0
|
1 |
/*
|
|
2 |
* jdphuff.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1995-1997, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains Huffman entropy decoding routines for progressive JPEG.
|
|
9 |
*
|
|
10 |
* Much of the complexity here has to do with supporting input suspension.
|
|
11 |
* If the data source module demands suspension, we want to be able to back
|
|
12 |
* up to the start of the current MCU. To do this, we copy state variables
|
|
13 |
* into local working storage, and update them back to the permanent
|
|
14 |
* storage only upon successful completion of an MCU.
|
|
15 |
*/
|
|
16 |
|
|
17 |
#define JPEG_INTERNALS
|
|
18 |
#include "jinclude.h"
|
|
19 |
#include "jpeglib.h"
|
|
20 |
#include "jdhuff.h" /* Declarations shared with jdhuff.c */
|
|
21 |
|
|
22 |
|
|
23 |
#ifdef D_PROGRESSIVE_SUPPORTED
|
|
24 |
|
|
25 |
/*
|
|
26 |
* Expanded entropy decoder object for progressive Huffman decoding.
|
|
27 |
*
|
|
28 |
* The savable_state subrecord contains fields that change within an MCU,
|
|
29 |
* but must not be updated permanently until we complete the MCU.
|
|
30 |
*/
|
|
31 |
|
|
32 |
typedef struct {
|
|
33 |
unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
|
|
34 |
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
|
|
35 |
} savable_state;
|
|
36 |
|
|
37 |
/* This macro is to work around compilers with missing or broken
|
|
38 |
* structure assignment. You'll need to fix this code if you have
|
|
39 |
* such a compiler and you change MAX_COMPS_IN_SCAN.
|
|
40 |
*/
|
|
41 |
|
|
42 |
#ifndef NO_STRUCT_ASSIGN
|
|
43 |
#define ASSIGN_STATE(dest,src) ((dest) = (src))
|
|
44 |
#else
|
|
45 |
#if MAX_COMPS_IN_SCAN == 4
|
|
46 |
#define ASSIGN_STATE(dest,src) \
|
|
47 |
((dest).EOBRUN = (src).EOBRUN, \
|
|
48 |
(dest).last_dc_val[0] = (src).last_dc_val[0], \
|
|
49 |
(dest).last_dc_val[1] = (src).last_dc_val[1], \
|
|
50 |
(dest).last_dc_val[2] = (src).last_dc_val[2], \
|
|
51 |
(dest).last_dc_val[3] = (src).last_dc_val[3])
|
|
52 |
#endif
|
|
53 |
#endif
|
|
54 |
|
|
55 |
|
|
56 |
typedef struct {
|
|
57 |
struct jpeg_entropy_decoder pub; /* public fields */
|
|
58 |
|
|
59 |
/* These fields are loaded into local variables at start of each MCU.
|
|
60 |
* In case of suspension, we exit WITHOUT updating them.
|
|
61 |
*/
|
|
62 |
bitread_perm_state bitstate; /* Bit buffer at start of MCU */
|
|
63 |
savable_state saved; /* Other state at start of MCU */
|
|
64 |
|
|
65 |
/* These fields are NOT loaded into local working state. */
|
|
66 |
unsigned int restarts_to_go; /* MCUs left in this restart interval */
|
|
67 |
|
|
68 |
/* Pointers to derived tables (these workspaces have image lifespan) */
|
|
69 |
d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
|
|
70 |
|
|
71 |
d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
|
|
72 |
} phuff_entropy_decoder;
|
|
73 |
|
|
74 |
typedef phuff_entropy_decoder * phuff_entropy_ptr;
|
|
75 |
|
|
76 |
/* Forward declarations */
|
|
77 |
METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
|
|
78 |
JBLOCKROW *MCU_data));
|
|
79 |
METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
|
|
80 |
JBLOCKROW *MCU_data));
|
|
81 |
METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
|
|
82 |
JBLOCKROW *MCU_data));
|
|
83 |
METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
|
|
84 |
JBLOCKROW *MCU_data));
|
|
85 |
|
|
86 |
|
|
87 |
/*
|
|
88 |
* Initialize for a Huffman-compressed scan.
|
|
89 |
*/
|
|
90 |
|
|
91 |
METHODDEF(void)
|
|
92 |
start_pass_phuff_decoder (j_decompress_ptr cinfo)
|
|
93 |
{
|
|
94 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
95 |
boolean is_DC_band, bad;
|
|
96 |
int ci, coefi, tbl;
|
|
97 |
int *coef_bit_ptr;
|
|
98 |
jpeg_component_info * compptr;
|
|
99 |
|
|
100 |
is_DC_band = (cinfo->Ss == 0);
|
|
101 |
|
|
102 |
/* Validate scan parameters */
|
|
103 |
bad = FALSE;
|
|
104 |
if (is_DC_band) {
|
|
105 |
if (cinfo->Se != 0)
|
|
106 |
bad = TRUE;
|
|
107 |
} else {
|
|
108 |
/* need not check Ss/Se < 0 since they came from unsigned bytes */
|
|
109 |
if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
|
|
110 |
bad = TRUE;
|
|
111 |
/* AC scans may have only one component */
|
|
112 |
if (cinfo->comps_in_scan != 1)
|
|
113 |
bad = TRUE;
|
|
114 |
}
|
|
115 |
if (cinfo->Ah != 0) {
|
|
116 |
/* Successive approximation refinement scan: must have Al = Ah-1. */
|
|
117 |
if (cinfo->Al != cinfo->Ah-1)
|
|
118 |
bad = TRUE;
|
|
119 |
}
|
|
120 |
if (cinfo->Al > 13) /* need not check for < 0 */
|
|
121 |
bad = TRUE;
|
|
122 |
/* Arguably the maximum Al value should be less than 13 for 8-bit precision,
|
|
123 |
* but the spec doesn't say so, and we try to be liberal about what we
|
|
124 |
* accept. Note: large Al values could result in out-of-range DC
|
|
125 |
* coefficients during early scans, leading to bizarre displays due to
|
|
126 |
* overflows in the IDCT math. But we won't crash.
|
|
127 |
*/
|
|
128 |
if (bad)
|
|
129 |
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
|
|
130 |
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
|
|
131 |
/* Update progression status, and verify that scan order is legal.
|
|
132 |
* Note that inter-scan inconsistencies are treated as warnings
|
|
133 |
* not fatal errors ... not clear if this is right way to behave.
|
|
134 |
*/
|
|
135 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
136 |
int cindex = cinfo->cur_comp_info[ci]->component_index;
|
|
137 |
coef_bit_ptr = & cinfo->coef_bits[cindex][0];
|
|
138 |
if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
|
|
139 |
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
|
|
140 |
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
|
|
141 |
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
|
|
142 |
if (cinfo->Ah != expected)
|
|
143 |
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
|
|
144 |
coef_bit_ptr[coefi] = cinfo->Al;
|
|
145 |
}
|
|
146 |
}
|
|
147 |
|
|
148 |
/* Select MCU decoding routine */
|
|
149 |
if (cinfo->Ah == 0) {
|
|
150 |
if (is_DC_band)
|
|
151 |
entropy->pub.decode_mcu = decode_mcu_DC_first;
|
|
152 |
else
|
|
153 |
entropy->pub.decode_mcu = decode_mcu_AC_first;
|
|
154 |
} else {
|
|
155 |
if (is_DC_band)
|
|
156 |
entropy->pub.decode_mcu = decode_mcu_DC_refine;
|
|
157 |
else
|
|
158 |
entropy->pub.decode_mcu = decode_mcu_AC_refine;
|
|
159 |
}
|
|
160 |
|
|
161 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
|
|
162 |
compptr = cinfo->cur_comp_info[ci];
|
|
163 |
/* Make sure requested tables are present, and compute derived tables.
|
|
164 |
* We may build same derived table more than once, but it's not expensive.
|
|
165 |
*/
|
|
166 |
if (is_DC_band) {
|
|
167 |
if (cinfo->Ah == 0) { /* DC refinement needs no table */
|
|
168 |
tbl = compptr->dc_tbl_no;
|
|
169 |
jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
|
|
170 |
& entropy->derived_tbls[tbl]);
|
|
171 |
}
|
|
172 |
} else {
|
|
173 |
tbl = compptr->ac_tbl_no;
|
|
174 |
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
|
|
175 |
& entropy->derived_tbls[tbl]);
|
|
176 |
/* remember the single active table */
|
|
177 |
entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
|
|
178 |
}
|
|
179 |
/* Initialize DC predictions to 0 */
|
|
180 |
entropy->saved.last_dc_val[ci] = 0;
|
|
181 |
}
|
|
182 |
|
|
183 |
/* Initialize bitread state variables */
|
|
184 |
entropy->bitstate.bits_left = 0;
|
|
185 |
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
|
|
186 |
entropy->pub.insufficient_data = FALSE;
|
|
187 |
|
|
188 |
/* Initialize private state variables */
|
|
189 |
entropy->saved.EOBRUN = 0;
|
|
190 |
|
|
191 |
/* Initialize restart counter */
|
|
192 |
entropy->restarts_to_go = cinfo->restart_interval;
|
|
193 |
}
|
|
194 |
|
|
195 |
|
|
196 |
/*
|
|
197 |
* Figure F.12: extend sign bit.
|
|
198 |
* On some machines, a shift and add will be faster than a table lookup.
|
|
199 |
*/
|
|
200 |
|
|
201 |
#ifdef AVOID_TABLES
|
|
202 |
|
|
203 |
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
|
|
204 |
|
|
205 |
#else
|
|
206 |
|
|
207 |
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
|
|
208 |
|
|
209 |
static const int extend_test[16] = /* entry n is 2**(n-1) */
|
|
210 |
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
|
|
211 |
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
|
|
212 |
|
|
213 |
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
|
|
214 |
{ 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
|
|
215 |
((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
|
|
216 |
((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
|
|
217 |
((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
|
|
218 |
|
|
219 |
#endif /* AVOID_TABLES */
|
|
220 |
|
|
221 |
|
|
222 |
/*
|
|
223 |
* Check for a restart marker & resynchronize decoder.
|
|
224 |
* Returns FALSE if must suspend.
|
|
225 |
*/
|
|
226 |
|
|
227 |
LOCAL(boolean)
|
|
228 |
process_restart (j_decompress_ptr cinfo)
|
|
229 |
{
|
|
230 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
231 |
int ci;
|
|
232 |
|
|
233 |
/* Throw away any unused bits remaining in bit buffer; */
|
|
234 |
/* include any full bytes in next_marker's count of discarded bytes */
|
|
235 |
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
|
|
236 |
entropy->bitstate.bits_left = 0;
|
|
237 |
|
|
238 |
/* Advance past the RSTn marker */
|
|
239 |
if (! (*cinfo->marker->read_restart_marker) (cinfo))
|
|
240 |
return FALSE;
|
|
241 |
|
|
242 |
/* Re-initialize DC predictions to 0 */
|
|
243 |
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
|
|
244 |
entropy->saved.last_dc_val[ci] = 0;
|
|
245 |
/* Re-init EOB run count, too */
|
|
246 |
entropy->saved.EOBRUN = 0;
|
|
247 |
|
|
248 |
/* Reset restart counter */
|
|
249 |
entropy->restarts_to_go = cinfo->restart_interval;
|
|
250 |
|
|
251 |
/* Reset out-of-data flag, unless read_restart_marker left us smack up
|
|
252 |
* against a marker. In that case we will end up treating the next data
|
|
253 |
* segment as empty, and we can avoid producing bogus output pixels by
|
|
254 |
* leaving the flag set.
|
|
255 |
*/
|
|
256 |
if (cinfo->unread_marker == 0)
|
|
257 |
entropy->pub.insufficient_data = FALSE;
|
|
258 |
|
|
259 |
return TRUE;
|
|
260 |
}
|
|
261 |
|
|
262 |
|
|
263 |
/*
|
|
264 |
* Huffman MCU decoding.
|
|
265 |
* Each of these routines decodes and returns one MCU's worth of
|
|
266 |
* Huffman-compressed coefficients.
|
|
267 |
* The coefficients are reordered from zigzag order into natural array order,
|
|
268 |
* but are not dequantized.
|
|
269 |
*
|
|
270 |
* The i'th block of the MCU is stored into the block pointed to by
|
|
271 |
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
|
|
272 |
*
|
|
273 |
* We return FALSE if data source requested suspension. In that case no
|
|
274 |
* changes have been made to permanent state. (Exception: some output
|
|
275 |
* coefficients may already have been assigned. This is harmless for
|
|
276 |
* spectral selection, since we'll just re-assign them on the next call.
|
|
277 |
* Successive approximation AC refinement has to be more careful, however.)
|
|
278 |
*/
|
|
279 |
|
|
280 |
/*
|
|
281 |
* MCU decoding for DC initial scan (either spectral selection,
|
|
282 |
* or first pass of successive approximation).
|
|
283 |
*/
|
|
284 |
|
|
285 |
METHODDEF(boolean)
|
|
286 |
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
287 |
{
|
|
288 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
289 |
int Al = cinfo->Al;
|
|
290 |
register int s, r;
|
|
291 |
int blkn, ci;
|
|
292 |
JBLOCKROW block;
|
|
293 |
BITREAD_STATE_VARS;
|
|
294 |
savable_state state;
|
|
295 |
d_derived_tbl * tbl;
|
|
296 |
jpeg_component_info * compptr;
|
|
297 |
|
|
298 |
/* Process restart marker if needed; may have to suspend */
|
|
299 |
if (cinfo->restart_interval) {
|
|
300 |
if (entropy->restarts_to_go == 0)
|
|
301 |
if (! process_restart(cinfo))
|
|
302 |
return FALSE;
|
|
303 |
}
|
|
304 |
|
|
305 |
/* If we've run out of data, just leave the MCU set to zeroes.
|
|
306 |
* This way, we return uniform gray for the remainder of the segment.
|
|
307 |
*/
|
|
308 |
if (! entropy->pub.insufficient_data) {
|
|
309 |
|
|
310 |
/* Load up working state */
|
|
311 |
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
|
312 |
ASSIGN_STATE(state, entropy->saved);
|
|
313 |
|
|
314 |
/* Outer loop handles each block in the MCU */
|
|
315 |
|
|
316 |
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
317 |
block = MCU_data[blkn];
|
|
318 |
ci = cinfo->MCU_membership[blkn];
|
|
319 |
compptr = cinfo->cur_comp_info[ci];
|
|
320 |
tbl = entropy->derived_tbls[compptr->dc_tbl_no];
|
|
321 |
|
|
322 |
/* Decode a single block's worth of coefficients */
|
|
323 |
|
|
324 |
/* Section F.2.2.1: decode the DC coefficient difference */
|
|
325 |
HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
|
|
326 |
if (s) {
|
|
327 |
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
|
328 |
r = GET_BITS(s);
|
|
329 |
s = HUFF_EXTEND(r, s);
|
|
330 |
}
|
|
331 |
|
|
332 |
/* Convert DC difference to actual value, update last_dc_val */
|
|
333 |
s += state.last_dc_val[ci];
|
|
334 |
state.last_dc_val[ci] = s;
|
|
335 |
/* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
|
|
336 |
(*block)[0] = (JCOEF) (s << Al);
|
|
337 |
}
|
|
338 |
|
|
339 |
/* Completed MCU, so update state */
|
|
340 |
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
|
341 |
ASSIGN_STATE(entropy->saved, state);
|
|
342 |
}
|
|
343 |
|
|
344 |
/* Account for restart interval (no-op if not using restarts) */
|
|
345 |
entropy->restarts_to_go--;
|
|
346 |
|
|
347 |
return TRUE;
|
|
348 |
}
|
|
349 |
|
|
350 |
|
|
351 |
/*
|
|
352 |
* MCU decoding for AC initial scan (either spectral selection,
|
|
353 |
* or first pass of successive approximation).
|
|
354 |
*/
|
|
355 |
|
|
356 |
METHODDEF(boolean)
|
|
357 |
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
358 |
{
|
|
359 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
360 |
int Se = cinfo->Se;
|
|
361 |
int Al = cinfo->Al;
|
|
362 |
register int s, k, r;
|
|
363 |
unsigned int EOBRUN;
|
|
364 |
JBLOCKROW block;
|
|
365 |
BITREAD_STATE_VARS;
|
|
366 |
d_derived_tbl * tbl;
|
|
367 |
|
|
368 |
/* Process restart marker if needed; may have to suspend */
|
|
369 |
if (cinfo->restart_interval) {
|
|
370 |
if (entropy->restarts_to_go == 0)
|
|
371 |
if (! process_restart(cinfo))
|
|
372 |
return FALSE;
|
|
373 |
}
|
|
374 |
|
|
375 |
/* If we've run out of data, just leave the MCU set to zeroes.
|
|
376 |
* This way, we return uniform gray for the remainder of the segment.
|
|
377 |
*/
|
|
378 |
if (! entropy->pub.insufficient_data) {
|
|
379 |
|
|
380 |
/* Load up working state.
|
|
381 |
* We can avoid loading/saving bitread state if in an EOB run.
|
|
382 |
*/
|
|
383 |
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
|
|
384 |
|
|
385 |
/* There is always only one block per MCU */
|
|
386 |
|
|
387 |
if (EOBRUN > 0) /* if it's a band of zeroes... */
|
|
388 |
EOBRUN--; /* ...process it now (we do nothing) */
|
|
389 |
else {
|
|
390 |
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
|
391 |
block = MCU_data[0];
|
|
392 |
tbl = entropy->ac_derived_tbl;
|
|
393 |
|
|
394 |
for (k = cinfo->Ss; k <= Se; k++) {
|
|
395 |
HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
|
|
396 |
r = s >> 4;
|
|
397 |
s &= 15;
|
|
398 |
if (s) {
|
|
399 |
k += r;
|
|
400 |
CHECK_BIT_BUFFER(br_state, s, return FALSE);
|
|
401 |
r = GET_BITS(s);
|
|
402 |
s = HUFF_EXTEND(r, s);
|
|
403 |
/* Scale and output coefficient in natural (dezigzagged) order */
|
|
404 |
(*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
|
|
405 |
} else {
|
|
406 |
if (r == 15) { /* ZRL */
|
|
407 |
k += 15; /* skip 15 zeroes in band */
|
|
408 |
} else { /* EOBr, run length is 2^r + appended bits */
|
|
409 |
EOBRUN = 1 << r;
|
|
410 |
if (r) { /* EOBr, r > 0 */
|
|
411 |
CHECK_BIT_BUFFER(br_state, r, return FALSE);
|
|
412 |
r = GET_BITS(r);
|
|
413 |
EOBRUN += r;
|
|
414 |
}
|
|
415 |
EOBRUN--; /* this band is processed at this moment */
|
|
416 |
break; /* force end-of-band */
|
|
417 |
}
|
|
418 |
}
|
|
419 |
}
|
|
420 |
|
|
421 |
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
|
422 |
}
|
|
423 |
|
|
424 |
/* Completed MCU, so update state */
|
|
425 |
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
|
|
426 |
}
|
|
427 |
|
|
428 |
/* Account for restart interval (no-op if not using restarts) */
|
|
429 |
entropy->restarts_to_go--;
|
|
430 |
|
|
431 |
return TRUE;
|
|
432 |
}
|
|
433 |
|
|
434 |
|
|
435 |
/*
|
|
436 |
* MCU decoding for DC successive approximation refinement scan.
|
|
437 |
* Note: we assume such scans can be multi-component, although the spec
|
|
438 |
* is not very clear on the point.
|
|
439 |
*/
|
|
440 |
|
|
441 |
METHODDEF(boolean)
|
|
442 |
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
443 |
{
|
|
444 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
445 |
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
|
446 |
int blkn;
|
|
447 |
JBLOCKROW block;
|
|
448 |
BITREAD_STATE_VARS;
|
|
449 |
|
|
450 |
/* Process restart marker if needed; may have to suspend */
|
|
451 |
if (cinfo->restart_interval) {
|
|
452 |
if (entropy->restarts_to_go == 0)
|
|
453 |
if (! process_restart(cinfo))
|
|
454 |
return FALSE;
|
|
455 |
}
|
|
456 |
|
|
457 |
/* Not worth the cycles to check insufficient_data here,
|
|
458 |
* since we will not change the data anyway if we read zeroes.
|
|
459 |
*/
|
|
460 |
|
|
461 |
/* Load up working state */
|
|
462 |
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
|
463 |
|
|
464 |
/* Outer loop handles each block in the MCU */
|
|
465 |
|
|
466 |
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
|
|
467 |
block = MCU_data[blkn];
|
|
468 |
|
|
469 |
/* Encoded data is simply the next bit of the two's-complement DC value */
|
|
470 |
CHECK_BIT_BUFFER(br_state, 1, return FALSE);
|
|
471 |
if (GET_BITS(1))
|
|
472 |
(*block)[0] |= p1;
|
|
473 |
/* Note: since we use |=, repeating the assignment later is safe */
|
|
474 |
}
|
|
475 |
|
|
476 |
/* Completed MCU, so update state */
|
|
477 |
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
|
478 |
|
|
479 |
/* Account for restart interval (no-op if not using restarts) */
|
|
480 |
entropy->restarts_to_go--;
|
|
481 |
|
|
482 |
return TRUE;
|
|
483 |
}
|
|
484 |
|
|
485 |
|
|
486 |
/*
|
|
487 |
* MCU decoding for AC successive approximation refinement scan.
|
|
488 |
*/
|
|
489 |
|
|
490 |
METHODDEF(boolean)
|
|
491 |
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
|
|
492 |
{
|
|
493 |
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
|
|
494 |
int Se = cinfo->Se;
|
|
495 |
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
|
|
496 |
int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
|
|
497 |
register int s, k, r;
|
|
498 |
unsigned int EOBRUN;
|
|
499 |
JBLOCKROW block;
|
|
500 |
JCOEFPTR thiscoef;
|
|
501 |
BITREAD_STATE_VARS;
|
|
502 |
d_derived_tbl * tbl;
|
|
503 |
int num_newnz;
|
|
504 |
int newnz_pos[DCTSIZE2];
|
|
505 |
|
|
506 |
/* Process restart marker if needed; may have to suspend */
|
|
507 |
if (cinfo->restart_interval) {
|
|
508 |
if (entropy->restarts_to_go == 0)
|
|
509 |
if (! process_restart(cinfo))
|
|
510 |
return FALSE;
|
|
511 |
}
|
|
512 |
|
|
513 |
/* If we've run out of data, don't modify the MCU.
|
|
514 |
*/
|
|
515 |
if (! entropy->pub.insufficient_data) {
|
|
516 |
|
|
517 |
/* Load up working state */
|
|
518 |
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
|
|
519 |
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
|
|
520 |
|
|
521 |
/* There is always only one block per MCU */
|
|
522 |
block = MCU_data[0];
|
|
523 |
tbl = entropy->ac_derived_tbl;
|
|
524 |
|
|
525 |
/* If we are forced to suspend, we must undo the assignments to any newly
|
|
526 |
* nonzero coefficients in the block, because otherwise we'd get confused
|
|
527 |
* next time about which coefficients were already nonzero.
|
|
528 |
* But we need not undo addition of bits to already-nonzero coefficients;
|
|
529 |
* instead, we can test the current bit to see if we already did it.
|
|
530 |
*/
|
|
531 |
num_newnz = 0;
|
|
532 |
|
|
533 |
/* initialize coefficient loop counter to start of band */
|
|
534 |
k = cinfo->Ss;
|
|
535 |
|
|
536 |
if (EOBRUN == 0) {
|
|
537 |
for (; k <= Se; k++) {
|
|
538 |
HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
|
|
539 |
r = s >> 4;
|
|
540 |
s &= 15;
|
|
541 |
if (s) {
|
|
542 |
if (s != 1) /* size of new coef should always be 1 */
|
|
543 |
WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
|
|
544 |
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
|
545 |
if (GET_BITS(1))
|
|
546 |
s = p1; /* newly nonzero coef is positive */
|
|
547 |
else
|
|
548 |
s = m1; /* newly nonzero coef is negative */
|
|
549 |
} else {
|
|
550 |
if (r != 15) {
|
|
551 |
EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
|
|
552 |
if (r) {
|
|
553 |
CHECK_BIT_BUFFER(br_state, r, goto undoit);
|
|
554 |
r = GET_BITS(r);
|
|
555 |
EOBRUN += r;
|
|
556 |
}
|
|
557 |
break; /* rest of block is handled by EOB logic */
|
|
558 |
}
|
|
559 |
/* note s = 0 for processing ZRL */
|
|
560 |
}
|
|
561 |
/* Advance over already-nonzero coefs and r still-zero coefs,
|
|
562 |
* appending correction bits to the nonzeroes. A correction bit is 1
|
|
563 |
* if the absolute value of the coefficient must be increased.
|
|
564 |
*/
|
|
565 |
do {
|
|
566 |
thiscoef = *block + jpeg_natural_order[k];
|
|
567 |
if (*thiscoef != 0) {
|
|
568 |
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
|
569 |
if (GET_BITS(1)) {
|
|
570 |
if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
|
|
571 |
if (*thiscoef >= 0)
|
|
572 |
*thiscoef += p1;
|
|
573 |
else
|
|
574 |
*thiscoef += m1;
|
|
575 |
}
|
|
576 |
}
|
|
577 |
} else {
|
|
578 |
if (--r < 0)
|
|
579 |
break; /* reached target zero coefficient */
|
|
580 |
}
|
|
581 |
k++;
|
|
582 |
} while (k <= Se);
|
|
583 |
if (s) {
|
|
584 |
int pos = jpeg_natural_order[k];
|
|
585 |
/* Output newly nonzero coefficient */
|
|
586 |
(*block)[pos] = (JCOEF) s;
|
|
587 |
/* Remember its position in case we have to suspend */
|
|
588 |
newnz_pos[num_newnz++] = pos;
|
|
589 |
}
|
|
590 |
}
|
|
591 |
}
|
|
592 |
|
|
593 |
if (EOBRUN > 0) {
|
|
594 |
/* Scan any remaining coefficient positions after the end-of-band
|
|
595 |
* (the last newly nonzero coefficient, if any). Append a correction
|
|
596 |
* bit to each already-nonzero coefficient. A correction bit is 1
|
|
597 |
* if the absolute value of the coefficient must be increased.
|
|
598 |
*/
|
|
599 |
for (; k <= Se; k++) {
|
|
600 |
thiscoef = *block + jpeg_natural_order[k];
|
|
601 |
if (*thiscoef != 0) {
|
|
602 |
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
|
|
603 |
if (GET_BITS(1)) {
|
|
604 |
if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
|
|
605 |
if (*thiscoef >= 0)
|
|
606 |
*thiscoef += p1;
|
|
607 |
else
|
|
608 |
*thiscoef += m1;
|
|
609 |
}
|
|
610 |
}
|
|
611 |
}
|
|
612 |
}
|
|
613 |
/* Count one block completed in EOB run */
|
|
614 |
EOBRUN--;
|
|
615 |
}
|
|
616 |
|
|
617 |
/* Completed MCU, so update state */
|
|
618 |
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
|
|
619 |
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
|
|
620 |
}
|
|
621 |
|
|
622 |
/* Account for restart interval (no-op if not using restarts) */
|
|
623 |
entropy->restarts_to_go--;
|
|
624 |
|
|
625 |
return TRUE;
|
|
626 |
|
|
627 |
undoit:
|
|
628 |
/* Re-zero any output coefficients that we made newly nonzero */
|
|
629 |
while (num_newnz > 0)
|
|
630 |
(*block)[newnz_pos[--num_newnz]] = 0;
|
|
631 |
|
|
632 |
return FALSE;
|
|
633 |
}
|
|
634 |
|
|
635 |
|
|
636 |
/*
|
|
637 |
* Module initialization routine for progressive Huffman entropy decoding.
|
|
638 |
*/
|
|
639 |
|
|
640 |
GLOBAL(void)
|
|
641 |
jinit_phuff_decoder (j_decompress_ptr cinfo)
|
|
642 |
{
|
|
643 |
phuff_entropy_ptr entropy;
|
|
644 |
int *coef_bit_ptr;
|
|
645 |
int ci, i;
|
|
646 |
|
|
647 |
entropy = (phuff_entropy_ptr)
|
|
648 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
649 |
SIZEOF(phuff_entropy_decoder));
|
|
650 |
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
|
|
651 |
entropy->pub.start_pass = start_pass_phuff_decoder;
|
|
652 |
|
|
653 |
/* Mark derived tables unallocated */
|
|
654 |
for (i = 0; i < NUM_HUFF_TBLS; i++) {
|
|
655 |
entropy->derived_tbls[i] = NULL;
|
|
656 |
}
|
|
657 |
|
|
658 |
/* Create progression status table */
|
|
659 |
cinfo->coef_bits = (int (*)[DCTSIZE2])
|
|
660 |
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
661 |
cinfo->num_components*DCTSIZE2*SIZEOF(int));
|
|
662 |
coef_bit_ptr = & cinfo->coef_bits[0][0];
|
|
663 |
for (ci = 0; ci < cinfo->num_components; ci++)
|
|
664 |
for (i = 0; i < DCTSIZE2; i++)
|
|
665 |
*coef_bit_ptr++ = -1;
|
|
666 |
}
|
|
667 |
|
|
668 |
#endif /* D_PROGRESSIVE_SUPPORTED */
|