0
|
1 |
/*
|
|
2 |
* jdmaster.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1991-1997, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains master control logic for the JPEG decompressor.
|
|
9 |
* These routines are concerned with selecting the modules to be executed
|
|
10 |
* and with determining the number of passes and the work to be done in each
|
|
11 |
* pass.
|
|
12 |
*/
|
|
13 |
|
|
14 |
#define JPEG_INTERNALS
|
|
15 |
#include "jinclude.h"
|
|
16 |
#include "jpeglib.h"
|
|
17 |
|
|
18 |
|
|
19 |
/* Private state */
|
|
20 |
|
|
21 |
typedef struct {
|
|
22 |
struct jpeg_decomp_master pub; /* public fields */
|
|
23 |
|
|
24 |
int pass_number; /* # of passes completed */
|
|
25 |
|
|
26 |
boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
|
|
27 |
|
|
28 |
/* Saved references to initialized quantizer modules,
|
|
29 |
* in case we need to switch modes.
|
|
30 |
*/
|
|
31 |
struct jpeg_color_quantizer * quantizer_1pass;
|
|
32 |
struct jpeg_color_quantizer * quantizer_2pass;
|
|
33 |
} my_decomp_master;
|
|
34 |
|
|
35 |
typedef my_decomp_master * my_master_ptr;
|
|
36 |
|
|
37 |
|
|
38 |
/*
|
|
39 |
* Determine whether merged upsample/color conversion should be used.
|
|
40 |
* CRUCIAL: this must match the actual capabilities of jdmerge.c!
|
|
41 |
*/
|
|
42 |
|
|
43 |
LOCAL(boolean)
|
|
44 |
use_merged_upsample (j_decompress_ptr cinfo)
|
|
45 |
{
|
|
46 |
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
|
47 |
/* Merging is the equivalent of plain box-filter upsampling */
|
|
48 |
if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
|
|
49 |
return FALSE;
|
|
50 |
/* jdmerge.c only supports YCC=>RGB color conversion */
|
|
51 |
if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
|
|
52 |
cinfo->out_color_space != JCS_RGB ||
|
|
53 |
cinfo->out_color_components != RGB_PIXELSIZE)
|
|
54 |
return FALSE;
|
|
55 |
/* and it only handles 2h1v or 2h2v sampling ratios */
|
|
56 |
if (cinfo->comp_info[0].h_samp_factor != 2 ||
|
|
57 |
cinfo->comp_info[1].h_samp_factor != 1 ||
|
|
58 |
cinfo->comp_info[2].h_samp_factor != 1 ||
|
|
59 |
cinfo->comp_info[0].v_samp_factor > 2 ||
|
|
60 |
cinfo->comp_info[1].v_samp_factor != 1 ||
|
|
61 |
cinfo->comp_info[2].v_samp_factor != 1)
|
|
62 |
return FALSE;
|
|
63 |
/* furthermore, it doesn't work if we've scaled the IDCTs differently */
|
|
64 |
if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
|
|
65 |
cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
|
|
66 |
cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size)
|
|
67 |
return FALSE;
|
|
68 |
/* ??? also need to test for upsample-time rescaling, when & if supported */
|
|
69 |
return TRUE; /* by golly, it'll work... */
|
|
70 |
#else
|
|
71 |
return FALSE;
|
|
72 |
#endif
|
|
73 |
}
|
|
74 |
|
|
75 |
|
|
76 |
/*
|
|
77 |
* Compute output image dimensions and related values.
|
|
78 |
* NOTE: this is exported for possible use by application.
|
|
79 |
* Hence it mustn't do anything that can't be done twice.
|
|
80 |
* Also note that it may be called before the master module is initialized!
|
|
81 |
*/
|
|
82 |
|
|
83 |
GLOBAL(void)
|
|
84 |
jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
|
|
85 |
/* Do computations that are needed before master selection phase */
|
|
86 |
{
|
|
87 |
#ifdef IDCT_SCALING_SUPPORTED
|
|
88 |
int ci;
|
|
89 |
jpeg_component_info *compptr;
|
|
90 |
#endif
|
|
91 |
|
|
92 |
/* Prevent application from calling me at wrong times */
|
|
93 |
if (cinfo->global_state != DSTATE_READY)
|
|
94 |
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
|
95 |
|
|
96 |
#ifdef IDCT_SCALING_SUPPORTED
|
|
97 |
|
|
98 |
/* Compute actual output image dimensions and DCT scaling choices. */
|
|
99 |
if (cinfo->scale_num * 8 <= cinfo->scale_denom) {
|
|
100 |
/* Provide 1/8 scaling */
|
|
101 |
cinfo->output_width = (JDIMENSION)
|
|
102 |
jdiv_round_up((long) cinfo->image_width, 8L);
|
|
103 |
cinfo->output_height = (JDIMENSION)
|
|
104 |
jdiv_round_up((long) cinfo->image_height, 8L);
|
|
105 |
cinfo->min_DCT_scaled_size = 1;
|
|
106 |
} else if (cinfo->scale_num * 4 <= cinfo->scale_denom) {
|
|
107 |
/* Provide 1/4 scaling */
|
|
108 |
cinfo->output_width = (JDIMENSION)
|
|
109 |
jdiv_round_up((long) cinfo->image_width, 4L);
|
|
110 |
cinfo->output_height = (JDIMENSION)
|
|
111 |
jdiv_round_up((long) cinfo->image_height, 4L);
|
|
112 |
cinfo->min_DCT_scaled_size = 2;
|
|
113 |
} else if (cinfo->scale_num * 2 <= cinfo->scale_denom) {
|
|
114 |
/* Provide 1/2 scaling */
|
|
115 |
cinfo->output_width = (JDIMENSION)
|
|
116 |
jdiv_round_up((long) cinfo->image_width, 2L);
|
|
117 |
cinfo->output_height = (JDIMENSION)
|
|
118 |
jdiv_round_up((long) cinfo->image_height, 2L);
|
|
119 |
cinfo->min_DCT_scaled_size = 4;
|
|
120 |
} else {
|
|
121 |
/* Provide 1/1 scaling */
|
|
122 |
cinfo->output_width = cinfo->image_width;
|
|
123 |
cinfo->output_height = cinfo->image_height;
|
|
124 |
cinfo->min_DCT_scaled_size = DCTSIZE;
|
|
125 |
}
|
|
126 |
/* In selecting the actual DCT scaling for each component, we try to
|
|
127 |
* scale up the chroma components via IDCT scaling rather than upsampling.
|
|
128 |
* This saves time if the upsampler gets to use 1:1 scaling.
|
|
129 |
* Note this code assumes that the supported DCT scalings are powers of 2.
|
|
130 |
*/
|
|
131 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
132 |
ci++, compptr++) {
|
|
133 |
int ssize = cinfo->min_DCT_scaled_size;
|
|
134 |
while (ssize < DCTSIZE &&
|
|
135 |
(compptr->h_samp_factor * ssize * 2 <=
|
|
136 |
cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) &&
|
|
137 |
(compptr->v_samp_factor * ssize * 2 <=
|
|
138 |
cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) {
|
|
139 |
ssize = ssize * 2;
|
|
140 |
}
|
|
141 |
compptr->DCT_scaled_size = ssize;
|
|
142 |
}
|
|
143 |
|
|
144 |
/* Recompute downsampled dimensions of components;
|
|
145 |
* application needs to know these if using raw downsampled data.
|
|
146 |
*/
|
|
147 |
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
148 |
ci++, compptr++) {
|
|
149 |
/* Size in samples, after IDCT scaling */
|
|
150 |
compptr->downsampled_width = (JDIMENSION)
|
|
151 |
jdiv_round_up((long) cinfo->image_width *
|
|
152 |
(long) (compptr->h_samp_factor * compptr->DCT_scaled_size),
|
|
153 |
(long) (cinfo->max_h_samp_factor * DCTSIZE));
|
|
154 |
compptr->downsampled_height = (JDIMENSION)
|
|
155 |
jdiv_round_up((long) cinfo->image_height *
|
|
156 |
(long) (compptr->v_samp_factor * compptr->DCT_scaled_size),
|
|
157 |
(long) (cinfo->max_v_samp_factor * DCTSIZE));
|
|
158 |
}
|
|
159 |
|
|
160 |
#else /* !IDCT_SCALING_SUPPORTED */
|
|
161 |
|
|
162 |
/* Hardwire it to "no scaling" */
|
|
163 |
cinfo->output_width = cinfo->image_width;
|
|
164 |
cinfo->output_height = cinfo->image_height;
|
|
165 |
/* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
|
|
166 |
* and has computed unscaled downsampled_width and downsampled_height.
|
|
167 |
*/
|
|
168 |
|
|
169 |
#endif /* IDCT_SCALING_SUPPORTED */
|
|
170 |
|
|
171 |
/* Report number of components in selected colorspace. */
|
|
172 |
/* Probably this should be in the color conversion module... */
|
|
173 |
switch (cinfo->out_color_space) {
|
|
174 |
case JCS_GRAYSCALE:
|
|
175 |
cinfo->out_color_components = 1;
|
|
176 |
break;
|
|
177 |
case JCS_RGB:
|
|
178 |
#if RGB_PIXELSIZE != 3
|
|
179 |
cinfo->out_color_components = RGB_PIXELSIZE;
|
|
180 |
break;
|
|
181 |
#endif /* else share code with YCbCr */
|
|
182 |
case JCS_YCbCr:
|
|
183 |
cinfo->out_color_components = 3;
|
|
184 |
break;
|
|
185 |
case JCS_CMYK:
|
|
186 |
case JCS_YCCK:
|
|
187 |
cinfo->out_color_components = 4;
|
|
188 |
break;
|
|
189 |
default: /* else must be same colorspace as in file */
|
|
190 |
cinfo->out_color_components = cinfo->num_components;
|
|
191 |
break;
|
|
192 |
}
|
|
193 |
cinfo->output_components = (cinfo->quantize_colors ? 1 :
|
|
194 |
cinfo->out_color_components);
|
|
195 |
|
|
196 |
/* See if upsampler will want to emit more than one row at a time */
|
|
197 |
if (use_merged_upsample(cinfo))
|
|
198 |
cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
|
|
199 |
else
|
|
200 |
cinfo->rec_outbuf_height = 1;
|
|
201 |
}
|
|
202 |
|
|
203 |
|
|
204 |
/*
|
|
205 |
* Several decompression processes need to range-limit values to the range
|
|
206 |
* 0..MAXJSAMPLE; the input value may fall somewhat outside this range
|
|
207 |
* due to noise introduced by quantization, roundoff error, etc. These
|
|
208 |
* processes are inner loops and need to be as fast as possible. On most
|
|
209 |
* machines, particularly CPUs with pipelines or instruction prefetch,
|
|
210 |
* a (subscript-check-less) C table lookup
|
|
211 |
* x = sample_range_limit[x];
|
|
212 |
* is faster than explicit tests
|
|
213 |
* if (x < 0) x = 0;
|
|
214 |
* else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
|
|
215 |
* These processes all use a common table prepared by the routine below.
|
|
216 |
*
|
|
217 |
* For most steps we can mathematically guarantee that the initial value
|
|
218 |
* of x is within MAXJSAMPLE+1 of the legal range, so a table running from
|
|
219 |
* -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
|
|
220 |
* limiting step (just after the IDCT), a wildly out-of-range value is
|
|
221 |
* possible if the input data is corrupt. To avoid any chance of indexing
|
|
222 |
* off the end of memory and getting a bad-pointer trap, we perform the
|
|
223 |
* post-IDCT limiting thus:
|
|
224 |
* x = range_limit[x & MASK];
|
|
225 |
* where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
|
|
226 |
* samples. Under normal circumstances this is more than enough range and
|
|
227 |
* a correct output will be generated; with bogus input data the mask will
|
|
228 |
* cause wraparound, and we will safely generate a bogus-but-in-range output.
|
|
229 |
* For the post-IDCT step, we want to convert the data from signed to unsigned
|
|
230 |
* representation by adding CENTERJSAMPLE at the same time that we limit it.
|
|
231 |
* So the post-IDCT limiting table ends up looking like this:
|
|
232 |
* CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
|
|
233 |
* MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
|
|
234 |
* 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
|
|
235 |
* 0,1,...,CENTERJSAMPLE-1
|
|
236 |
* Negative inputs select values from the upper half of the table after
|
|
237 |
* masking.
|
|
238 |
*
|
|
239 |
* We can save some space by overlapping the start of the post-IDCT table
|
|
240 |
* with the simpler range limiting table. The post-IDCT table begins at
|
|
241 |
* sample_range_limit + CENTERJSAMPLE.
|
|
242 |
*
|
|
243 |
* Note that the table is allocated in near data space on PCs; it's small
|
|
244 |
* enough and used often enough to justify this.
|
|
245 |
*/
|
|
246 |
|
|
247 |
LOCAL(void)
|
|
248 |
prepare_range_limit_table (j_decompress_ptr cinfo)
|
|
249 |
/* Allocate and fill in the sample_range_limit table */
|
|
250 |
{
|
|
251 |
JSAMPLE * table;
|
|
252 |
int i;
|
|
253 |
|
|
254 |
table = (JSAMPLE *)
|
|
255 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
256 |
(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
|
|
257 |
table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
|
|
258 |
cinfo->sample_range_limit = table;
|
|
259 |
/* First segment of "simple" table: limit[x] = 0 for x < 0 */
|
|
260 |
MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
|
|
261 |
/* Main part of "simple" table: limit[x] = x */
|
|
262 |
for (i = 0; i <= MAXJSAMPLE; i++)
|
|
263 |
table[i] = (JSAMPLE) i;
|
|
264 |
table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
|
|
265 |
/* End of simple table, rest of first half of post-IDCT table */
|
|
266 |
for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
|
|
267 |
table[i] = MAXJSAMPLE;
|
|
268 |
/* Second half of post-IDCT table */
|
|
269 |
MEMZERO(table + (2 * (MAXJSAMPLE+1)),
|
|
270 |
(2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
|
|
271 |
MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
|
|
272 |
cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
|
|
273 |
}
|
|
274 |
|
|
275 |
|
|
276 |
/*
|
|
277 |
* Master selection of decompression modules.
|
|
278 |
* This is done once at jpeg_start_decompress time. We determine
|
|
279 |
* which modules will be used and give them appropriate initialization calls.
|
|
280 |
* We also initialize the decompressor input side to begin consuming data.
|
|
281 |
*
|
|
282 |
* Since jpeg_read_header has finished, we know what is in the SOF
|
|
283 |
* and (first) SOS markers. We also have all the application parameter
|
|
284 |
* settings.
|
|
285 |
*/
|
|
286 |
|
|
287 |
LOCAL(void)
|
|
288 |
master_selection (j_decompress_ptr cinfo)
|
|
289 |
{
|
|
290 |
my_master_ptr master = (my_master_ptr) cinfo->master;
|
|
291 |
boolean use_c_buffer;
|
|
292 |
long samplesperrow;
|
|
293 |
JDIMENSION jd_samplesperrow;
|
|
294 |
|
|
295 |
/* Initialize dimensions and other stuff */
|
|
296 |
jpeg_calc_output_dimensions(cinfo);
|
|
297 |
prepare_range_limit_table(cinfo);
|
|
298 |
|
|
299 |
/* Width of an output scanline must be representable as JDIMENSION. */
|
|
300 |
samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
|
|
301 |
jd_samplesperrow = (JDIMENSION) samplesperrow;
|
|
302 |
if ((long) jd_samplesperrow != samplesperrow)
|
|
303 |
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
|
304 |
|
|
305 |
/* Initialize my private state */
|
|
306 |
master->pass_number = 0;
|
|
307 |
master->using_merged_upsample = use_merged_upsample(cinfo);
|
|
308 |
|
|
309 |
/* Color quantizer selection */
|
|
310 |
master->quantizer_1pass = NULL;
|
|
311 |
master->quantizer_2pass = NULL;
|
|
312 |
/* No mode changes if not using buffered-image mode. */
|
|
313 |
if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
|
|
314 |
cinfo->enable_1pass_quant = FALSE;
|
|
315 |
cinfo->enable_external_quant = FALSE;
|
|
316 |
cinfo->enable_2pass_quant = FALSE;
|
|
317 |
}
|
|
318 |
if (cinfo->quantize_colors) {
|
|
319 |
if (cinfo->raw_data_out)
|
|
320 |
ERREXIT(cinfo, JERR_NOTIMPL);
|
|
321 |
/* 2-pass quantizer only works in 3-component color space. */
|
|
322 |
if (cinfo->out_color_components != 3) {
|
|
323 |
cinfo->enable_1pass_quant = TRUE;
|
|
324 |
cinfo->enable_external_quant = FALSE;
|
|
325 |
cinfo->enable_2pass_quant = FALSE;
|
|
326 |
cinfo->colormap = NULL;
|
|
327 |
} else if (cinfo->colormap != NULL) {
|
|
328 |
cinfo->enable_external_quant = TRUE;
|
|
329 |
} else if (cinfo->two_pass_quantize) {
|
|
330 |
cinfo->enable_2pass_quant = TRUE;
|
|
331 |
} else {
|
|
332 |
cinfo->enable_1pass_quant = TRUE;
|
|
333 |
}
|
|
334 |
|
|
335 |
if (cinfo->enable_1pass_quant) {
|
|
336 |
#ifdef QUANT_1PASS_SUPPORTED
|
|
337 |
jinit_1pass_quantizer(cinfo);
|
|
338 |
master->quantizer_1pass = cinfo->cquantize;
|
|
339 |
#else
|
|
340 |
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
341 |
#endif
|
|
342 |
}
|
|
343 |
|
|
344 |
/* We use the 2-pass code to map to external colormaps. */
|
|
345 |
if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
|
|
346 |
#ifdef QUANT_2PASS_SUPPORTED
|
|
347 |
jinit_2pass_quantizer(cinfo);
|
|
348 |
master->quantizer_2pass = cinfo->cquantize;
|
|
349 |
#else
|
|
350 |
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
351 |
#endif
|
|
352 |
}
|
|
353 |
/* If both quantizers are initialized, the 2-pass one is left active;
|
|
354 |
* this is necessary for starting with quantization to an external map.
|
|
355 |
*/
|
|
356 |
}
|
|
357 |
|
|
358 |
/* Post-processing: in particular, color conversion first */
|
|
359 |
if (! cinfo->raw_data_out) {
|
|
360 |
if (master->using_merged_upsample) {
|
|
361 |
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
|
362 |
jinit_merged_upsampler(cinfo); /* does color conversion too */
|
|
363 |
#else
|
|
364 |
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
365 |
#endif
|
|
366 |
} else {
|
|
367 |
jinit_color_deconverter(cinfo);
|
|
368 |
jinit_upsampler(cinfo);
|
|
369 |
}
|
|
370 |
jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
|
|
371 |
}
|
|
372 |
/* Inverse DCT */
|
|
373 |
jinit_inverse_dct(cinfo);
|
|
374 |
/* Entropy decoding: either Huffman or arithmetic coding. */
|
|
375 |
if (cinfo->arith_code) {
|
|
376 |
ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
|
|
377 |
} else {
|
|
378 |
if (cinfo->progressive_mode) {
|
|
379 |
#ifdef D_PROGRESSIVE_SUPPORTED
|
|
380 |
jinit_phuff_decoder(cinfo);
|
|
381 |
#else
|
|
382 |
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
383 |
#endif
|
|
384 |
} else
|
|
385 |
jinit_huff_decoder(cinfo);
|
|
386 |
}
|
|
387 |
|
|
388 |
/* Initialize principal buffer controllers. */
|
|
389 |
use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
|
|
390 |
jinit_d_coef_controller(cinfo, use_c_buffer);
|
|
391 |
|
|
392 |
if (! cinfo->raw_data_out)
|
|
393 |
jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
|
|
394 |
|
|
395 |
/* We can now tell the memory manager to allocate virtual arrays. */
|
|
396 |
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
|
|
397 |
|
|
398 |
/* Initialize input side of decompressor to consume first scan. */
|
|
399 |
(*cinfo->inputctl->start_input_pass) (cinfo);
|
|
400 |
|
|
401 |
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
|
402 |
/* If jpeg_start_decompress will read the whole file, initialize
|
|
403 |
* progress monitoring appropriately. The input step is counted
|
|
404 |
* as one pass.
|
|
405 |
*/
|
|
406 |
if (cinfo->progress != NULL && ! cinfo->buffered_image &&
|
|
407 |
cinfo->inputctl->has_multiple_scans) {
|
|
408 |
int nscans;
|
|
409 |
/* Estimate number of scans to set pass_limit. */
|
|
410 |
if (cinfo->progressive_mode) {
|
|
411 |
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
|
|
412 |
nscans = 2 + 3 * cinfo->num_components;
|
|
413 |
} else {
|
|
414 |
/* For a nonprogressive multiscan file, estimate 1 scan per component. */
|
|
415 |
nscans = cinfo->num_components;
|
|
416 |
}
|
|
417 |
cinfo->progress->pass_counter = 0L;
|
|
418 |
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
|
|
419 |
cinfo->progress->completed_passes = 0;
|
|
420 |
cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
|
|
421 |
/* Count the input pass as done */
|
|
422 |
master->pass_number++;
|
|
423 |
}
|
|
424 |
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
|
425 |
}
|
|
426 |
|
|
427 |
|
|
428 |
/*
|
|
429 |
* Per-pass setup.
|
|
430 |
* This is called at the beginning of each output pass. We determine which
|
|
431 |
* modules will be active during this pass and give them appropriate
|
|
432 |
* start_pass calls. We also set is_dummy_pass to indicate whether this
|
|
433 |
* is a "real" output pass or a dummy pass for color quantization.
|
|
434 |
* (In the latter case, jdapistd.c will crank the pass to completion.)
|
|
435 |
*/
|
|
436 |
|
|
437 |
METHODDEF(void)
|
|
438 |
prepare_for_output_pass (j_decompress_ptr cinfo)
|
|
439 |
{
|
|
440 |
my_master_ptr master = (my_master_ptr) cinfo->master;
|
|
441 |
|
|
442 |
if (master->pub.is_dummy_pass) {
|
|
443 |
#ifdef QUANT_2PASS_SUPPORTED
|
|
444 |
/* Final pass of 2-pass quantization */
|
|
445 |
master->pub.is_dummy_pass = FALSE;
|
|
446 |
(*cinfo->cquantize->start_pass) (cinfo, FALSE);
|
|
447 |
(*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
|
|
448 |
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
|
|
449 |
#else
|
|
450 |
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
451 |
#endif /* QUANT_2PASS_SUPPORTED */
|
|
452 |
} else {
|
|
453 |
if (cinfo->quantize_colors && cinfo->colormap == NULL) {
|
|
454 |
/* Select new quantization method */
|
|
455 |
if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
|
|
456 |
cinfo->cquantize = master->quantizer_2pass;
|
|
457 |
master->pub.is_dummy_pass = TRUE;
|
|
458 |
} else if (cinfo->enable_1pass_quant) {
|
|
459 |
cinfo->cquantize = master->quantizer_1pass;
|
|
460 |
} else {
|
|
461 |
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
|
462 |
}
|
|
463 |
}
|
|
464 |
(*cinfo->idct->start_pass) (cinfo);
|
|
465 |
(*cinfo->coef->start_output_pass) (cinfo);
|
|
466 |
if (! cinfo->raw_data_out) {
|
|
467 |
if (! master->using_merged_upsample)
|
|
468 |
(*cinfo->cconvert->start_pass) (cinfo);
|
|
469 |
(*cinfo->upsample->start_pass) (cinfo);
|
|
470 |
if (cinfo->quantize_colors)
|
|
471 |
(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
|
|
472 |
(*cinfo->post->start_pass) (cinfo,
|
|
473 |
(master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
|
|
474 |
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
|
|
475 |
}
|
|
476 |
}
|
|
477 |
|
|
478 |
/* Set up progress monitor's pass info if present */
|
|
479 |
if (cinfo->progress != NULL) {
|
|
480 |
cinfo->progress->completed_passes = master->pass_number;
|
|
481 |
cinfo->progress->total_passes = master->pass_number +
|
|
482 |
(master->pub.is_dummy_pass ? 2 : 1);
|
|
483 |
/* In buffered-image mode, we assume one more output pass if EOI not
|
|
484 |
* yet reached, but no more passes if EOI has been reached.
|
|
485 |
*/
|
|
486 |
if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
|
|
487 |
cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
|
|
488 |
}
|
|
489 |
}
|
|
490 |
}
|
|
491 |
|
|
492 |
|
|
493 |
/*
|
|
494 |
* Finish up at end of an output pass.
|
|
495 |
*/
|
|
496 |
|
|
497 |
METHODDEF(void)
|
|
498 |
finish_output_pass (j_decompress_ptr cinfo)
|
|
499 |
{
|
|
500 |
my_master_ptr master = (my_master_ptr) cinfo->master;
|
|
501 |
|
|
502 |
if (cinfo->quantize_colors)
|
|
503 |
(*cinfo->cquantize->finish_pass) (cinfo);
|
|
504 |
master->pass_number++;
|
|
505 |
}
|
|
506 |
|
|
507 |
|
|
508 |
#ifdef D_MULTISCAN_FILES_SUPPORTED
|
|
509 |
|
|
510 |
/*
|
|
511 |
* Switch to a new external colormap between output passes.
|
|
512 |
*/
|
|
513 |
|
|
514 |
GLOBAL(void)
|
|
515 |
jpeg_new_colormap (j_decompress_ptr cinfo)
|
|
516 |
{
|
|
517 |
my_master_ptr master = (my_master_ptr) cinfo->master;
|
|
518 |
|
|
519 |
/* Prevent application from calling me at wrong times */
|
|
520 |
if (cinfo->global_state != DSTATE_BUFIMAGE)
|
|
521 |
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
|
522 |
|
|
523 |
if (cinfo->quantize_colors && cinfo->enable_external_quant &&
|
|
524 |
cinfo->colormap != NULL) {
|
|
525 |
/* Select 2-pass quantizer for external colormap use */
|
|
526 |
cinfo->cquantize = master->quantizer_2pass;
|
|
527 |
/* Notify quantizer of colormap change */
|
|
528 |
(*cinfo->cquantize->new_color_map) (cinfo);
|
|
529 |
master->pub.is_dummy_pass = FALSE; /* just in case */
|
|
530 |
} else
|
|
531 |
ERREXIT(cinfo, JERR_MODE_CHANGE);
|
|
532 |
}
|
|
533 |
|
|
534 |
#endif /* D_MULTISCAN_FILES_SUPPORTED */
|
|
535 |
|
|
536 |
|
|
537 |
/*
|
|
538 |
* Initialize master decompression control and select active modules.
|
|
539 |
* This is performed at the start of jpeg_start_decompress.
|
|
540 |
*/
|
|
541 |
|
|
542 |
GLOBAL(void)
|
|
543 |
jinit_master_decompress (j_decompress_ptr cinfo)
|
|
544 |
{
|
|
545 |
my_master_ptr master;
|
|
546 |
|
|
547 |
master = (my_master_ptr)
|
|
548 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
549 |
SIZEOF(my_decomp_master));
|
|
550 |
cinfo->master = (struct jpeg_decomp_master *) master;
|
|
551 |
master->pub.prepare_for_output_pass = prepare_for_output_pass;
|
|
552 |
master->pub.finish_output_pass = finish_output_pass;
|
|
553 |
|
|
554 |
master->pub.is_dummy_pass = FALSE;
|
|
555 |
|
|
556 |
master_selection(cinfo);
|
|
557 |
}
|