classicui_plat/ode_api/inc/odemath.h
changeset 0 2f259fa3e83a
equal deleted inserted replaced
-1:000000000000 0:2f259fa3e83a
       
     1 /*************************************************************************
       
     2  *                                                                       *
       
     3  * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith.       *
       
     4  * All rights reserved.  Email: russ@q12.org   Web: www.q12.org          *
       
     5  *                                                                       *
       
     6  * This library is free software; you can redistribute it and/or         *
       
     7  * modify it under the terms of EITHER:                                  *
       
     8  *   (1) The GNU Lesser General Public License as published by the Free  *
       
     9  *       Software Foundation; either version 2.1 of the License, or (at  *
       
    10  *       your option) any later version. The text of the GNU Lesser      *
       
    11  *       General Public License is included with this library in the     *
       
    12  *       file LICENSE.TXT.                                               *
       
    13  *   (2) The BSD-style license that is included with this library in     *
       
    14  *       the file LICENSE-BSD.TXT.                                       *
       
    15  *                                                                       *
       
    16  * This library is distributed in the hope that it will be useful,       *
       
    17  * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
       
    18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files    *
       
    19  * LICENSE.TXT and LICENSE-BSD.TXT for more details.                     *
       
    20  *                                                                       *
       
    21  *************************************************************************/
       
    22 
       
    23 #ifndef _ODE_ODEMATH_H_
       
    24 #define _ODE_ODEMATH_H_
       
    25 
       
    26 #include <ode/common.h>
       
    27 
       
    28 #ifdef __GNUC__
       
    29 #define PURE_INLINE extern inline
       
    30 #else
       
    31 #define PURE_INLINE inline
       
    32 #endif
       
    33 
       
    34 /*
       
    35  * macro to access elements i,j in an NxM matrix A, independent of the
       
    36  * matrix storage convention.
       
    37  */
       
    38 #define dACCESS33(A,i,j) ((A)[(i)*4+(j)])
       
    39 
       
    40 /*
       
    41  * Macro to test for valid floating point values
       
    42  */
       
    43 #define dVALIDVEC3(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2])))
       
    44 #define dVALIDVEC4(v) (!(dIsNan(v[0]) || dIsNan(v[1]) || dIsNan(v[2]) || dIsNan(v[3])))
       
    45 #define dVALIDMAT3(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11])))
       
    46 #define dVALIDMAT4(m) (!(dIsNan(m[0]) || dIsNan(m[1]) || dIsNan(m[2]) || dIsNan(m[3]) || dIsNan(m[4]) || dIsNan(m[5]) || dIsNan(m[6]) || dIsNan(m[7]) || dIsNan(m[8]) || dIsNan(m[9]) || dIsNan(m[10]) || dIsNan(m[11]) || dIsNan(m[12]) || dIsNan(m[13]) || dIsNan(m[14]) || dIsNan(m[15]) ))
       
    47 
       
    48 
       
    49 
       
    50 /*
       
    51  * General purpose vector operations with other vectors or constants.
       
    52  */
       
    53 
       
    54 #define dOP(a,op,b,c) \
       
    55     (a)[0] = ((b)[0]) op ((c)[0]); \
       
    56     (a)[1] = ((b)[1]) op ((c)[1]); \
       
    57     (a)[2] = ((b)[2]) op ((c)[2]);
       
    58 #define dOPC(a,op,b,c) \
       
    59     (a)[0] = ((b)[0]) op (c); \
       
    60     (a)[1] = ((b)[1]) op (c); \
       
    61     (a)[2] = ((b)[2]) op (c);
       
    62 #define dOPE(a,op,b) \
       
    63     (a)[0] op ((b)[0]); \
       
    64     (a)[1] op ((b)[1]); \
       
    65     (a)[2] op ((b)[2]);
       
    66 #define dOPEC(a,op,c) \
       
    67     (a)[0] op (c); \
       
    68     (a)[1] op (c); \
       
    69     (a)[2] op (c);
       
    70 
       
    71 
       
    72 
       
    73 
       
    74 
       
    75 /*
       
    76  * 3-way dot product. dDOTpq means that elements of `a' and `b' are spaced
       
    77  * p and q indexes apart respectively. dDOT() means dDOT11.
       
    78  * in C++ we could use function templates to get all the versions of these
       
    79  * functions - but on some compilers this will result in sub-optimal code.
       
    80  */
       
    81 
       
    82 #define dDOTpq(a,b,p,q) (dMUL((a)[0],(b)[0]) + dMUL((a)[p],(b)[q]) + dMUL((a)[2*(p)],(b)[2*(q)]))
       
    83 
       
    84 
       
    85 #ifdef __cplusplus
       
    86 
       
    87 PURE_INLINE dReal dDOT   (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,1); }
       
    88 PURE_INLINE dReal dDOT13 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,3); }
       
    89 PURE_INLINE dReal dDOT31 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,1); }
       
    90 PURE_INLINE dReal dDOT33 (const dReal *a, const dReal *b) { return dDOTpq(a,b,3,3); }
       
    91 PURE_INLINE dReal dDOT14 (const dReal *a, const dReal *b) { return dDOTpq(a,b,1,4); }
       
    92 PURE_INLINE dReal dDOT41 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,1); }
       
    93 PURE_INLINE dReal dDOT44 (const dReal *a, const dReal *b) { return dDOTpq(a,b,4,4); }
       
    94 
       
    95 #endif /* __cplusplus */
       
    96 
       
    97 
       
    98 /*
       
    99  * cross product, set a = b x c. dCROSSpqr means that elements of `a', `b'
       
   100  * and `c' are spaced p, q and r indexes apart respectively.
       
   101  * dCROSS() means dCROSS111. `op' is normally `=', but you can set it to
       
   102  * +=, -= etc to get other effects.
       
   103  */
       
   104 
       
   105 #define dCROSS(a,op,b,c) \
       
   106 do { \
       
   107   (a)[0] op (dMUL((b)[1],(c)[2]) - dMUL((b)[2],(c)[1])); \
       
   108   (a)[1] op (dMUL((b)[2],(c)[0]) - dMUL((b)[0],(c)[2])); \
       
   109   (a)[2] op (dMUL((b)[0],(c)[1]) - dMUL((b)[1],(c)[0])); \
       
   110 } while(0)
       
   111 
       
   112 #define dCROSSpqr(a,op,b,c,p,q,r) \
       
   113 do { \
       
   114   (a)[  0] op (dMUL((b)[  q],(c)[2*r]) - dMUL((b)[2*q],(c)[  r])); \
       
   115   (a)[  p] op (dMUL((b)[2*q],(c)[  0]) - dMUL((b)[  0],(c)[2*r])); \
       
   116   (a)[2*p] op (dMUL((b)[  0],(c)[  r]) - dMUL((b)[  q],(c)[  0])); \
       
   117 } while(0)
       
   118 #define dCROSS114(a,op,b,c) dCROSSpqr(a,op,b,c,1,1,4)
       
   119 #define dCROSS141(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,1)
       
   120 #define dCROSS144(a,op,b,c) dCROSSpqr(a,op,b,c,1,4,4)
       
   121 #define dCROSS411(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,1)
       
   122 #define dCROSS414(a,op,b,c) dCROSSpqr(a,op,b,c,4,1,4)
       
   123 #define dCROSS441(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,1)
       
   124 #define dCROSS444(a,op,b,c) dCROSSpqr(a,op,b,c,4,4,4)
       
   125 
       
   126 
       
   127 /*
       
   128  * set a 3x3 submatrix of A to a matrix such that submatrix(A)*b = a x b.
       
   129  * A is stored by rows, and has `skip' elements per row. the matrix is
       
   130  * assumed to be already zero, so this does not write zero elements!
       
   131  * if (plus,minus) is (+,-) then a positive version will be written.
       
   132  * if (plus,minus) is (-,+) then a negative version will be written.
       
   133  */
       
   134 
       
   135 #define dCROSSMAT(A,a,skip,plus,minus) \
       
   136 do { \
       
   137   (A)[1] = minus (a)[2]; \
       
   138   (A)[2] = plus (a)[1]; \
       
   139   (A)[(skip)+0] = plus (a)[2]; \
       
   140   (A)[(skip)+2] = minus (a)[0]; \
       
   141   (A)[2*(skip)+0] = minus (a)[1]; \
       
   142   (A)[2*(skip)+1] = plus (a)[0]; \
       
   143 } while(0)
       
   144 
       
   145 
       
   146 /*
       
   147  * compute the distance between two 3D-vectors
       
   148  */
       
   149  
       
   150 #ifdef __cplusplus
       
   151 #define dDISTANCE(a,b) \
       
   152 	(dSqrt( dMUL(((a)[0]-(b)[0]),((a)[0]-(b)[0])) + dMUL(((a)[1]-(b)[1]),((a)[1]-(b)[1])) + dMUL(((a)[2]-(b)[2]),((a)[2]-(b)[2])) ))
       
   153 #endif
       
   154 
       
   155 
       
   156 /*
       
   157  * special case matrix multipication, with operator selection
       
   158  */
       
   159 
       
   160 #define dMULTIPLYOP0_331(A,op,B,C) \
       
   161 do { \
       
   162   (A)[0] op dDOT((B),(C)); \
       
   163   (A)[1] op dDOT((B+4),(C)); \
       
   164   (A)[2] op dDOT((B+8),(C)); \
       
   165 } while(0)
       
   166 #define dMULTIPLYOP1_331(A,op,B,C) \
       
   167 do { \
       
   168   (A)[0] op dDOT41((B),(C)); \
       
   169   (A)[1] op dDOT41((B+1),(C)); \
       
   170   (A)[2] op dDOT41((B+2),(C)); \
       
   171 } while(0)
       
   172 #define dMULTIPLYOP0_133(A,op,B,C) \
       
   173 do { \
       
   174   (A)[0] op dDOT14((B),(C)); \
       
   175   (A)[1] op dDOT14((B),(C+1)); \
       
   176   (A)[2] op dDOT14((B),(C+2)); \
       
   177 } while(0)
       
   178 #define dMULTIPLYOP0_333(A,op,B,C) \
       
   179 do { \
       
   180   (A)[0] op dDOT14((B),(C)); \
       
   181   (A)[1] op dDOT14((B),(C+1)); \
       
   182   (A)[2] op dDOT14((B),(C+2)); \
       
   183   (A)[4] op dDOT14((B+4),(C)); \
       
   184   (A)[5] op dDOT14((B+4),(C+1)); \
       
   185   (A)[6] op dDOT14((B+4),(C+2)); \
       
   186   (A)[8] op dDOT14((B+8),(C)); \
       
   187   (A)[9] op dDOT14((B+8),(C+1)); \
       
   188   (A)[10] op dDOT14((B+8),(C+2)); \
       
   189 } while(0)
       
   190 #define dMULTIPLYOP1_333(A,op,B,C) \
       
   191 do { \
       
   192   (A)[0] op dDOT44((B),(C)); \
       
   193   (A)[1] op dDOT44((B),(C+1)); \
       
   194   (A)[2] op dDOT44((B),(C+2)); \
       
   195   (A)[4] op dDOT44((B+1),(C)); \
       
   196   (A)[5] op dDOT44((B+1),(C+1)); \
       
   197   (A)[6] op dDOT44((B+1),(C+2)); \
       
   198   (A)[8] op dDOT44((B+2),(C)); \
       
   199   (A)[9] op dDOT44((B+2),(C+1)); \
       
   200   (A)[10] op dDOT44((B+2),(C+2)); \
       
   201 } while(0)
       
   202 #define dMULTIPLYOP2_333(A,op,B,C) \
       
   203 do { \
       
   204   (A)[0] op dDOT((B),(C)); \
       
   205   (A)[1] op dDOT((B),(C+4)); \
       
   206   (A)[2] op dDOT((B),(C+8)); \
       
   207   (A)[4] op dDOT((B+4),(C)); \
       
   208   (A)[5] op dDOT((B+4),(C+4)); \
       
   209   (A)[6] op dDOT((B+4),(C+8)); \
       
   210   (A)[8] op dDOT((B+8),(C)); \
       
   211   (A)[9] op dDOT((B+8),(C+4)); \
       
   212   (A)[10] op dDOT((B+8),(C+8)); \
       
   213 } while(0)
       
   214 
       
   215 #ifdef __cplusplus
       
   216 
       
   217 #define DECL template <class TA, class TB, class TC> PURE_INLINE void
       
   218 
       
   219 DECL dMULTIPLY0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,=,B,C); }
       
   220 DECL dMULTIPLY1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,=,B,C); }
       
   221 DECL dMULTIPLY0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,=,B,C); }
       
   222 DECL dMULTIPLY0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,=,B,C); }
       
   223 DECL dMULTIPLY1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,=,B,C); }
       
   224 DECL dMULTIPLY2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,=,B,C); }
       
   225 
       
   226 DECL dMULTIPLYADD0_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_331(A,+=,B,C); }
       
   227 DECL dMULTIPLYADD1_331(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_331(A,+=,B,C); }
       
   228 DECL dMULTIPLYADD0_133(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_133(A,+=,B,C); }
       
   229 DECL dMULTIPLYADD0_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP0_333(A,+=,B,C); }
       
   230 DECL dMULTIPLYADD1_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP1_333(A,+=,B,C); }
       
   231 DECL dMULTIPLYADD2_333(TA *A, const TB *B, const TC *C) { dMULTIPLYOP2_333(A,+=,B,C); }
       
   232 
       
   233 #undef DECL
       
   234 
       
   235 #else
       
   236 
       
   237 #define dMULTIPLY0_331(A,B,C) dMULTIPLYOP0_331(A,=,B,C)
       
   238 #define dMULTIPLY1_331(A,B,C) dMULTIPLYOP1_331(A,=,B,C)
       
   239 #define dMULTIPLY0_133(A,B,C) dMULTIPLYOP0_133(A,=,B,C)
       
   240 #define dMULTIPLY0_333(A,B,C) dMULTIPLYOP0_333(A,=,B,C)
       
   241 #define dMULTIPLY1_333(A,B,C) dMULTIPLYOP1_333(A,=,B,C)
       
   242 #define dMULTIPLY2_333(A,B,C) dMULTIPLYOP2_333(A,=,B,C)
       
   243 
       
   244 #define dMULTIPLYADD0_331(A,B,C) dMULTIPLYOP0_331(A,+=,B,C)
       
   245 #define dMULTIPLYADD1_331(A,B,C) dMULTIPLYOP1_331(A,+=,B,C)
       
   246 #define dMULTIPLYADD0_133(A,B,C) dMULTIPLYOP0_133(A,+=,B,C)
       
   247 #define dMULTIPLYADD0_333(A,B,C) dMULTIPLYOP0_333(A,+=,B,C)
       
   248 #define dMULTIPLYADD1_333(A,B,C) dMULTIPLYOP1_333(A,+=,B,C)
       
   249 #define dMULTIPLYADD2_333(A,B,C) dMULTIPLYOP2_333(A,+=,B,C)
       
   250 
       
   251 #endif
       
   252 
       
   253 
       
   254 #ifdef __cplusplus
       
   255 extern "C" {
       
   256 #endif
       
   257 
       
   258 /*
       
   259  * normalize 3x1 and 4x1 vectors (i.e. scale them to unit length)
       
   260  */
       
   261 ODE_API IMPORT_C void dNormalize3 (dVector3 a);
       
   262 ODE_API IMPORT_C void dNormalize4 (dVector4 a);
       
   263 
       
   264 
       
   265 /*
       
   266  * given a unit length "normal" vector n, generate vectors p and q vectors
       
   267  * that are an orthonormal basis for the plane space perpendicular to n.
       
   268  * i.e. this makes p,q such that n,p,q are all perpendicular to each other.
       
   269  * q will equal n x p. if n is not unit length then p will be unit length but
       
   270  * q wont be.
       
   271  */
       
   272 
       
   273 ODE_API IMPORT_C void dPlaneSpace (const dVector3 n, dVector3 p, dVector3 q);
       
   274 
       
   275 ODE_API IMPORT_C dReal dArcTan2(const dReal x, const dReal y);
       
   276 ODE_API IMPORT_C dReal dArcSin(const dReal arg);
       
   277 
       
   278 #ifdef __cplusplus
       
   279 }
       
   280 #endif
       
   281 
       
   282 #endif