0
|
1 |
/*
|
|
2 |
* jdcoefct.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1994-1997, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains the coefficient buffer controller for decompression.
|
|
9 |
* This controller is the top level of the JPEG decompressor proper.
|
|
10 |
* The coefficient buffer lies between entropy decoding and inverse-DCT steps.
|
|
11 |
*
|
|
12 |
* In buffered-image mode, this controller is the interface between
|
|
13 |
* input-oriented processing and output-oriented processing.
|
|
14 |
* Also, the input side (only) is used when reading a file for transcoding.
|
|
15 |
*/
|
|
16 |
|
|
17 |
#define JPEG_INTERNALS
|
|
18 |
#include "jinclude.h"
|
|
19 |
#include "jpeglib.h"
|
|
20 |
|
|
21 |
/* Block smoothing is only applicable for progressive JPEG, so: */
|
|
22 |
#ifndef D_PROGRESSIVE_SUPPORTED
|
|
23 |
#undef BLOCK_SMOOTHING_SUPPORTED
|
|
24 |
#endif
|
|
25 |
|
|
26 |
/* Private buffer controller object */
|
|
27 |
|
|
28 |
typedef struct {
|
|
29 |
struct jpeg_d_coef_controller pub; /* public fields */
|
|
30 |
|
|
31 |
/* These variables keep track of the current location of the input side. */
|
|
32 |
/* cinfo->input_iMCU_row is also used for this. */
|
|
33 |
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
|
|
34 |
int MCU_vert_offset; /* counts MCU rows within iMCU row */
|
|
35 |
int MCU_rows_per_iMCU_row; /* number of such rows needed */
|
|
36 |
|
|
37 |
/* The output side's location is represented by cinfo->output_iMCU_row. */
|
|
38 |
|
|
39 |
/* In single-pass modes, it's sufficient to buffer just one MCU.
|
|
40 |
* We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
|
|
41 |
* and let the entropy decoder write into that workspace each time.
|
|
42 |
* (On 80x86, the workspace is FAR even though it's not really very big;
|
|
43 |
* this is to keep the module interfaces unchanged when a large coefficient
|
|
44 |
* buffer is necessary.)
|
|
45 |
* In multi-pass modes, this array points to the current MCU's blocks
|
|
46 |
* within the virtual arrays; it is used only by the input side.
|
|
47 |
*/
|
|
48 |
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
|
|
49 |
|
|
50 |
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
|
51 |
/* In multi-pass modes, we need a virtual block array for each component. */
|
|
52 |
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
|
|
53 |
#endif
|
|
54 |
|
|
55 |
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
|
56 |
/* When doing block smoothing, we latch coefficient Al values here */
|
|
57 |
int * coef_bits_latch;
|
|
58 |
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
|
|
59 |
#endif
|
|
60 |
} my_coef_controller;
|
|
61 |
|
|
62 |
typedef my_coef_controller * my_coef_ptr;
|
|
63 |
|
|
64 |
/* Forward declarations */
|
|
65 |
METHODDEF(int) decompress_onepass
|
|
66 |
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
|
67 |
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
|
68 |
METHODDEF(int) decompress_data
|
|
69 |
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
|
70 |
#endif
|
|
71 |
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
|
72 |
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
|
|
73 |
METHODDEF(int) decompress_smooth_data
|
|
74 |
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
|
|
75 |
#endif
|
|
76 |
|
|
77 |
|
|
78 |
LOCAL(void)
|
|
79 |
start_iMCU_row (j_decompress_ptr cinfo)
|
|
80 |
/* Reset within-iMCU-row counters for a new row (input side) */
|
|
81 |
{
|
|
82 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
83 |
|
|
84 |
/* In an interleaved scan, an MCU row is the same as an iMCU row.
|
|
85 |
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
|
|
86 |
* But at the bottom of the image, process only what's left.
|
|
87 |
*/
|
|
88 |
if (cinfo->comps_in_scan > 1) {
|
|
89 |
coef->MCU_rows_per_iMCU_row = 1;
|
|
90 |
} else {
|
|
91 |
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
|
|
92 |
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
|
|
93 |
else
|
|
94 |
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
|
|
95 |
}
|
|
96 |
|
|
97 |
coef->MCU_ctr = 0;
|
|
98 |
coef->MCU_vert_offset = 0;
|
|
99 |
}
|
|
100 |
|
|
101 |
|
|
102 |
/*
|
|
103 |
* Initialize for an input processing pass.
|
|
104 |
*/
|
|
105 |
|
|
106 |
METHODDEF(void)
|
|
107 |
start_input_pass (j_decompress_ptr cinfo)
|
|
108 |
{
|
|
109 |
cinfo->input_iMCU_row = 0;
|
|
110 |
start_iMCU_row(cinfo);
|
|
111 |
}
|
|
112 |
|
|
113 |
|
|
114 |
/*
|
|
115 |
* Initialize for an output processing pass.
|
|
116 |
*/
|
|
117 |
|
|
118 |
METHODDEF(void)
|
|
119 |
start_output_pass (j_decompress_ptr cinfo)
|
|
120 |
{
|
|
121 |
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
|
122 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
123 |
|
|
124 |
/* If multipass, check to see whether to use block smoothing on this pass */
|
|
125 |
if (coef->pub.coef_arrays != NULL) {
|
|
126 |
if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
|
|
127 |
coef->pub.decompress_data = decompress_smooth_data;
|
|
128 |
else
|
|
129 |
coef->pub.decompress_data = decompress_data;
|
|
130 |
}
|
|
131 |
#endif
|
|
132 |
cinfo->output_iMCU_row = 0;
|
|
133 |
}
|
|
134 |
|
|
135 |
|
|
136 |
/*
|
|
137 |
* Decompress and return some data in the single-pass case.
|
|
138 |
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
|
139 |
* Input and output must run in lockstep since we have only a one-MCU buffer.
|
|
140 |
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
|
141 |
*
|
|
142 |
* NB: output_buf contains a plane for each component in image,
|
|
143 |
* which we index according to the component's SOF position.
|
|
144 |
*/
|
|
145 |
|
|
146 |
METHODDEF(int)
|
|
147 |
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
|
148 |
{
|
|
149 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
150 |
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
|
151 |
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
|
|
152 |
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
|
153 |
int blkn, ci, xindex, yindex, yoffset, useful_width;
|
|
154 |
JSAMPARRAY output_ptr;
|
|
155 |
JDIMENSION start_col, output_col;
|
|
156 |
jpeg_component_info *compptr;
|
|
157 |
inverse_DCT_method_ptr inverse_DCT;
|
|
158 |
|
|
159 |
/* Loop to process as much as one whole iMCU row */
|
|
160 |
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
|
161 |
yoffset++) {
|
|
162 |
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
|
|
163 |
MCU_col_num++) {
|
|
164 |
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
|
|
165 |
jzero_far((void FAR *) coef->MCU_buffer[0],
|
|
166 |
(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
|
|
167 |
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
|
168 |
/* Suspension forced; update state counters and exit */
|
|
169 |
coef->MCU_vert_offset = yoffset;
|
|
170 |
coef->MCU_ctr = MCU_col_num;
|
|
171 |
return JPEG_SUSPENDED;
|
|
172 |
}
|
|
173 |
/* Determine where data should go in output_buf and do the IDCT thing.
|
|
174 |
* We skip dummy blocks at the right and bottom edges (but blkn gets
|
|
175 |
* incremented past them!). Note the inner loop relies on having
|
|
176 |
* allocated the MCU_buffer[] blocks sequentially.
|
|
177 |
*/
|
|
178 |
blkn = 0; /* index of current DCT block within MCU */
|
|
179 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
180 |
compptr = cinfo->cur_comp_info[ci];
|
|
181 |
/* Don't bother to IDCT an uninteresting component. */
|
|
182 |
if (! compptr->component_needed) {
|
|
183 |
blkn += compptr->MCU_blocks;
|
|
184 |
continue;
|
|
185 |
}
|
|
186 |
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
|
|
187 |
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
|
|
188 |
: compptr->last_col_width;
|
|
189 |
output_ptr = output_buf[compptr->component_index] +
|
|
190 |
yoffset * compptr->DCT_scaled_size;
|
|
191 |
start_col = MCU_col_num * compptr->MCU_sample_width;
|
|
192 |
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
|
193 |
if (cinfo->input_iMCU_row < last_iMCU_row ||
|
|
194 |
yoffset+yindex < compptr->last_row_height) {
|
|
195 |
output_col = start_col;
|
|
196 |
for (xindex = 0; xindex < useful_width; xindex++) {
|
|
197 |
(*inverse_DCT) (cinfo, compptr,
|
|
198 |
(JCOEFPTR) coef->MCU_buffer[blkn+xindex],
|
|
199 |
output_ptr, output_col);
|
|
200 |
output_col += compptr->DCT_scaled_size;
|
|
201 |
}
|
|
202 |
}
|
|
203 |
blkn += compptr->MCU_width;
|
|
204 |
output_ptr += compptr->DCT_scaled_size;
|
|
205 |
}
|
|
206 |
}
|
|
207 |
}
|
|
208 |
/* Completed an MCU row, but perhaps not an iMCU row */
|
|
209 |
coef->MCU_ctr = 0;
|
|
210 |
}
|
|
211 |
/* Completed the iMCU row, advance counters for next one */
|
|
212 |
cinfo->output_iMCU_row++;
|
|
213 |
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
|
214 |
start_iMCU_row(cinfo);
|
|
215 |
return JPEG_ROW_COMPLETED;
|
|
216 |
}
|
|
217 |
/* Completed the scan */
|
|
218 |
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
|
219 |
return JPEG_SCAN_COMPLETED;
|
|
220 |
}
|
|
221 |
|
|
222 |
|
|
223 |
/*
|
|
224 |
* Dummy consume-input routine for single-pass operation.
|
|
225 |
*/
|
|
226 |
|
|
227 |
METHODDEF(int)
|
|
228 |
dummy_consume_data (j_decompress_ptr cinfo)
|
|
229 |
{
|
|
230 |
return JPEG_SUSPENDED; /* Always indicate nothing was done */
|
|
231 |
}
|
|
232 |
|
|
233 |
|
|
234 |
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
|
235 |
|
|
236 |
/*
|
|
237 |
* Consume input data and store it in the full-image coefficient buffer.
|
|
238 |
* We read as much as one fully interleaved MCU row ("iMCU" row) per call,
|
|
239 |
* ie, v_samp_factor block rows for each component in the scan.
|
|
240 |
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
|
241 |
*/
|
|
242 |
|
|
243 |
METHODDEF(int)
|
|
244 |
consume_data (j_decompress_ptr cinfo)
|
|
245 |
{
|
|
246 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
247 |
JDIMENSION MCU_col_num; /* index of current MCU within row */
|
|
248 |
int blkn, ci, xindex, yindex, yoffset;
|
|
249 |
JDIMENSION start_col;
|
|
250 |
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
|
|
251 |
JBLOCKROW buffer_ptr;
|
|
252 |
jpeg_component_info *compptr;
|
|
253 |
|
|
254 |
/* Align the virtual buffers for the components used in this scan. */
|
|
255 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
256 |
compptr = cinfo->cur_comp_info[ci];
|
|
257 |
buffer[ci] = (*cinfo->mem->access_virt_barray)
|
|
258 |
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
|
|
259 |
cinfo->input_iMCU_row * compptr->v_samp_factor,
|
|
260 |
(JDIMENSION) compptr->v_samp_factor, TRUE);
|
|
261 |
/* Note: entropy decoder expects buffer to be zeroed,
|
|
262 |
* but this is handled automatically by the memory manager
|
|
263 |
* because we requested a pre-zeroed array.
|
|
264 |
*/
|
|
265 |
}
|
|
266 |
|
|
267 |
/* Loop to process one whole iMCU row */
|
|
268 |
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
|
|
269 |
yoffset++) {
|
|
270 |
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
|
|
271 |
MCU_col_num++) {
|
|
272 |
/* Construct list of pointers to DCT blocks belonging to this MCU */
|
|
273 |
blkn = 0; /* index of current DCT block within MCU */
|
|
274 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
275 |
compptr = cinfo->cur_comp_info[ci];
|
|
276 |
start_col = MCU_col_num * compptr->MCU_width;
|
|
277 |
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
|
|
278 |
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
|
|
279 |
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
|
|
280 |
coef->MCU_buffer[blkn++] = buffer_ptr++;
|
|
281 |
}
|
|
282 |
}
|
|
283 |
}
|
|
284 |
/* Try to fetch the MCU. */
|
|
285 |
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
|
|
286 |
/* Suspension forced; update state counters and exit */
|
|
287 |
coef->MCU_vert_offset = yoffset;
|
|
288 |
coef->MCU_ctr = MCU_col_num;
|
|
289 |
return JPEG_SUSPENDED;
|
|
290 |
}
|
|
291 |
}
|
|
292 |
/* Completed an MCU row, but perhaps not an iMCU row */
|
|
293 |
coef->MCU_ctr = 0;
|
|
294 |
}
|
|
295 |
/* Completed the iMCU row, advance counters for next one */
|
|
296 |
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
|
|
297 |
start_iMCU_row(cinfo);
|
|
298 |
return JPEG_ROW_COMPLETED;
|
|
299 |
}
|
|
300 |
/* Completed the scan */
|
|
301 |
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
|
302 |
return JPEG_SCAN_COMPLETED;
|
|
303 |
}
|
|
304 |
|
|
305 |
|
|
306 |
/*
|
|
307 |
* Decompress and return some data in the multi-pass case.
|
|
308 |
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
|
|
309 |
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
|
|
310 |
*
|
|
311 |
* NB: output_buf contains a plane for each component in image.
|
|
312 |
*/
|
|
313 |
|
|
314 |
METHODDEF(int)
|
|
315 |
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
|
316 |
{
|
|
317 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
318 |
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
|
319 |
JDIMENSION block_num;
|
|
320 |
int ci, block_row, block_rows;
|
|
321 |
JBLOCKARRAY buffer;
|
|
322 |
JBLOCKROW buffer_ptr;
|
|
323 |
JSAMPARRAY output_ptr;
|
|
324 |
JDIMENSION output_col;
|
|
325 |
jpeg_component_info *compptr;
|
|
326 |
inverse_DCT_method_ptr inverse_DCT;
|
|
327 |
|
|
328 |
/* Force some input to be done if we are getting ahead of the input. */
|
|
329 |
while (cinfo->input_scan_number < cinfo->output_scan_number ||
|
|
330 |
(cinfo->input_scan_number == cinfo->output_scan_number &&
|
|
331 |
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
|
|
332 |
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
|
|
333 |
return JPEG_SUSPENDED;
|
|
334 |
}
|
|
335 |
|
|
336 |
/* OK, output from the virtual arrays. */
|
|
337 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
338 |
ci++, compptr++) {
|
|
339 |
/* Don't bother to IDCT an uninteresting component. */
|
|
340 |
if (! compptr->component_needed)
|
|
341 |
continue;
|
|
342 |
/* Align the virtual buffer for this component. */
|
|
343 |
buffer = (*cinfo->mem->access_virt_barray)
|
|
344 |
((j_common_ptr) cinfo, coef->whole_image[ci],
|
|
345 |
cinfo->output_iMCU_row * compptr->v_samp_factor,
|
|
346 |
(JDIMENSION) compptr->v_samp_factor, FALSE);
|
|
347 |
/* Count non-dummy DCT block rows in this iMCU row. */
|
|
348 |
if (cinfo->output_iMCU_row < last_iMCU_row)
|
|
349 |
block_rows = compptr->v_samp_factor;
|
|
350 |
else {
|
|
351 |
/* NB: can't use last_row_height here; it is input-side-dependent! */
|
|
352 |
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
|
353 |
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
|
354 |
}
|
|
355 |
inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
|
356 |
output_ptr = output_buf[ci];
|
|
357 |
/* Loop over all DCT blocks to be processed. */
|
|
358 |
for (block_row = 0; block_row < block_rows; block_row++) {
|
|
359 |
buffer_ptr = buffer[block_row];
|
|
360 |
output_col = 0;
|
|
361 |
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
|
|
362 |
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
|
|
363 |
output_ptr, output_col);
|
|
364 |
buffer_ptr++;
|
|
365 |
output_col += compptr->DCT_scaled_size;
|
|
366 |
}
|
|
367 |
output_ptr += compptr->DCT_scaled_size;
|
|
368 |
}
|
|
369 |
}
|
|
370 |
|
|
371 |
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
|
|
372 |
return JPEG_ROW_COMPLETED;
|
|
373 |
return JPEG_SCAN_COMPLETED;
|
|
374 |
}
|
|
375 |
|
|
376 |
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
|
377 |
|
|
378 |
|
|
379 |
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
|
380 |
|
|
381 |
/*
|
|
382 |
* This code applies interblock smoothing as described by section K.8
|
|
383 |
* of the JPEG standard: the first 5 AC coefficients are estimated from
|
|
384 |
* the DC values of a DCT block and its 8 neighboring blocks.
|
|
385 |
* We apply smoothing only for progressive JPEG decoding, and only if
|
|
386 |
* the coefficients it can estimate are not yet known to full precision.
|
|
387 |
*/
|
|
388 |
|
|
389 |
/* Natural-order array positions of the first 5 zigzag-order coefficients */
|
|
390 |
#define Q01_POS 1
|
|
391 |
#define Q10_POS 8
|
|
392 |
#define Q20_POS 16
|
|
393 |
#define Q11_POS 9
|
|
394 |
#define Q02_POS 2
|
|
395 |
|
|
396 |
/*
|
|
397 |
* Determine whether block smoothing is applicable and safe.
|
|
398 |
* We also latch the current states of the coef_bits[] entries for the
|
|
399 |
* AC coefficients; otherwise, if the input side of the decompressor
|
|
400 |
* advances into a new scan, we might think the coefficients are known
|
|
401 |
* more accurately than they really are.
|
|
402 |
*/
|
|
403 |
|
|
404 |
LOCAL(boolean)
|
|
405 |
smoothing_ok (j_decompress_ptr cinfo)
|
|
406 |
{
|
|
407 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
408 |
boolean smoothing_useful = FALSE;
|
|
409 |
int ci, coefi;
|
|
410 |
jpeg_component_info *compptr;
|
|
411 |
JQUANT_TBL * qtable;
|
|
412 |
int * coef_bits;
|
|
413 |
int * coef_bits_latch;
|
|
414 |
|
|
415 |
if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
|
|
416 |
return FALSE;
|
|
417 |
|
|
418 |
/* Allocate latch area if not already done */
|
|
419 |
if (coef->coef_bits_latch == NULL)
|
|
420 |
coef->coef_bits_latch = (int *)
|
|
421 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
422 |
cinfo->num_components *
|
|
423 |
(SAVED_COEFS * SIZEOF(int)));
|
|
424 |
coef_bits_latch = coef->coef_bits_latch;
|
|
425 |
|
|
426 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
427 |
ci++, compptr++) {
|
|
428 |
/* All components' quantization values must already be latched. */
|
|
429 |
if ((qtable = compptr->quant_table) == NULL)
|
|
430 |
return FALSE;
|
|
431 |
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
|
|
432 |
if (qtable->quantval[0] == 0 ||
|
|
433 |
qtable->quantval[Q01_POS] == 0 ||
|
|
434 |
qtable->quantval[Q10_POS] == 0 ||
|
|
435 |
qtable->quantval[Q20_POS] == 0 ||
|
|
436 |
qtable->quantval[Q11_POS] == 0 ||
|
|
437 |
qtable->quantval[Q02_POS] == 0)
|
|
438 |
return FALSE;
|
|
439 |
/* DC values must be at least partly known for all components. */
|
|
440 |
coef_bits = cinfo->coef_bits[ci];
|
|
441 |
if (coef_bits[0] < 0)
|
|
442 |
return FALSE;
|
|
443 |
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */
|
|
444 |
for (coefi = 1; coefi <= 5; coefi++) {
|
|
445 |
coef_bits_latch[coefi] = coef_bits[coefi];
|
|
446 |
if (coef_bits[coefi] != 0)
|
|
447 |
smoothing_useful = TRUE;
|
|
448 |
}
|
|
449 |
coef_bits_latch += SAVED_COEFS;
|
|
450 |
}
|
|
451 |
|
|
452 |
return smoothing_useful;
|
|
453 |
}
|
|
454 |
|
|
455 |
|
|
456 |
/*
|
|
457 |
* Variant of decompress_data for use when doing block smoothing.
|
|
458 |
*/
|
|
459 |
|
|
460 |
METHODDEF(int)
|
|
461 |
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
|
462 |
{
|
|
463 |
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
|
|
464 |
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
|
|
465 |
JDIMENSION block_num, last_block_column;
|
|
466 |
int ci, block_row, block_rows, access_rows;
|
|
467 |
JBLOCKARRAY buffer;
|
|
468 |
JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
|
|
469 |
JSAMPARRAY output_ptr;
|
|
470 |
JDIMENSION output_col;
|
|
471 |
jpeg_component_info *compptr;
|
|
472 |
inverse_DCT_method_ptr inverse_DCT;
|
|
473 |
boolean first_row, last_row;
|
|
474 |
JBLOCK workspace;
|
|
475 |
int *coef_bits;
|
|
476 |
JQUANT_TBL *quanttbl;
|
|
477 |
INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
|
|
478 |
int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
|
|
479 |
int Al, pred;
|
|
480 |
|
|
481 |
/* Force some input to be done if we are getting ahead of the input. */
|
|
482 |
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
|
|
483 |
! cinfo->inputctl->eoi_reached) {
|
|
484 |
if (cinfo->input_scan_number == cinfo->output_scan_number) {
|
|
485 |
/* If input is working on current scan, we ordinarily want it to
|
|
486 |
* have completed the current row. But if input scan is DC,
|
|
487 |
* we want it to keep one row ahead so that next block row's DC
|
|
488 |
* values are up to date.
|
|
489 |
*/
|
|
490 |
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
|
|
491 |
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
|
|
492 |
break;
|
|
493 |
}
|
|
494 |
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
|
|
495 |
return JPEG_SUSPENDED;
|
|
496 |
}
|
|
497 |
|
|
498 |
/* OK, output from the virtual arrays. */
|
|
499 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
500 |
ci++, compptr++) {
|
|
501 |
/* Don't bother to IDCT an uninteresting component. */
|
|
502 |
if (! compptr->component_needed)
|
|
503 |
continue;
|
|
504 |
/* Count non-dummy DCT block rows in this iMCU row. */
|
|
505 |
if (cinfo->output_iMCU_row < last_iMCU_row) {
|
|
506 |
block_rows = compptr->v_samp_factor;
|
|
507 |
access_rows = block_rows * 2; /* this and next iMCU row */
|
|
508 |
last_row = FALSE;
|
|
509 |
} else {
|
|
510 |
/* NB: can't use last_row_height here; it is input-side-dependent! */
|
|
511 |
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
|
|
512 |
if (block_rows == 0) block_rows = compptr->v_samp_factor;
|
|
513 |
access_rows = block_rows; /* this iMCU row only */
|
|
514 |
last_row = TRUE;
|
|
515 |
}
|
|
516 |
/* Align the virtual buffer for this component. */
|
|
517 |
if (cinfo->output_iMCU_row > 0) {
|
|
518 |
access_rows += compptr->v_samp_factor; /* prior iMCU row too */
|
|
519 |
buffer = (*cinfo->mem->access_virt_barray)
|
|
520 |
((j_common_ptr) cinfo, coef->whole_image[ci],
|
|
521 |
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
|
|
522 |
(JDIMENSION) access_rows, FALSE);
|
|
523 |
buffer += compptr->v_samp_factor; /* point to current iMCU row */
|
|
524 |
first_row = FALSE;
|
|
525 |
} else {
|
|
526 |
buffer = (*cinfo->mem->access_virt_barray)
|
|
527 |
((j_common_ptr) cinfo, coef->whole_image[ci],
|
|
528 |
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
|
|
529 |
first_row = TRUE;
|
|
530 |
}
|
|
531 |
/* Fetch component-dependent info */
|
|
532 |
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
|
|
533 |
quanttbl = compptr->quant_table;
|
|
534 |
Q00 = quanttbl->quantval[0];
|
|
535 |
Q01 = quanttbl->quantval[Q01_POS];
|
|
536 |
Q10 = quanttbl->quantval[Q10_POS];
|
|
537 |
Q20 = quanttbl->quantval[Q20_POS];
|
|
538 |
Q11 = quanttbl->quantval[Q11_POS];
|
|
539 |
Q02 = quanttbl->quantval[Q02_POS];
|
|
540 |
inverse_DCT = cinfo->idct->inverse_DCT[ci];
|
|
541 |
output_ptr = output_buf[ci];
|
|
542 |
/* Loop over all DCT blocks to be processed. */
|
|
543 |
for (block_row = 0; block_row < block_rows; block_row++) {
|
|
544 |
buffer_ptr = buffer[block_row];
|
|
545 |
if (first_row && block_row == 0)
|
|
546 |
prev_block_row = buffer_ptr;
|
|
547 |
else
|
|
548 |
prev_block_row = buffer[block_row-1];
|
|
549 |
if (last_row && block_row == block_rows-1)
|
|
550 |
next_block_row = buffer_ptr;
|
|
551 |
else
|
|
552 |
next_block_row = buffer[block_row+1];
|
|
553 |
/* We fetch the surrounding DC values using a sliding-register approach.
|
|
554 |
* Initialize all nine here so as to do the right thing on narrow pics.
|
|
555 |
*/
|
|
556 |
DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
|
|
557 |
DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
|
|
558 |
DC7 = DC8 = DC9 = (int) next_block_row[0][0];
|
|
559 |
output_col = 0;
|
|
560 |
last_block_column = compptr->width_in_blocks - 1;
|
|
561 |
for (block_num = 0; block_num <= last_block_column; block_num++) {
|
|
562 |
/* Fetch current DCT block into workspace so we can modify it. */
|
|
563 |
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
|
|
564 |
/* Update DC values */
|
|
565 |
if (block_num < last_block_column) {
|
|
566 |
DC3 = (int) prev_block_row[1][0];
|
|
567 |
DC6 = (int) buffer_ptr[1][0];
|
|
568 |
DC9 = (int) next_block_row[1][0];
|
|
569 |
}
|
|
570 |
/* Compute coefficient estimates per K.8.
|
|
571 |
* An estimate is applied only if coefficient is still zero,
|
|
572 |
* and is not known to be fully accurate.
|
|
573 |
*/
|
|
574 |
/* AC01 */
|
|
575 |
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
|
|
576 |
num = 36 * Q00 * (DC4 - DC6);
|
|
577 |
if (num >= 0) {
|
|
578 |
pred = (int) (((Q01<<7) + num) / (Q01<<8));
|
|
579 |
if (Al > 0 && pred >= (1<<Al))
|
|
580 |
pred = (1<<Al)-1;
|
|
581 |
} else {
|
|
582 |
pred = (int) (((Q01<<7) - num) / (Q01<<8));
|
|
583 |
if (Al > 0 && pred >= (1<<Al))
|
|
584 |
pred = (1<<Al)-1;
|
|
585 |
pred = -pred;
|
|
586 |
}
|
|
587 |
workspace[1] = (JCOEF) pred;
|
|
588 |
}
|
|
589 |
/* AC10 */
|
|
590 |
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
|
|
591 |
num = 36 * Q00 * (DC2 - DC8);
|
|
592 |
if (num >= 0) {
|
|
593 |
pred = (int) (((Q10<<7) + num) / (Q10<<8));
|
|
594 |
if (Al > 0 && pred >= (1<<Al))
|
|
595 |
pred = (1<<Al)-1;
|
|
596 |
} else {
|
|
597 |
pred = (int) (((Q10<<7) - num) / (Q10<<8));
|
|
598 |
if (Al > 0 && pred >= (1<<Al))
|
|
599 |
pred = (1<<Al)-1;
|
|
600 |
pred = -pred;
|
|
601 |
}
|
|
602 |
workspace[8] = (JCOEF) pred;
|
|
603 |
}
|
|
604 |
/* AC20 */
|
|
605 |
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
|
|
606 |
num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
|
|
607 |
if (num >= 0) {
|
|
608 |
pred = (int) (((Q20<<7) + num) / (Q20<<8));
|
|
609 |
if (Al > 0 && pred >= (1<<Al))
|
|
610 |
pred = (1<<Al)-1;
|
|
611 |
} else {
|
|
612 |
pred = (int) (((Q20<<7) - num) / (Q20<<8));
|
|
613 |
if (Al > 0 && pred >= (1<<Al))
|
|
614 |
pred = (1<<Al)-1;
|
|
615 |
pred = -pred;
|
|
616 |
}
|
|
617 |
workspace[16] = (JCOEF) pred;
|
|
618 |
}
|
|
619 |
/* AC11 */
|
|
620 |
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
|
|
621 |
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
|
|
622 |
if (num >= 0) {
|
|
623 |
pred = (int) (((Q11<<7) + num) / (Q11<<8));
|
|
624 |
if (Al > 0 && pred >= (1<<Al))
|
|
625 |
pred = (1<<Al)-1;
|
|
626 |
} else {
|
|
627 |
pred = (int) (((Q11<<7) - num) / (Q11<<8));
|
|
628 |
if (Al > 0 && pred >= (1<<Al))
|
|
629 |
pred = (1<<Al)-1;
|
|
630 |
pred = -pred;
|
|
631 |
}
|
|
632 |
workspace[9] = (JCOEF) pred;
|
|
633 |
}
|
|
634 |
/* AC02 */
|
|
635 |
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
|
|
636 |
num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
|
|
637 |
if (num >= 0) {
|
|
638 |
pred = (int) (((Q02<<7) + num) / (Q02<<8));
|
|
639 |
if (Al > 0 && pred >= (1<<Al))
|
|
640 |
pred = (1<<Al)-1;
|
|
641 |
} else {
|
|
642 |
pred = (int) (((Q02<<7) - num) / (Q02<<8));
|
|
643 |
if (Al > 0 && pred >= (1<<Al))
|
|
644 |
pred = (1<<Al)-1;
|
|
645 |
pred = -pred;
|
|
646 |
}
|
|
647 |
workspace[2] = (JCOEF) pred;
|
|
648 |
}
|
|
649 |
/* OK, do the IDCT */
|
|
650 |
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
|
|
651 |
output_ptr, output_col);
|
|
652 |
/* Advance for next column */
|
|
653 |
DC1 = DC2; DC2 = DC3;
|
|
654 |
DC4 = DC5; DC5 = DC6;
|
|
655 |
DC7 = DC8; DC8 = DC9;
|
|
656 |
buffer_ptr++, prev_block_row++, next_block_row++;
|
|
657 |
output_col += compptr->DCT_scaled_size;
|
|
658 |
}
|
|
659 |
output_ptr += compptr->DCT_scaled_size;
|
|
660 |
}
|
|
661 |
}
|
|
662 |
|
|
663 |
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
|
|
664 |
return JPEG_ROW_COMPLETED;
|
|
665 |
return JPEG_SCAN_COMPLETED;
|
|
666 |
}
|
|
667 |
|
|
668 |
#endif /* BLOCK_SMOOTHING_SUPPORTED */
|
|
669 |
|
|
670 |
|
|
671 |
/*
|
|
672 |
* Initialize coefficient buffer controller.
|
|
673 |
*/
|
|
674 |
|
|
675 |
GLOBAL(void)
|
|
676 |
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
|
|
677 |
{
|
|
678 |
my_coef_ptr coef;
|
|
679 |
|
|
680 |
coef = (my_coef_ptr)
|
|
681 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
682 |
SIZEOF(my_coef_controller));
|
|
683 |
cinfo->coef = (struct jpeg_d_coef_controller *) coef;
|
|
684 |
coef->pub.start_input_pass = start_input_pass;
|
|
685 |
coef->pub.start_output_pass = start_output_pass;
|
|
686 |
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
|
687 |
coef->coef_bits_latch = NULL;
|
|
688 |
#endif
|
|
689 |
|
|
690 |
/* Create the coefficient buffer. */
|
|
691 |
if (need_full_buffer) {
|
|
692 |
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
|
693 |
/* Allocate a full-image virtual array for each component, */
|
|
694 |
/* padded to a multiple of samp_factor DCT blocks in each direction. */
|
|
695 |
/* Note we ask for a pre-zeroed array. */
|
|
696 |
int ci, access_rows;
|
|
697 |
jpeg_component_info *compptr;
|
|
698 |
|
|
699 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
700 |
ci++, compptr++) {
|
|
701 |
access_rows = compptr->v_samp_factor;
|
|
702 |
#ifdef BLOCK_SMOOTHING_SUPPORTED
|
|
703 |
/* If block smoothing could be used, need a bigger window */
|
|
704 |
if (cinfo->progressive_mode)
|
|
705 |
access_rows *= 3;
|
|
706 |
#endif
|
|
707 |
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
|
|
708 |
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
|
|
709 |
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
|
|
710 |
(long) compptr->h_samp_factor),
|
|
711 |
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
|
|
712 |
(long) compptr->v_samp_factor),
|
|
713 |
(JDIMENSION) access_rows);
|
|
714 |
}
|
|
715 |
coef->pub.consume_data = consume_data;
|
|
716 |
coef->pub.decompress_data = decompress_data;
|
|
717 |
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
|
|
718 |
#else
|
|
719 |
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
720 |
#endif
|
|
721 |
} else {
|
|
722 |
/* We only need a single-MCU buffer. */
|
|
723 |
JBLOCKROW buffer;
|
|
724 |
int i;
|
|
725 |
|
|
726 |
buffer = (JBLOCKROW)
|
|
727 |
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
728 |
D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
|
|
729 |
for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
|
|
730 |
coef->MCU_buffer[i] = buffer + i;
|
|
731 |
}
|
|
732 |
coef->pub.consume_data = dummy_consume_data;
|
|
733 |
coef->pub.decompress_data = decompress_onepass;
|
|
734 |
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
|
|
735 |
}
|
|
736 |
}
|