Return
+** the index i of the matching column, as an indication to the 
+** caller that it should sort by the i-th column.  If there is
+** no match, return -1 and leave an error message in pParse.
+*/
+static int matchOrderByTermToExprList(
+  Parse *pParse,     /* Parsing context for error messages */
+  Select *pSelect,   /* The SELECT statement with the ORDER BY clause */
+  Expr *pE,          /* The specific ORDER BY term */
+  int idx,           /* When ORDER BY term is this */
+  int isCompound,    /* True if this is a compound SELECT */
+  u8 *pHasAgg        /* True if expression contains aggregate functions */
+){
+  int i;             /* Loop counter */
+  ExprList *pEList;  /* The columns of the result set */
+  NameContext nc;    /* Name context for resolving pE */
+
+
+  /* If the term is an integer constant, return the value of that
+  ** constant */
+  pEList = pSelect->pEList;
+  if( sqlite3ExprIsInteger(pE, &i) ){
+    if( i<=0 ){
+      /* If i is too small, make it too big.  That way the calling
+      ** function still sees a value that is out of range, but does
+      ** not confuse the column number with 0 or -1 result code.
+      */
+      i = pEList->nExpr+1;
+    }
+    return i;
+  }
+
+  /* If the term is a simple identifier that try to match that identifier
+  ** against a column name in the result set.
+  */
+  if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){
+    sqlite3 *db = pParse->db;
+    char *zCol = sqlite3NameFromToken(db, &pE->token);
+    if( zCol==0 ){
+      return -1;
+    }
+    for(i=0; i<pEList->nExpr; i++){
+      char *zAs = pEList->a[i].zName;
+      if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
+        sqlite3_free(zCol);
+        return i+1;
+      }
+    }
+    sqlite3_free(zCol);
+  }
+
+  /* Resolve all names in the ORDER BY term expression
+  */
+  memset(&nc, 0, sizeof(nc));
+  nc.pParse = pParse;
+  nc.pSrcList = pSelect->pSrc;
+  nc.pEList = pEList;
+  nc.allowAgg = 1;
+  nc.nErr = 0;
+  if( sqlite3ExprResolveNames(&nc, pE) ){
+    if( isCompound ){
+      sqlite3ErrorClear(pParse);
+      return 0;
+    }else{
+      return -1;
+    }
+  }
+  if( nc.hasAgg && pHasAgg ){
+    *pHasAgg = 1;
+  }
+
+  /* For a compound SELECT, we need to try to match the ORDER BY
+  ** expression against an expression in the result set
+  */
+  if( isCompound ){
+    for(i=0; i<pEList->nExpr; i++){
+      if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
+        return i+1;
+      }
+    }
+  }
+  return 0;
+}
+
+
+/*
+** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement.
+** Return the number of errors seen.
+**
+** Every term of the ORDER BY or GROUP BY clause needs to be an
+** expression.  If any expression is an integer constant, then
+** that expression is replaced by the corresponding 
+** expression from the result set.
+*/
+static int processOrderGroupBy(
+  Parse *pParse,        /* Parsing context.  Leave error messages here */
+  Select *pSelect,      /* The SELECT statement containing the clause */
+  ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
+  int isOrder,          /* 1 for ORDER BY.  0 for GROUP BY */
+  u8 *pHasAgg           /* Set to TRUE if any term contains an aggregate */
+){
+  int i;
+  sqlite3 *db = pParse->db;
+  ExprList *pEList;
+
+  if( pOrderBy==0 ) return 0;
+  if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
+    const char *zType = isOrder ? "ORDER" : "GROUP";
+    sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
+    return 1;
+  }
+  pEList = pSelect->pEList;
+  if( pEList==0 ){
+    return 0;
+  }
+  for(i=0; i<pOrderBy->nExpr; i++){
+    int iCol;
+    Expr *pE = pOrderBy->a[i].pExpr;
+    iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
+    if( iCol<0 ){
+      return 1;
+    }
+    if( iCol>pEList->nExpr ){
+      const char *zType = isOrder ? "ORDER" : "GROUP";
+      sqlite3ErrorMsg(pParse, 
+         "%r %s BY term out of range - should be "
+         "between 1 and %d", i+1, zType, pEList->nExpr);
+      return 1;
+    }
+    if( iCol>0 ){
+      CollSeq *pColl = pE->pColl;
+      int flags = pE->flags & EP_ExpCollate;
+      sqlite3ExprDelete(pE);
+      pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr);
+      pOrderBy->a[i].pExpr = pE;
+      if( pColl && flags ){
+        pE->pColl = pColl;
+        pE->flags |= flags;
+      }
+    }
+  }
+  return 0;
+}
+
+/*
+** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
+** the number of errors seen.
+**
+** The processing depends on whether the SELECT is simple or compound.
+** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY
+** clause needs to be an expression.  If any expression is an integer
+** constant, then that expression is replaced by the corresponding 
+** expression from the result set.
+**
+** For compound SELECT statements, every expression needs to be of
+** type TK_COLUMN with a iTable value as given in the 4th parameter.
+** If any expression is an integer, that becomes the column number.
+** Otherwise, match the expression against result set columns from
+** the left-most SELECT.
+*/
+static int processCompoundOrderBy(
+  Parse *pParse,        /* Parsing context.  Leave error messages here */
+  Select *pSelect,      /* The SELECT statement containing the ORDER BY */
+  int iTable            /* Output table for compound SELECT statements */
+){
+  int i;
+  ExprList *pOrderBy;
+  ExprList *pEList;
+  sqlite3 *db;
+  int moreToDo = 1;
+
+  pOrderBy = pSelect->pOrderBy;
+  if( pOrderBy==0 ) return 0;
+  if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){
+    sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
+    return 1;
+  }
+  db = pParse->db;
+  for(i=0; i<pOrderBy->nExpr; i++){
+    pOrderBy->a[i].done = 0;
+  }
+  while( pSelect->pPrior ){
+    pSelect = pSelect->pPrior;
+  }
+  while( pSelect && moreToDo ){
+    moreToDo = 0;
+    for(i=0; i<pOrderBy->nExpr; i++){
+      int iCol;
+      Expr *pE, *pDup;
+      if( pOrderBy->a[i].done ) continue;
+      pE = pOrderBy->a[i].pExpr;
+      pDup = sqlite3ExprDup(db, pE);
+      if( pDup==0 ){
+        return 1;
+      }
+      iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
+      sqlite3ExprDelete(pDup);
+      if( iCol<0 ){
+        return 1;
+      }
+      pEList = pSelect->pEList;
+      if( pEList==0 ){
+        return 1;
+      }
+      if( iCol>pEList->nExpr ){
+        sqlite3ErrorMsg(pParse, 
+           "%r ORDER BY term out of range - should be "
+           "between 1 and %d", i+1, pEList->nExpr);
+        return 1;
+      }
+      if( iCol>0 ){
+        pE->op = TK_COLUMN;
+        pE->iTable = iTable;
+        pE->iAgg = -1;
+        pE->iColumn = iCol-1;
+        pE->pTab = 0;
+        pOrderBy->a[i].done = 1;
+      }else{
+        moreToDo = 1;
+      }
+    }
+    pSelect = pSelect->pNext;
+  }
+  for(i=0; i<pOrderBy->nExpr; i++){
+    if( pOrderBy->a[i].done==0 ){
+      sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
+            "column in the result set", i+1);
+      return 1;
+    }
+  }
+  return 0;
+}
+
+/*
+** Get a VDBE for the given parser context.  Create a new one if necessary.
+** If an error occurs, return NULL and leave a message in pParse.
+*/
+Vdbe *sqlite3GetVdbe(Parse *pParse){
+  Vdbe *v = pParse->pVdbe;
+  if( v==0 ){
+    v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
+  }
+  return v;
+}
+
+
+/*
+** Compute the iLimit and iOffset fields of the SELECT based on the
+** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
+** that appear in the original SQL statement after the LIMIT and OFFSET
+** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset 
+** are the integer memory register numbers for counters used to compute 
+** the limit and offset.  If there is no limit and/or offset, then 
+** iLimit and iOffset are negative.
+**
+** This routine changes the values of iLimit and iOffset only if
+** a limit or offset is defined by pLimit and pOffset.  iLimit and
+** iOffset should have been preset to appropriate default values
+** (usually but not always -1) prior to calling this routine.
+** Only if pLimit!=0 or pOffset!=0 do the limit registers get
+** redefined.  The UNION ALL operator uses this property to force
+** the reuse of the same limit and offset registers across multiple
+** SELECT statements.
+*/
+static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
+  Vdbe *v = 0;
+  int iLimit = 0;
+  int iOffset;
+  int addr1, addr2;
+
+  /* 
+  ** "LIMIT -1" always shows all rows.  There is some
+  ** contraversy about what the correct behavior should be.
+  ** The current implementation interprets "LIMIT 0" to mean
+  ** no rows.
+  */
+  if( p->pLimit ){
+    p->iLimit = iLimit = pParse->nMem;
+    pParse->nMem += 2;
+    v = sqlite3GetVdbe(pParse);
+    if( v==0 ) return;
+    sqlite3ExprCode(pParse, p->pLimit);
+    sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
+    sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1);
+    VdbeComment((v, "# LIMIT counter"));
+    sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
+    sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0);
+  }
+  if( p->pOffset ){
+    p->iOffset = iOffset = pParse->nMem++;
+    v = sqlite3GetVdbe(pParse);
+    if( v==0 ) return;
+    sqlite3ExprCode(pParse, p->pOffset);
+    sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
+    sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
+    VdbeComment((v, "# OFFSET counter"));
+    addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
+    sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
+    sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
+    sqlite3VdbeJumpHere(v, addr1);
+    if( p->pLimit ){
+      sqlite3VdbeAddOp(v, OP_Add, 0, 0);
+    }
+  }
+  if( p->pLimit ){
+    addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
+    sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
+    sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
+    addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
+    sqlite3VdbeJumpHere(v, addr1);
+    sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
+    VdbeComment((v, "# LIMIT+OFFSET"));
+    sqlite3VdbeJumpHere(v, addr2);
+  }
+}
+
+/*
+** Allocate a virtual index to use for sorting.
+*/
+static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
+  if( pOrderBy ){
+    int addr;
+    assert( pOrderBy->iECursor==0 );
+    pOrderBy->iECursor = pParse->nTab++;
+    addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
+                            pOrderBy->iECursor, pOrderBy->nExpr+1);
+    assert( p->addrOpenEphm[2] == -1 );
+    p->addrOpenEphm[2] = addr;
+  }
+}
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** Return the appropriate collating sequence for the iCol-th column of
+** the result set for the compound-select statement "p".  Return NULL if
+** the column has no default collating sequence.
+**
+** The collating sequence for the compound select is taken from the
+** left-most term of the select that has a collating sequence.
+*/
+static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
+  CollSeq *pRet;
+  if( p->pPrior ){
+    pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
+  }else{
+    pRet = 0;
+  }
+  if( pRet==0 ){
+    pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
+  }
+  return pRet;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** This routine is called to process a query that is really the union
+** or intersection of two or more separate queries.
+**
+** "p" points to the right-most of the two queries.  the query on the
+** left is p->pPrior.  The left query could also be a compound query
+** in which case this routine will be called recursively. 
+**
+** The results of the total query are to be written into a destination
+** of type eDest with parameter iParm.
+**
+** Example 1:  Consider a three-way compound SQL statement.
+**
+**     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
+**
+** This statement is parsed up as follows:
+**
+**     SELECT c FROM t3
+**      |
+**      `----->  SELECT b FROM t2
+**                |
+**                `------>  SELECT a FROM t1
+**
+** The arrows in the diagram above represent the Select.pPrior pointer.
+** So if this routine is called with p equal to the t3 query, then
+** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
+**
+** Notice that because of the way SQLite parses compound SELECTs, the
+** individual selects always group from left to right.
+*/
+static int multiSelect(
+  Parse *pParse,        /* Parsing context */
+  Select *p,            /* The right-most of SELECTs to be coded */
+  int eDest,            /* \___  Store query results as specified */
+  int iParm,            /* /     by these two parameters.         */
+  char *aff             /* If eDest is SRT_Union, the affinity string */
+){
+  int rc = SQLITE_OK;   /* Success code from a subroutine */
+  Select *pPrior;       /* Another SELECT immediately to our left */
+  Vdbe *v;              /* Generate code to this VDBE */
+  int nCol;             /* Number of columns in the result set */
+  ExprList *pOrderBy;   /* The ORDER BY clause on p */
+  int aSetP2[2];        /* Set P2 value of these op to number of columns */
+  int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
+
+  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
+  ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
+  */
+  if( p==0 || p->pPrior==0 ){
+    rc = 1;
+    goto multi_select_end;
+  }
+  pPrior = p->pPrior;
+  assert( pPrior->pRightmost!=pPrior );
+  assert( pPrior->pRightmost==p->pRightmost );
+  if( pPrior->pOrderBy ){
+    sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
+      selectOpName(p->op));
+    rc = 1;
+    goto multi_select_end;
+  }
+  if( pPrior->pLimit ){
+    sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
+      selectOpName(p->op));
+    rc = 1;
+    goto multi_select_end;
+  }
+
+  /* Make sure we have a valid query engine.  If not, create a new one.
+  */
+  v = sqlite3GetVdbe(pParse);
+  if( v==0 ){
+    rc = 1;
+    goto multi_select_end;
+  }
+
+  /* Create the destination temporary table if necessary
+  */
+  if( eDest==SRT_EphemTab ){
+    assert( p->pEList );
+    assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
+    aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
+    eDest = SRT_Table;
+  }
+
+  /* Generate code for the left and right SELECT statements.
+  */
+  pOrderBy = p->pOrderBy;
+  switch( p->op ){
+    case TK_ALL: {
+      if( pOrderBy==0 ){
+        int addr = 0;
+        assert( !pPrior->pLimit );
+        pPrior->pLimit = p->pLimit;
+        pPrior->pOffset = p->pOffset;
+        rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
+        p->pLimit = 0;
+        p->pOffset = 0;
+        if( rc ){
+          goto multi_select_end;
+        }
+        p->pPrior = 0;
+        p->iLimit = pPrior->iLimit;
+        p->iOffset = pPrior->iOffset;
+        if( p->iLimit>=0 ){
+          addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
+          VdbeComment((v, "# Jump ahead if LIMIT reached"));
+        }
+        rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
+        p->pPrior = pPrior;
+        if( rc ){
+          goto multi_select_end;
+        }
+        if( addr ){
+          sqlite3VdbeJumpHere(v, addr);
+        }
+        break;
+      }
+      /* For UNION ALL ... ORDER BY fall through to the next case */
+    }
+    case TK_EXCEPT:
+    case TK_UNION: {
+      int unionTab;    /* Cursor number of the temporary table holding result */
+      int op = 0;      /* One of the SRT_ operations to apply to self */
+      int priorOp;     /* The SRT_ operation to apply to prior selects */
+      Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
+      int addr;
+
+      priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
+      if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
+        /* We can reuse a temporary table generated by a SELECT to our
+        ** right.
+        */
+        unionTab = iParm;
+      }else{
+        /* We will need to create our own temporary table to hold the
+        ** intermediate results.
+        */
+        unionTab = pParse->nTab++;
+        if( processCompoundOrderBy(pParse, p, unionTab) ){
+          rc = 1;
+          goto multi_select_end;
+        }
+        addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
+        if( priorOp==SRT_Table ){
+          assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
+          aSetP2[nSetP2++] = addr;
+        }else{
+          assert( p->addrOpenEphm[0] == -1 );
+          p->addrOpenEphm[0] = addr;
+          p->pRightmost->usesEphm = 1;
+        }
+        createSortingIndex(pParse, p, pOrderBy);
+        assert( p->pEList );
+      }
+
+      /* Code the SELECT statements to our left
+      */
+      assert( !pPrior->pOrderBy );
+      rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
+      if( rc ){
+        goto multi_select_end;
+      }
+
+      /* Code the current SELECT statement
+      */
+      switch( p->op ){
+         case TK_EXCEPT:  op = SRT_Except;   break;
+         case TK_UNION:   op = SRT_Union;    break;
+         case TK_ALL:     op = SRT_Table;    break;
+      }
+      p->pPrior = 0;
+      p->pOrderBy = 0;
+      p->disallowOrderBy = pOrderBy!=0;
+      pLimit = p->pLimit;
+      p->pLimit = 0;
+      pOffset = p->pOffset;
+      p->pOffset = 0;
+      rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
+      /* Query flattening in sqlite3Select() might refill p->pOrderBy.
+      ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
+      sqlite3ExprListDelete(p->pOrderBy);
+      p->pPrior = pPrior;
+      p->pOrderBy = pOrderBy;
+      sqlite3ExprDelete(p->pLimit);
+      p->pLimit = pLimit;
+      p->pOffset = pOffset;
+      p->iLimit = -1;
+      p->iOffset = -1;
+      if( rc ){
+        goto multi_select_end;
+      }
+
+
+      /* Convert the data in the temporary table into whatever form
+      ** it is that we currently need.
+      */      
+      if( eDest!=priorOp || unionTab!=iParm ){
+        int iCont, iBreak, iStart;
+        assert( p->pEList );
+        if( eDest==SRT_Callback ){
+          Select *pFirst = p;
+          while( pFirst->pPrior ) pFirst = pFirst->pPrior;
+          generateColumnNames(pParse, 0, pFirst->pEList);
+        }
+        iBreak = sqlite3VdbeMakeLabel(v);
+        iCont = sqlite3VdbeMakeLabel(v);
+        computeLimitRegisters(pParse, p, iBreak);
+        sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
+        iStart = sqlite3VdbeCurrentAddr(v);
+        rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
+                             pOrderBy, -1, eDest, iParm, 
+                             iCont, iBreak, 0);
+        if( rc ){
+          rc = 1;
+          goto multi_select_end;
+        }
+        sqlite3VdbeResolveLabel(v, iCont);
+        sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
+        sqlite3VdbeResolveLabel(v, iBreak);
+        sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
+      }
+      break;
+    }
+    case TK_INTERSECT: {
+      int tab1, tab2;
+      int iCont, iBreak, iStart;
+      Expr *pLimit, *pOffset;
+      int addr;
+
+      /* INTERSECT is different from the others since it requires
+      ** two temporary tables.  Hence it has its own case.  Begin
+      ** by allocating the tables we will need.
+      */
+      tab1 = pParse->nTab++;
+      tab2 = pParse->nTab++;
+      if( processCompoundOrderBy(pParse, p, tab1) ){
+        rc = 1;
+        goto multi_select_end;
+      }
+      createSortingIndex(pParse, p, pOrderBy);
+
+      addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
+      assert( p->addrOpenEphm[0] == -1 );
+      p->addrOpenEphm[0] = addr;
+      p->pRightmost->usesEphm = 1;
+      assert( p->pEList );
+
+      /* Code the SELECTs to our left into temporary table "tab1".
+      */
+      rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
+      if( rc ){
+        goto multi_select_end;
+      }
+
+      /* Code the current SELECT into temporary table "tab2"
+      */
+      addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
+      assert( p->addrOpenEphm[1] == -1 );
+      p->addrOpenEphm[1] = addr;
+      p->pPrior = 0;
+      pLimit = p->pLimit;
+      p->pLimit = 0;
+      pOffset = p->pOffset;
+      p->pOffset = 0;
+      rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
+      p->pPrior = pPrior;
+      sqlite3ExprDelete(p->pLimit);
+      p->pLimit = pLimit;
+      p->pOffset = pOffset;
+      if( rc ){
+        goto multi_select_end;
+      }
+
+      /* Generate code to take the intersection of the two temporary
+      ** tables.
+      */
+      assert( p->pEList );
+      if( eDest==SRT_Callback ){
+        Select *pFirst = p;
+        while( pFirst->pPrior ) pFirst = pFirst->pPrior;
+        generateColumnNames(pParse, 0, pFirst->pEList);
+      }
+      iBreak = sqlite3VdbeMakeLabel(v);
+      iCont = sqlite3VdbeMakeLabel(v);
+      computeLimitRegisters(pParse, p, iBreak);
+      sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
+      iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
+      sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
+      rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
+                             pOrderBy, -1, eDest, iParm, 
+                             iCont, iBreak, 0);
+      if( rc ){
+        rc = 1;
+        goto multi_select_end;
+      }
+      sqlite3VdbeResolveLabel(v, iCont);
+      sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
+      sqlite3VdbeResolveLabel(v, iBreak);
+      sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
+      sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
+      break;
+    }
+  }
+
+  /* Make sure all SELECTs in the statement have the same number of elements
+  ** in their result sets.
+  */
+  assert( p->pEList && pPrior->pEList );
+  if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
+    sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
+      " do not have the same number of result columns", selectOpName(p->op));
+    rc = 1;
+    goto multi_select_end;
+  }
+
+  /* Set the number of columns in temporary tables
+  */
+  nCol = p->pEList->nExpr;
+  while( nSetP2 ){
+    sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
+  }
+
+  /* Compute collating sequences used by either the ORDER BY clause or
+  ** by any temporary tables needed to implement the compound select.
+  ** Attach the KeyInfo structure to all temporary tables.  Invoke the
+  ** ORDER BY processing if there is an ORDER BY clause.
+  **
+  ** This section is run by the right-most SELECT statement only.
+  ** SELECT statements to the left always skip this part.  The right-most
+  ** SELECT might also skip this part if it has no ORDER BY clause and
+  ** no temp tables are required.
+  */
+  if( pOrderBy || p->usesEphm ){
+    int i;                        /* Loop counter */
+    KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
+    Select *pLoop;                /* For looping through SELECT statements */
+    int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
+    CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
+    CollSeq **aCopy;              /* A copy of pKeyInfo->aColl[] */
+
+    assert( p->pRightmost==p );
+    nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
+    pKeyInfo = (KeyInfo*)sqlite3DbMallocZero(pParse->db,
+                       sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
+    if( !pKeyInfo ){
+      rc = SQLITE_NOMEM;
+      goto multi_select_end;
+    }
+
+    pKeyInfo->enc = ENC(pParse->db);
+    pKeyInfo->nField = nCol;
+
+    for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
+      *apColl = multiSelectCollSeq(pParse, p, i);
+      if( 0==*apColl ){
+        *apColl = pParse->db->pDfltColl;
+      }
+    }
+
+    for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
+      for(i=0; i<2; i++){
+        int addr = pLoop->addrOpenEphm[i];
+        if( addr<0 ){
+          /* If [0] is unused then [1] is also unused.  So we can
+          ** always safely abort as soon as the first unused slot is found */
+          assert( pLoop->addrOpenEphm[1]<0 );
+          break;
+        }
+        sqlite3VdbeChangeP2(v, addr, nCol);
+        sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
+        pLoop->addrOpenEphm[i] = -1;
+      }
+    }
+
+    if( pOrderBy ){
+		ExprList::ExprList_item *pOTerm = pOrderBy->a;
+      int nOrderByExpr = pOrderBy->nExpr;
+      int addr;
+      u8 *pSortOrder;
+
+      /* Reuse the same pKeyInfo for the ORDER BY as was used above for
+      ** the compound select statements.  Except we have to change out the
+      ** pKeyInfo->aColl[] values.  Some of the aColl[] values will be
+      ** reused when constructing the pKeyInfo for the ORDER BY, so make
+      ** a copy.  Sufficient space to hold both the nCol entries for
+      ** the compound select and the nOrderbyExpr entries for the ORDER BY
+      ** was allocated above.  But we need to move the compound select
+      ** entries out of the way before constructing the ORDER BY entries.
+      ** Move the compound select entries into aCopy[] where they can be
+      ** accessed and reused when constructing the ORDER BY entries.
+      ** Because nCol might be greater than or less than nOrderByExpr
+      ** we have to use memmove() when doing the copy.
+      */
+      aCopy = &pKeyInfo->aColl[nOrderByExpr];
+      pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
+      memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
+
+      apColl = pKeyInfo->aColl;
+      for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
+        Expr *pExpr = pOTerm->pExpr;
+        if( (pExpr->flags & EP_ExpCollate) ){
+          assert( pExpr->pColl!=0 );
+          *apColl = pExpr->pColl;
+        }else{
+          *apColl = aCopy[pExpr->iColumn];
+        }
+        *pSortOrder = pOTerm->sortOrder;
+      }
+      assert( p->pRightmost==p );
+      assert( p->addrOpenEphm[2]>=0 );
+      addr = p->addrOpenEphm[2];
+      sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2);
+      pKeyInfo->nField = nOrderByExpr;
+      sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
+      pKeyInfo = 0;
+      generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
+    }
+
+    sqlite3_free(pKeyInfo);
+  }
+
+multi_select_end:
+  return rc;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+#ifndef SQLITE_OMIT_VIEW
+/* Forward Declarations */
+static void substExprList(sqlite3*, ExprList*, int, ExprList*);
+static void substSelect(sqlite3*, Select *, int, ExprList *);
+
+/*
+** Scan through the expression pExpr.  Replace every reference to
+** a column in table number iTable with a copy of the iColumn-th
+** entry in pEList.  (But leave references to the ROWID column 
+** unchanged.)
+**
+** This routine is part of the flattening procedure.  A subquery
+** whose result set is defined by pEList appears as entry in the
+** FROM clause of a SELECT such that the VDBE cursor assigned to that
+** FORM clause entry is iTable.  This routine make the necessary 
+** changes to pExpr so that it refers directly to the source table
+** of the subquery rather the result set of the subquery.
+*/
+static void substExpr(
+  sqlite3 *db,        /* Report malloc errors to this connection */
+  Expr *pExpr,        /* Expr in which substitution occurs */
+  int iTable,         /* Table to be substituted */
+  ExprList *pEList    /* Substitute expressions */
+){
+  if( pExpr==0 ) return;
+  if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
+    if( pExpr->iColumn<0 ){
+      pExpr->op = TK_NULL;
+    }else{
+      Expr *pNew;
+      assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
+      assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
+      pNew = pEList->a[pExpr->iColumn].pExpr;
+      assert( pNew!=0 );
+      pExpr->op = pNew->op;
+      assert( pExpr->pLeft==0 );
+      pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
+      assert( pExpr->pRight==0 );
+      pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
+      assert( pExpr->pList==0 );
+      pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
+      pExpr->iTable = pNew->iTable;
+      pExpr->pTab = pNew->pTab;
+      pExpr->iColumn = pNew->iColumn;
+      pExpr->iAgg = pNew->iAgg;
+      sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
+      sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
+      pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
+      pExpr->flags = pNew->flags;
+    }
+  }else{
+    substExpr(db, pExpr->pLeft, iTable, pEList);
+    substExpr(db, pExpr->pRight, iTable, pEList);
+    substSelect(db, pExpr->pSelect, iTable, pEList);
+    substExprList(db, pExpr->pList, iTable, pEList);
+  }
+}
+static void substExprList(
+  sqlite3 *db,         /* Report malloc errors here */
+  ExprList *pList,     /* List to scan and in which to make substitutes */
+  int iTable,          /* Table to be substituted */
+  ExprList *pEList     /* Substitute values */
+){
+  int i;
+  if( pList==0 ) return;
+  for(i=0; i<pList->nExpr; i++){
+    substExpr(db, pList->a[i].pExpr, iTable, pEList);
+  }
+}
+static void substSelect(
+  sqlite3 *db,         /* Report malloc errors here */
+  Select *p,           /* SELECT statement in which to make substitutions */
+  int iTable,          /* Table to be replaced */
+  ExprList *pEList     /* Substitute values */
+){
+  if( !p ) return;
+  substExprList(db, p->pEList, iTable, pEList);
+  substExprList(db, p->pGroupBy, iTable, pEList);
+  substExprList(db, p->pOrderBy, iTable, pEList);
+  substExpr(db, p->pHaving, iTable, pEList);
+  substExpr(db, p->pWhere, iTable, pEList);
+  substSelect(db, p->pPrior, iTable, pEList);
+}
+#endif /* !defined(SQLITE_OMIT_VIEW) */
+
+#ifndef SQLITE_OMIT_VIEW
+/*
+** This routine attempts to flatten subqueries in order to speed
+** execution.  It returns 1 if it makes changes and 0 if no flattening
+** occurs.
+**
+** To understand the concept of flattening, consider the following
+** query:
+**
+**     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
+**
+** The default way of implementing this query is to execute the
+** subquery first and store the results in a temporary table, then
+** run the outer query on that temporary table.  This requires two
+** passes over the data.  Furthermore, because the temporary table
+** has no indices, the WHERE clause on the outer query cannot be
+** optimized.
+**
+** This routine attempts to rewrite queries such as the above into
+** a single flat select, like this:
+**
+**     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
+**
+** The code generated for this simpification gives the same result
+** but only has to scan the data once.  And because indices might 
+** exist on the table t1, a complete scan of the data might be
+** avoided.
+**
+** Flattening is only attempted if all of the following are true:
+**
+**   (1)  The subquery and the outer query do not both use aggregates.
+**
+**   (2)  The subquery is not an aggregate or the outer query is not a join.
+**
+**   (3)  The subquery is not the right operand of a left outer join, or
+**        the subquery is not itself a join.  (Ticket #306)
+**
+**   (4)  The subquery is not DISTINCT or the outer query is not a join.
+**
+**   (5)  The subquery is not DISTINCT or the outer query does not use
+**        aggregates.
+**
+**   (6)  The subquery does not use aggregates or the outer query is not
+**        DISTINCT.
+**
+**   (7)  The subquery has a FROM clause.
+**
+**   (8)  The subquery does not use LIMIT or the outer query is not a join.
+**
+**   (9)  The subquery does not use LIMIT or the outer query does not use
+**        aggregates.
+**
+**  (10)  The subquery does not use aggregates or the outer query does not
+**        use LIMIT.
+**
+**  (11)  The subquery and the outer query do not both have ORDER BY clauses.
+**
+**  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
+**        subquery has no WHERE clause.  (added by ticket #350)
+**
+**  (13)  The subquery and outer query do not both use LIMIT
+**
+**  (14)  The subquery does not use OFFSET
+**
+**  (15)  The outer query is not part of a compound select or the
+**        subquery does not have both an ORDER BY and a LIMIT clause.
+**        (See ticket #2339)
+**
+** In this routine, the "p" parameter is a pointer to the outer query.
+** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
+** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
+**
+** If flattening is not attempted, this routine is a no-op and returns 0.
+** If flattening is attempted this routine returns 1.
+**
+** All of the expression analysis must occur on both the outer query and
+** the subquery before this routine runs.
+*/
+static int flattenSubquery(
+  sqlite3 *db,         /* Database connection */
+  Select *p,           /* The parent or outer SELECT statement */
+  int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
+  int isAgg,           /* True if outer SELECT uses aggregate functions */
+  int subqueryIsAgg    /* True if the subquery uses aggregate functions */
+){
+  Select *pSub;       /* The inner query or "subquery" */
+  SrcList *pSrc;      /* The FROM clause of the outer query */
+  SrcList *pSubSrc;   /* The FROM clause of the subquery */
+  ExprList *pList;    /* The result set of the outer query */
+  int iParent;        /* VDBE cursor number of the pSub result set temp table */
+  int i;              /* Loop counter */
+  Expr *pWhere;                    /* The WHERE clause */
+  SrcList::SrcList_item *pSubitem;   /* The subquery */
+
+  /* Check to see if flattening is permitted.  Return 0 if not.
+  */
+  if( p==0 ) return 0;
+  pSrc = p->pSrc;
+  assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
+  pSubitem = &pSrc->a[iFrom];
+  pSub = pSubitem->pSelect;
+  assert( pSub!=0 );
+  if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
+  if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
+  pSubSrc = pSub->pSrc;
+  assert( pSubSrc );
+  /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
+  ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
+  ** because they could be computed at compile-time.  But when LIMIT and OFFSET
+  ** became arbitrary expressions, we were forced to add restrictions (13)
+  ** and (14). */
+  if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
+  if( pSub->pOffset ) return 0;                          /* Restriction (14) */
+  if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
+    return 0;                                            /* Restriction (15) */
+  }
+  if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
+  if( (pSub->isDistinct || pSub->pLimit) 
+         && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
+     return 0;       
+  }
+  if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
+  if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
+     return 0;                                           /* Restriction (11) */
+  }
+
+  /* Restriction 3:  If the subquery is a join, make sure the subquery is 
+  ** not used as the right operand of an outer join.  Examples of why this
+  ** is not allowed:
+  **
+  **         t1 LEFT OUTER JOIN (t2 JOIN t3)
+  **
+  ** If we flatten the above, we would get
+  **
+  **         (t1 LEFT OUTER JOIN t2) JOIN t3
+  **
+  ** which is not at all the same thing.
+  */
+  if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
+    return 0;
+  }
+
+  /* Restriction 12:  If the subquery is the right operand of a left outer
+  ** join, make sure the subquery has no WHERE clause.
+  ** An examples of why this is not allowed:
+  **
+  **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
+  **
+  ** If we flatten the above, we would get
+  **
+  **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
+  **
+  ** But the t2.x>0 test will always fail on a NULL row of t2, which
+  ** effectively converts the OUTER JOIN into an INNER JOIN.
+  */
+  if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
+    return 0;
+  }
+
+  /* If we reach this point, it means flattening is permitted for the
+  ** iFrom-th entry of the FROM clause in the outer query.
+  */
+
+  /* Move all of the FROM elements of the subquery into the
+  ** the FROM clause of the outer query.  Before doing this, remember
+  ** the cursor number for the original outer query FROM element in
+  ** iParent.  The iParent cursor will never be used.  Subsequent code
+  ** will scan expressions looking for iParent references and replace
+  ** those references with expressions that resolve to the subquery FROM
+  ** elements we are now copying in.
+  */
+  iParent = pSubitem->iCursor;
+  {
+    int nSubSrc = pSubSrc->nSrc;
+    int jointype = pSubitem->jointype;
+
+    sqlite3DeleteTable(pSubitem->pTab);
+    sqlite3_free(pSubitem->zDatabase);
+    sqlite3_free(pSubitem->zName);
+    sqlite3_free(pSubitem->zAlias);
+    pSubitem->pTab = 0;
+    pSubitem->zDatabase = 0;
+    pSubitem->zName = 0;
+    pSubitem->zAlias = 0;
+    if( nSubSrc>1 ){
+      int extra = nSubSrc - 1;
+      for(i=1; i<nSubSrc; i++){
+        pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
+        if( pSrc==0 ){
+          p->pSrc = 0;
+          return 1;
+        }
+      }
+      p->pSrc = pSrc;
+      for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
+        pSrc->a[i] = pSrc->a[i-extra];
+      }
+    }
+    for(i=0; i<nSubSrc; i++){
+      pSrc->a[i+iFrom] = pSubSrc->a[i];
+      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
+    }
+    pSrc->a[iFrom].jointype = jointype;
+  }
+
+  /* Now begin substituting subquery result set expressions for 
+  ** references to the iParent in the outer query.
+  ** 
+  ** Example:
+  **
+  **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
+  **   \                     \_____________ subquery __________/          /
+  **    \_____________________ outer query ______________________________/
+  **
+  ** We look at every expression in the outer query and every place we see
+  ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
+  */
+  pList = p->pEList;
+  for(i=0; i<pList->nExpr; i++){
+    Expr *pExpr;
+    if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
+      pList->a[i].zName = 
+             sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
+    }
+  }
+  substExprList(db, p->pEList, iParent, pSub->pEList);
+  if( isAgg ){
+    substExprList(db, p->pGroupBy, iParent, pSub->pEList);
+    substExpr(db, p->pHaving, iParent, pSub->pEList);
+  }
+  if( pSub->pOrderBy ){
+    assert( p->pOrderBy==0 );
+    p->pOrderBy = pSub->pOrderBy;
+    pSub->pOrderBy = 0;
+  }else if( p->pOrderBy ){
+    substExprList(db, p->pOrderBy, iParent, pSub->pEList);
+  }
+  if( pSub->pWhere ){
+    pWhere = sqlite3ExprDup(db, pSub->pWhere);
+  }else{
+    pWhere = 0;
+  }
+  if( subqueryIsAgg ){
+    assert( p->pHaving==0 );
+    p->pHaving = p->pWhere;
+    p->pWhere = pWhere;
+    substExpr(db, p->pHaving, iParent, pSub->pEList);
+    p->pHaving = sqlite3ExprAnd(db, p->pHaving, 
+                                sqlite3ExprDup(db, pSub->pHaving));
+    assert( p->pGroupBy==0 );
+    p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
+  }else{
+    substExpr(db, p->pWhere, iParent, pSub->pEList);
+    p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere);
+  }
+
+  /* The flattened query is distinct if either the inner or the
+  ** outer query is distinct. 
+  */
+  p->isDistinct = p->isDistinct || pSub->isDistinct;
+
+  /*
+  ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
+  **
+  ** One is tempted to try to add a and b to combine the limits.  But this
+  ** does not work if either limit is negative.
+  */
+  if( pSub->pLimit ){
+    p->pLimit = pSub->pLimit;
+    pSub->pLimit = 0;
+  }
+
+  /* Finially, delete what is left of the subquery and return
+  ** success.
+  */
+  sqlite3SelectDelete(pSub);
+  return 1;
+}
+#endif /* SQLITE_OMIT_VIEW */
+
+/*
+** Analyze the SELECT statement passed in as an argument to see if it
+** is a simple min() or max() query.  If it is and this query can be
+** satisfied using a single seek to the beginning or end of an index,
+** then generate the code for this SELECT and return 1.  If this is not a 
+** simple min() or max() query, then return 0;
+**
+** A simply min() or max() query looks like this:
+**
+**    SELECT min(a) FROM table;
+**    SELECT max(a) FROM table;
+**
+** The query may have only a single table in its FROM argument.  There
+** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
+** be the min() or max() of a single column of the table.  The column
+** in the min() or max() function must be indexed.
+**
+** The parameters to this routine are the same as for sqlite3Select().
+** See the header comment on that routine for additional information.
+*/
+static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
+  Expr *pExpr;
+  int iCol;
+  Table *pTab;
+  Index *pIdx;
+  int base;
+  Vdbe *v;
+  int seekOp;
+  ExprList *pEList, *pList, eList;
+  ExprList::ExprList_item eListItem;
+  SrcList *pSrc;
+  int brk;
+  int iDb;
+
+  /* Check to see if this query is a simple min() or max() query.  Return
+  ** zero if it is  not.
+  */
+  if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
+  pSrc = p->pSrc;
+  if( pSrc->nSrc!=1 ) return 0;
+  pEList = p->pEList;
+  if( pEList->nExpr!=1 ) return 0;
+  pExpr = pEList->a[0].pExpr;
+  if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
+  pList = pExpr->pList;
+  if( pList==0 || pList->nExpr!=1 ) return 0;
+  if( pExpr->token.n!=3 ) return 0;
+  if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
+    seekOp = OP_Rewind;
+  }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
+    seekOp = OP_Last;
+  }else{
+    return 0;
+  }
+  pExpr = pList->a[0].pExpr;
+  if( pExpr->op!=TK_COLUMN ) return 0;
+  iCol = pExpr->iColumn;
+  pTab = pSrc->a[0].pTab;
+
+  /* This optimization cannot be used with virtual tables. */
+  if( IsVirtual(pTab) ) return 0;
+
+  /* If we get to here, it means the query is of the correct form.
+  ** Check to make sure we have an index and make pIdx point to the
+  ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
+  ** key column, no index is necessary so set pIdx to NULL.  If no
+  ** usable index is found, return 0.
+  */
+  if( iCol<0 ){
+    pIdx = 0;
+  }else{
+    CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
+    if( pColl==0 ) return 0;
+    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
+      assert( pIdx->nColumn>=1 );
+      if( pIdx->aiColumn[0]==iCol && 
+          0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
+        break;
+      }
+    }
+    if( pIdx==0 ) return 0;
+  }
+
+  /* Identify column types if we will be using the callback.  This
+  ** step is skipped if the output is going to a table or a memory cell.
+  ** The column names have already been generated in the calling function.
+  */
+  v = sqlite3GetVdbe(pParse);
+  if( v==0 ) return 0;
+
+  /* If the output is destined for a temporary table, open that table.
+  */
+  if( eDest==SRT_EphemTab ){
+    sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
+  }
+
+  /* Generating code to find the min or the max.  Basically all we have
+  ** to do is find the first or the last entry in the chosen index.  If
+  ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
+  ** or last entry in the main table.
+  */
+  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
+  assert( iDb>=0 || pTab->isEphem );
+  sqlite3CodeVerifySchema(pParse, iDb);
+  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
+  base = pSrc->a[0].iCursor;
+  brk = sqlite3VdbeMakeLabel(v);
+  computeLimitRegisters(pParse, p, brk);
+  if( pSrc->a[0].pSelect==0 ){
+    sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
+  }
+  if( pIdx==0 ){
+    sqlite3VdbeAddOp(v, seekOp, base, 0);
+  }else{
+    /* Even though the cursor used to open the index here is closed
+    ** as soon as a single value has been read from it, allocate it
+    ** using (pParse->nTab++) to prevent the cursor id from being 
+    ** reused. This is important for statements of the form 
+    ** "INSERT INTO x SELECT max() FROM x".
+    */
+    int iIdx;
+    KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
+    iIdx = pParse->nTab++;
+    assert( pIdx->pSchema==pTab->pSchema );
+    sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
+    sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 
+        (char*)pKey, P3_KEYINFO_HANDOFF);
+    if( seekOp==OP_Rewind ){
+      sqlite3VdbeAddOp(v, OP_Null, 0, 0);
+      sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
+      seekOp = OP_MoveGt;
+    }
+    if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){
+      /* Ticket #2514: invert the seek operator if we are using
+      ** a descending index. */
+      if( seekOp==OP_Last ){
+        seekOp = OP_Rewind;
+      }else{
+        assert( seekOp==OP_MoveGt );
+        seekOp = OP_MoveLt;
+      }
+    }
+    sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
+    sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
+    sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
+    sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
+  }
+  eList.nExpr = 1;
+  memset(&eListItem, 0, sizeof(eListItem));
+  eList.a = &eListItem;
+  eList.a[0].pExpr = pExpr;
+  selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
+  sqlite3VdbeResolveLabel(v, brk);
+  sqlite3VdbeAddOp(v, OP_Close, base, 0);
+  
+  return 1;
+}
+
+/*
+** This routine resolves any names used in the result set of the
+** supplied SELECT statement. If the SELECT statement being resolved
+** is a sub-select, then pOuterNC is a pointer to the NameContext 
+** of the parent SELECT.
+*/
+int sqlite3SelectResolve(
+  Parse *pParse,         /* The parser context */
+  Select *p,             /* The SELECT statement being coded. */
+  NameContext *pOuterNC  /* The outer name context. May be NULL. */
+){
+  ExprList *pEList;          /* Result set. */
+  int i;                     /* For-loop variable used in multiple places */
+  NameContext sNC;           /* Local name-context */
+  ExprList *pGroupBy;        /* The group by clause */
+
+  /* If this routine has run before, return immediately. */
+  if( p->isResolved ){
+    assert( !pOuterNC );
+    return SQLITE_OK;
+  }
+  p->isResolved = 1;
+
+  /* If there have already been errors, do nothing. */
+  if( pParse->nErr>0 ){
+    return SQLITE_ERROR;
+  }
+
+  /* Prepare the select statement. This call will allocate all cursors
+  ** required to handle the tables and subqueries in the FROM clause.
+  */
+  if( prepSelectStmt(pParse, p) ){
+    return SQLITE_ERROR;
+  }
+
+  /* Resolve the expressions in the LIMIT and OFFSET clauses. These
+  ** are not allowed to refer to any names, so pass an empty NameContext.
+  */
+  memset(&sNC, 0, sizeof(sNC));
+  sNC.pParse = pParse;
+  if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
+      sqlite3ExprResolveNames(&sNC, p->pOffset) ){
+    return SQLITE_ERROR;
+  }
+
+  /* Set up the local name-context to pass to ExprResolveNames() to
+  ** resolve the expression-list.
+  */
+  sNC.allowAgg = 1;
+  sNC.pSrcList = p->pSrc;
+  sNC.pNext = pOuterNC;
+
+  /* Resolve names in the result set. */
+  pEList = p->pEList;
+  if( !pEList ) return SQLITE_ERROR;
+  for(i=0; i<pEList->nExpr; i++){
+    Expr *pX = pEList->a[i].pExpr;
+    if( sqlite3ExprResolveNames(&sNC, pX) ){
+      return SQLITE_ERROR;
+    }
+  }
+
+  /* If there are no aggregate functions in the result-set, and no GROUP BY 
+  ** expression, do not allow aggregates in any of the other expressions.
+  */
+  assert( !p->isAgg );
+  pGroupBy = p->pGroupBy;
+  if( pGroupBy || sNC.hasAgg ){
+    p->isAgg = 1;
+  }else{
+    sNC.allowAgg = 0;
+  }
+
+  /* If a HAVING clause is present, then there must be a GROUP BY clause.
+  */
+  if( p->pHaving && !pGroupBy ){
+    sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
+    return SQLITE_ERROR;
+  }
+
+  /* Add the expression list to the name-context before parsing the
+  ** other expressions in the SELECT statement. This is so that
+  ** expressions in the WHERE clause (etc.) can refer to expressions by
+  ** aliases in the result set.
+  **
+  ** Minor point: If this is the case, then the expression will be
+  ** re-evaluated for each reference to it.
+  */
+  sNC.pEList = p->pEList;
+  if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
+     sqlite3ExprResolveNames(&sNC, p->pHaving) ){
+    return SQLITE_ERROR;
+  }
+  if( p->pPrior==0 ){
+    if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){
+      return SQLITE_ERROR;
+    }
+  }
+  if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){
+    return SQLITE_ERROR;
+  }
+
+  if( pParse->db->mallocFailed ){
+    return SQLITE_NOMEM;
+  }
+
+  /* Make sure the GROUP BY clause does not contain aggregate functions.
+  */
+  if( pGroupBy ){
+	  ExprList::ExprList_item *pItem;
+  
+    for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
+      if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
+        sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
+            "the GROUP BY clause");
+        return SQLITE_ERROR;
+      }
+    }
+  }
+
+  /* If this is one SELECT of a compound, be sure to resolve names
+  ** in the other SELECTs.
+  */
+  if( p->pPrior ){
+    return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
+  }else{
+    return SQLITE_OK;
+  }
+}
+
+/*
+** Reset the aggregate accumulator.
+**
+** The aggregate accumulator is a set of memory cells that hold
+** intermediate results while calculating an aggregate.  This
+** routine simply stores NULLs in all of those memory cells.
+*/
+static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
+  Vdbe *v = pParse->pVdbe;
+  int i=0;
+  AggInfo::AggInfo_func *pFunc;
+  if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
+    return;
+  }
+  for(i=0; i<pAggInfo->nColumn; i++){
+    sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
+  }
+  for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
+    sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
+    if( pFunc->iDistinct>=0 ){
+      Expr *pE = pFunc->pExpr;
+      if( pE->pList==0 || pE->pList->nExpr!=1 ){
+        sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
+           "by an expression");
+        pFunc->iDistinct = -1;
+      }else{
+        KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
+        sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 
+                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
+      }
+    }
+  }
+}
+
+/*
+** Invoke the OP_AggFinalize opcode for every aggregate function
+** in the AggInfo structure.
+*/
+static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
+  Vdbe *v = pParse->pVdbe;
+  int i;
+  AggInfo::AggInfo_func *pF;
+  for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+    ExprList *pList = pF->pExpr->pList;
+    sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
+                      (const char*)pF->pFunc, P3_FUNCDEF);
+  }
+}
+
+/*
+** Update the accumulator memory cells for an aggregate based on
+** the current cursor position.
+*/
+static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
+  Vdbe *v = pParse->pVdbe;
+  int i;
+  AggInfo::AggInfo_func *pF;
+  AggInfo::AggInfo_col *pC;
+
+  pAggInfo->directMode = 1;
+  for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+    int nArg;
+    int addrNext = 0;
+    ExprList *pList = pF->pExpr->pList;
+    if( pList ){
+      nArg = pList->nExpr;
+      sqlite3ExprCodeExprList(pParse, pList);
+    }else{
+      nArg = 0;
+    }
+    if( pF->iDistinct>=0 ){
+      addrNext = sqlite3VdbeMakeLabel(v);
+      assert( nArg==1 );
+      codeDistinct(v, pF->iDistinct, addrNext, 1);
+    }
+    if( pF->pFunc->needCollSeq ){
+      CollSeq *pColl = 0;
+	  ExprList::ExprList_item *pItem;
+      int j;
+      assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
+      for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
+        pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
+      }
+      if( !pColl ){
+        pColl = pParse->db->pDfltColl;
+      }
+      sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
+    }
+    sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (const char*)pF->pFunc, P3_FUNCDEF);
+    if( addrNext ){
+      sqlite3VdbeResolveLabel(v, addrNext);
+    }
+  }
+  for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
+    sqlite3ExprCode(pParse, pC->pExpr);
+    sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
+  }
+  pAggInfo->directMode = 0;
+}
+
+
+/*
+** Generate code for the given SELECT statement.
+**
+** The results are distributed in various ways depending on the
+** value of eDest and iParm.
+**
+**     eDest Value       Result
+**     ------------    -------------------------------------------
+**     SRT_Callback    Invoke the callback for each row of the result.
+**
+**     SRT_Mem         Store first result in memory cell iParm
+**
+**     SRT_Set         Store results as keys of table iParm.
+**
+**     SRT_Union       Store results as a key in a temporary table iParm
+**
+**     SRT_Except      Remove results from the temporary table iParm.
+**
+**     SRT_Table       Store results in temporary table iParm
+**
+** The table above is incomplete.  Additional eDist value have be added
+** since this comment was written.  See the selectInnerLoop() function for
+** a complete listing of the allowed values of eDest and their meanings.
+**
+** This routine returns the number of errors.  If any errors are
+** encountered, then an appropriate error message is left in
+** pParse->zErrMsg.
+**
+** This routine does NOT free the Select structure passed in.  The
+** calling function needs to do that.
+**
+** The pParent, parentTab, and *pParentAgg fields are filled in if this
+** SELECT is a subquery.  This routine may try to combine this SELECT
+** with its parent to form a single flat query.  In so doing, it might
+** change the parent query from a non-aggregate to an aggregate query.
+** For that reason, the pParentAgg flag is passed as a pointer, so it
+** can be changed.
+**
+** Example 1:   The meaning of the pParent parameter.
+**
+**    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
+**    \                      \_______ subquery _______/        /
+**     \                                                      /
+**      \____________________ outer query ___________________/
+**
+** This routine is called for the outer query first.   For that call,
+** pParent will be NULL.  During the processing of the outer query, this 
+** routine is called recursively to handle the subquery.  For the recursive
+** call, pParent will point to the outer query.  Because the subquery is
+** the second element in a three-way join, the parentTab parameter will
+** be 1 (the 2nd value of a 0-indexed array.)
+*/
+int sqlite3Select(
+  Parse *pParse,         /* The parser context */
+  Select *p,             /* The SELECT statement being coded. */
+  int eDest,             /* How to dispose of the results */
+  int iParm,             /* A parameter used by the eDest disposal method */
+  Select *pParent,       /* Another SELECT for which this is a sub-query */
+  int parentTab,         /* Index in pParent->pSrc of this query */
+  int *pParentAgg,       /* True if pParent uses aggregate functions */
+  char *aff              /* If eDest is SRT_Union, the affinity string */
+){
+  int i, j;              /* Loop counters */
+  WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
+  Vdbe *v;               /* The virtual machine under construction */
+  int isAgg;             /* True for select lists like "count(*)" */
+  ExprList *pEList;      /* List of columns to extract. */
+  SrcList *pTabList;     /* List of tables to select from */
+  Expr *pWhere;          /* The WHERE clause.  May be NULL */
+  ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
+  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
+  Expr *pHaving;         /* The HAVING clause.  May be NULL */
+  int isDistinct;        /* True if the DISTINCT keyword is present */
+  int distinct;          /* Table to use for the distinct set */
+  int rc = 1;            /* Value to return from this function */
+  int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
+  AggInfo sAggInfo;      /* Information used by aggregate queries */
+  int iEnd;              /* Address of the end of the query */
+  sqlite3 *db;           /* The database connection */
+
+  db = pParse->db;
+  if( p==0 || db->mallocFailed || pParse->nErr ){
+    return 1;
+  }
+  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
+  memset(&sAggInfo, 0, sizeof(sAggInfo));
+
+  pOrderBy = p->pOrderBy;
+  if( IgnorableOrderby(eDest) ){
+    p->pOrderBy = 0;
+  }
+  if( sqlite3SelectResolve(pParse, p, 0) ){
+    goto select_end;
+  }
+  p->pOrderBy = pOrderBy;
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+  /* If there is are a sequence of queries, do the earlier ones first.
+  */
+  if( p->pPrior ){
+    if( p->pRightmost==0 ){
+      Select *pLoop, *pRight = 0;
+      int cnt = 0;
+      for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
+        pLoop->pRightmost = p;
+        pLoop->pNext = pRight;
+        pRight = pLoop;
+      }
+      if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){
+        sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
+        return 1;
+      }
+    }
+    return multiSelect(pParse, p, eDest, iParm, aff);
+  }
+#endif
+
+  /* Make local copies of the parameters for this query.
+  */
+  pTabList = p->pSrc;
+  pWhere = p->pWhere;
+  pGroupBy = p->pGroupBy;
+  pHaving = p->pHaving;
+  isAgg = p->isAgg;
+  isDistinct = p->isDistinct;
+  pEList = p->pEList;
+  if( pEList==0 ) goto select_end;
+
+  /* 
+  ** Do not even attempt to generate any code if we have already seen
+  ** errors before this routine starts.
+  */
+  if( pParse->nErr>0 ) goto select_end;
+
+  /* If writing to memory or generating a set
+  ** only a single column may be output.
+  */
+#ifndef SQLITE_OMIT_SUBQUERY
+  if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){
+    goto select_end;
+  }
+#endif
+
+  /* ORDER BY is ignored for some destinations.
+  */
+  if( IgnorableOrderby(eDest) ){
+    pOrderBy = 0;
+  }
+
+  /* Begin generating code.
+  */
+  v = sqlite3GetVdbe(pParse);
+  if( v==0 ) goto select_end;
+
+  /* Generate code for all sub-queries in the FROM clause
+  */
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+  for(i=0; i<pTabList->nSrc; i++){
+    const char *zSavedAuthContext = 0;
+    int needRestoreContext;
+	SrcList::SrcList_item *pItem = &pTabList->a[i];
+
+    if( pItem->pSelect==0 || pItem->isPopulated ) continue;
+    if( pItem->zName!=0 ){
+      zSavedAuthContext = pParse->zAuthContext;
+      pParse->zAuthContext = pItem->zName;
+      needRestoreContext = 1;
+    }else{
+      needRestoreContext = 0;
+    }
+#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
+    /* Increment Parse.nHeight by the height of the largest expression
+    ** tree refered to by this, the parent select. The child select
+    ** may contain expression trees of at most
+    ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
+    ** more conservative than necessary, but much easier than enforcing
+    ** an exact limit.
+    */
+    pParse->nHeight += sqlite3SelectExprHeight(p);
+#endif
+    sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 
+                 pItem->iCursor, p, i, &isAgg, 0);
+    if( db->mallocFailed ){
+      goto select_end;
+    }
+#if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0
+    pParse->nHeight -= sqlite3SelectExprHeight(p);
+#endif
+    if( needRestoreContext ){
+      pParse->zAuthContext = zSavedAuthContext;
+    }
+    pTabList = p->pSrc;
+    pWhere = p->pWhere;
+    if( !IgnorableOrderby(eDest) ){
+      pOrderBy = p->pOrderBy;
+    }
+    pGroupBy = p->pGroupBy;
+    pHaving = p->pHaving;
+    isDistinct = p->isDistinct;
+  }
+#endif
+
+  /* Check for the special case of a min() or max() function by itself
+  ** in the result set.
+  */
+  if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
+    rc = 0;
+    goto select_end;
+  }
+
+  /* Check to see if this is a subquery that can be "flattened" into its parent.
+  ** If flattening is a possiblity, do so and return immediately.  
+  */
+#ifndef SQLITE_OMIT_VIEW
+  if( pParent && pParentAgg &&
+      flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){
+    if( isAgg ) *pParentAgg = 1;
+    goto select_end;
+  }
+#endif
+
+  /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
+  ** GROUP BY may use an index, DISTINCT never does.
+  */
+  if( p->isDistinct && !p->isAgg && !p->pGroupBy ){
+    p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
+    pGroupBy = p->pGroupBy;
+    p->isDistinct = 0;
+    isDistinct = 0;
+  }
+
+  /* If there is an ORDER BY clause, then this sorting
+  ** index might end up being unused if the data can be 
+  ** extracted in pre-sorted order.  If that is the case, then the
+  ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
+  ** we figure out that the sorting index is not needed.  The addrSortIndex
+  ** variable is used to facilitate that change.
+  */
+  if( pOrderBy ){
+    KeyInfo *pKeyInfo;
+    if( pParse->nErr ){
+      goto select_end;
+    }
+    pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
+    pOrderBy->iECursor = pParse->nTab++;
+    p->addrOpenEphm[2] = addrSortIndex =
+      sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
+  }else{
+    addrSortIndex = -1;
+  }
+
+  /* If the output is destined for a temporary table, open that table.
+  */
+  if( eDest==SRT_EphemTab ){
+    sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
+  }
+
+  /* Set the limiter.
+  */
+  iEnd = sqlite3VdbeMakeLabel(v);
+  computeLimitRegisters(pParse, p, iEnd);
+
+  /* Open a virtual index to use for the distinct set.
+  */
+  if( isDistinct ){
+    KeyInfo *pKeyInfo;
+    assert( isAgg || pGroupBy );
+    distinct = pParse->nTab++;
+    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
+    sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 
+                        (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
+  }else{
+    distinct = -1;
+  }
+
+  /* Aggregate and non-aggregate queries are handled differently */
+  if( !isAgg && pGroupBy==0 ){
+    /* This case is for non-aggregate queries
+    ** Begin the database scan
+    */
+    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
+    if( pWInfo==0 ) goto select_end;
+
+    /* If sorting index that was created by a prior OP_OpenEphemeral 
+    ** instruction ended up not being needed, then change the OP_OpenEphemeral
+    ** into an OP_Noop.
+    */
+    if( addrSortIndex>=0 && pOrderBy==0 ){
+      sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
+      p->addrOpenEphm[2] = -1;
+    }
+
+    /* Use the standard inner loop
+    */
+    assert(!isDistinct);
+    if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, eDest,
+                    iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
+       goto select_end;
+    }
+
+    /* End the database scan loop.
+    */
+    sqlite3WhereEnd(pWInfo);
+  }else{
+    /* This is the processing for aggregate queries */
+    NameContext sNC;    /* Name context for processing aggregate information */
+    int iAMem;          /* First Mem address for storing current GROUP BY */
+    int iBMem;          /* First Mem address for previous GROUP BY */
+    int iUseFlag;       /* Mem address holding flag indicating that at least
+                        ** one row of the input to the aggregator has been
+                        ** processed */
+    int iAbortFlag;     /* Mem address which causes query abort if positive */
+    int groupBySort;    /* Rows come from source in GROUP BY order */
+
+
+    /* The following variables hold addresses or labels for parts of the
+    ** virtual machine program we are putting together */
+    int addrOutputRow;      /* Start of subroutine that outputs a result row */
+    int addrSetAbort;       /* Set the abort flag and return */
+    int addrInitializeLoop; /* Start of code that initializes the input loop */
+    int addrTopOfLoop;      /* Top of the input loop */
+    int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
+    int addrProcessRow;     /* Code to process a single input row */
+    int addrEnd;            /* End of all processing */
+    int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
+    int addrReset;          /* Subroutine for resetting the accumulator */
+
+    addrEnd = sqlite3VdbeMakeLabel(v);
+
+    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
+    ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
+    ** SELECT statement.
+    */
+    memset(&sNC, 0, sizeof(sNC));
+    sNC.pParse = pParse;
+    sNC.pSrcList = pTabList;
+    sNC.pAggInfo = &sAggInfo;
+    sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
+    sAggInfo.pGroupBy = pGroupBy;
+    if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
+      goto select_end;
+    }
+    if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
+      goto select_end;
+    }
+    if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
+      goto select_end;
+    }
+    sAggInfo.nAccumulator = sAggInfo.nColumn;
+    for(i=0; i<sAggInfo.nFunc; i++){
+      if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
+        goto select_end;
+      }
+    }
+    if( db->mallocFailed ) goto select_end;
+
+    /* Processing for aggregates with GROUP BY is very different and
+    ** much more complex than aggregates without a GROUP BY.
+    */
+    if( pGroupBy ){
+      KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
+
+      /* Create labels that we will be needing
+      */
+     
+      addrInitializeLoop = sqlite3VdbeMakeLabel(v);
+      addrGroupByChange = sqlite3VdbeMakeLabel(v);
+      addrProcessRow = sqlite3VdbeMakeLabel(v);
+
+      /* If there is a GROUP BY clause we might need a sorting index to
+      ** implement it.  Allocate that sorting index now.  If it turns out
+      ** that we do not need it after all, the OpenEphemeral instruction
+      ** will be converted into a Noop.  
+      */
+      sAggInfo.sortingIdx = pParse->nTab++;
+      pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
+      addrSortingIdx =
+          sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
+                         sAggInfo.nSortingColumn,
+                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
+
+      /* Initialize memory locations used by GROUP BY aggregate processing
+      */
+      iUseFlag = pParse->nMem++;
+      iAbortFlag = pParse->nMem++;
+      iAMem = pParse->nMem;
+      pParse->nMem += pGroupBy->nExpr;
+      iBMem = pParse->nMem;
+      pParse->nMem += pGroupBy->nExpr;
+      sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
+      VdbeComment((v, "# clear abort flag"));
+      sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
+      VdbeComment((v, "# indicate accumulator empty"));
+      sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
+
+      /* Generate a subroutine that outputs a single row of the result
+      ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
+      ** is less than or equal to zero, the subroutine is a no-op.  If
+      ** the processing calls for the query to abort, this subroutine
+      ** increments the iAbortFlag memory location before returning in
+      ** order to signal the caller to abort.
+      */
+      addrSetAbort = sqlite3VdbeCurrentAddr(v);
+      sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
+      VdbeComment((v, "# set abort flag"));
+      sqlite3VdbeAddOp(v, OP_Return, 0, 0);
+      addrOutputRow = sqlite3VdbeCurrentAddr(v);
+      sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
+      VdbeComment((v, "# Groupby result generator entry point"));
+      sqlite3VdbeAddOp(v, OP_Return, 0, 0);
+      finalizeAggFunctions(pParse, &sAggInfo);
+      if( pHaving ){
+        sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
+      }
+      rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
+                           distinct, eDest, iParm, 
+                           addrOutputRow+1, addrSetAbort, aff);
+      if( rc ){
+        goto select_end;
+      }
+      sqlite3VdbeAddOp(v, OP_Return, 0, 0);
+      VdbeComment((v, "# end groupby result generator"));
+
+      /* Generate a subroutine that will reset the group-by accumulator
+      */
+      addrReset = sqlite3VdbeCurrentAddr(v);
+      resetAccumulator(pParse, &sAggInfo);
+      sqlite3VdbeAddOp(v, OP_Return, 0, 0);
+
+      /* Begin a loop that will extract all source rows in GROUP BY order.
+      ** This might involve two separate loops with an OP_Sort in between, or
+      ** it might be a single loop that uses an index to extract information
+      ** in the right order to begin with.
+      */
+      sqlite3VdbeResolveLabel(v, addrInitializeLoop);
+      sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
+      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
+      if( pWInfo==0 ) goto select_end;
+      if( pGroupBy==0 ){
+        /* The optimizer is able to deliver rows in group by order so
+        ** we do not have to sort.  The OP_OpenEphemeral table will be
+        ** cancelled later because we still need to use the pKeyInfo
+        */
+        pGroupBy = p->pGroupBy;
+        groupBySort = 0;
+      }else{
+        /* Rows are coming out in undetermined order.  We have to push
+        ** each row into a sorting index, terminate the first loop,
+        ** then loop over the sorting index in order to get the output
+        ** in sorted order
+        */
+        groupBySort = 1;
+        sqlite3ExprCodeExprList(pParse, pGroupBy);
+        sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
+        j = pGroupBy->nExpr+1;
+        for(i=0; i<sAggInfo.nColumn; i++){
+			AggInfo::AggInfo_col *pCol = &sAggInfo.aCol[i];
+          if( pCol->iSorterColumn<j ) continue;
+          sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
+          j++;
+        }
+        sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
+        sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
+        sqlite3WhereEnd(pWInfo);
+        sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
+        VdbeComment((v, "# GROUP BY sort"));
+        sAggInfo.useSortingIdx = 1;
+      }
+
+      /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
+      ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
+      ** Then compare the current GROUP BY terms against the GROUP BY terms
+      ** from the previous row currently stored in a0, a1, a2...
+      */
+      addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
+      for(j=0; j<pGroupBy->nExpr; j++){
+        if( groupBySort ){
+          sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
+        }else{
+          sAggInfo.directMode = 1;
+          sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
+        }
+        sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
+      }
+      for(j=pGroupBy->nExpr-1; j>=0; j--){
+        if( j<pGroupBy->nExpr-1 ){
+          sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
+        }
+        sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
+        if( j==0 ){
+          sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
+        }else{
+          sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
+        }
+        sqlite3VdbeChangeP3(v, -1, (const char*)pKeyInfo->aColl[j], P3_COLLSEQ);
+      }
+
+      /* Generate code that runs whenever the GROUP BY changes.
+      ** Change in the GROUP BY are detected by the previous code
+      ** block.  If there were no changes, this block is skipped.
+      **
+      ** This code copies current group by terms in b0,b1,b2,...
+      ** over to a0,a1,a2.  It then calls the output subroutine
+      ** and resets the aggregate accumulator registers in preparation
+      ** for the next GROUP BY batch.
+      */
+      sqlite3VdbeResolveLabel(v, addrGroupByChange);
+      for(j=0; j<pGroupBy->nExpr; j++){
+        sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
+      }
+      sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
+      VdbeComment((v, "# output one row"));
+      sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
+      VdbeComment((v, "# check abort flag"));
+      sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
+      VdbeComment((v, "# reset accumulator"));
+
+      /* Update the aggregate accumulators based on the content of
+      ** the current row
+      */
+      sqlite3VdbeResolveLabel(v, addrProcessRow);
+      updateAccumulator(pParse, &sAggInfo);
+      sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
+      VdbeComment((v, "# indicate data in accumulator"));
+
+      /* End of the loop
+      */
+      if( groupBySort ){
+        sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
+      }else{
+        sqlite3WhereEnd(pWInfo);
+        sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
+      }
+
+      /* Output the final row of result
+      */
+      sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
+      VdbeComment((v, "# output final row"));
+      
+    } /* endif pGroupBy */
+    else {
+      /* This case runs if the aggregate has no GROUP BY clause.  The
+      ** processing is much simpler since there is only a single row
+      ** of output.
+      */
+      resetAccumulator(pParse, &sAggInfo);
+      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
+      if( pWInfo==0 ) goto select_end;
+      updateAccumulator(pParse, &sAggInfo);
+      sqlite3WhereEnd(pWInfo);
+      finalizeAggFunctions(pParse, &sAggInfo);
+      pOrderBy = 0;
+      if( pHaving ){
+        sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
+      }
+      selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
+                      eDest, iParm, addrEnd, addrEnd, aff);
+    }
+    sqlite3VdbeResolveLabel(v, addrEnd);
+    
+  } /* endif aggregate query */
+
+  /* If there is an ORDER BY clause, then we need to sort the results
+  ** and send them to the callback one by one.
+  */
+  if( pOrderBy ){
+    generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
+  }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+  /* If this was a subquery, we have now converted the subquery into a
+  ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
+  ** this subquery from being evaluated again and to force the use of
+  ** the temporary table.
+  */
+  if( pParent ){
+    assert( pParent->pSrc->nSrc>parentTab );
+    assert( pParent->pSrc->a[parentTab].pSelect==p );
+    pParent->pSrc->a[parentTab].isPopulated = 1;
+  }
+#endif
+
+  /* Jump here to skip this query
+  */
+  sqlite3VdbeResolveLabel(v, iEnd);
+
+  /* The SELECT was successfully coded.   Set the return code to 0
+  ** to indicate no errors.
+  */
+  rc = 0;
+
+  /* Control jumps to here if an error is encountered above, or upon
+  ** successful coding of the SELECT.
+  */
+select_end:
+
+  /* Identify column names if we will be using them in a callback.  This
+  ** step is skipped if the output is going to some other destination.
+  */
+  if( rc==SQLITE_OK && eDest==SRT_Callback ){
+    generateColumnNames(pParse, pTabList, pEList);
+  }
+
+  sqlite3_free(sAggInfo.aCol);
+  sqlite3_free(sAggInfo.aFunc);
+  return rc;
+}
+
+#if defined(SQLITE_DEBUG)
+/*
+*******************************************************************************
+** The following code is used for testing and debugging only.  The code
+** that follows does not appear in normal builds.
+**
+** These routines are used to print out the content of all or part of a 
+** parse structures such as Select or Expr.  Such printouts are useful
+** for helping to understand what is happening inside the code generator
+** during the execution of complex SELECT statements.
+**
+** These routine are not called anywhere from within the normal
+** code base.  Then are intended to be called from within the debugger
+** or from temporary "printf" statements inserted for debugging.
+*/
+void sqlite3PrintExpr(Expr *p){
+  if( p->token.z && p->token.n>0 ){
+    sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
+  }else{
+    sqlite3DebugPrintf("(%d", p->op);
+  }
+  if( p->pLeft ){
+    sqlite3DebugPrintf(" ");
+    sqlite3PrintExpr(p->pLeft);
+  }
+  if( p->pRight ){
+    sqlite3DebugPrintf(" ");
+    sqlite3PrintExpr(p->pRight);
+  }
+  sqlite3DebugPrintf(")");
+}
+void sqlite3PrintExprList(ExprList *pList){
+  int i;
+  for(i=0; i<pList->nExpr; i++){
+    sqlite3PrintExpr(pList->a[i].pExpr);
+    if( i<pList->nExpr-1 ){
+      sqlite3DebugPrintf(", ");
+    }
+  }
+}
+void sqlite3PrintSelect(Select *p, int indent){
+  sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
+  sqlite3PrintExprList(p->pEList);
+  sqlite3DebugPrintf("\n");
+  if( p->pSrc ){
+    char *zPrefix;
+    int i;
+    zPrefix = "FROM";
+    for(i=0; i<p->pSrc->nSrc; i++){
+      struct SrcList_item *pItem = &p->pSrc->a[i];
+      sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
+      zPrefix = "";
+      if( pItem->pSelect ){
+        sqlite3DebugPrintf("(\n");
+        sqlite3PrintSelect(pItem->pSelect, indent+10);
+        sqlite3DebugPrintf("%*s)", indent+8, "");
+      }else if( pItem->zName ){
+        sqlite3DebugPrintf("%s", pItem->zName);
+      }
+      if( pItem->pTab ){
+        sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
+      }
+      if( pItem->zAlias ){
+        sqlite3DebugPrintf(" AS %s", pItem->zAlias);
+      }
+      if( i<p->pSrc->nSrc-1 ){
+        sqlite3DebugPrintf(",");
+      }
+      sqlite3DebugPrintf("\n");
+    }
+  }
+  if( p->pWhere ){
+    sqlite3DebugPrintf("%*s WHERE ", indent, "");
+    sqlite3PrintExpr(p->pWhere);
+    sqlite3DebugPrintf("\n");
+  }
+  if( p->pGroupBy ){
+    sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
+    sqlite3PrintExprList(p->pGroupBy);
+    sqlite3DebugPrintf("\n");
+  }
+  if( p->pHaving ){
+    sqlite3DebugPrintf("%*s HAVING ", indent, "");
+    sqlite3PrintExpr(p->pHaving);
+    sqlite3DebugPrintf("\n");
+  }
+  if( p->pOrderBy ){
+    sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
+    sqlite3PrintExprList(p->pOrderBy);
+    sqlite3DebugPrintf("\n");
+  }
+}
+/* End of the structure debug printing code
+*****************************************************************************/
+#endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */