src/3rdparty/libjpeg/jidctfst.c
changeset 0 1918ee327afb
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jidctfst.c
       
     3  *
       
     4  * Copyright (C) 1994-1998, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains a fast, not so accurate integer implementation of the
       
     9  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
       
    10  * must also perform dequantization of the input coefficients.
       
    11  *
       
    12  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
       
    13  * on each row (or vice versa, but it's more convenient to emit a row at
       
    14  * a time).  Direct algorithms are also available, but they are much more
       
    15  * complex and seem not to be any faster when reduced to code.
       
    16  *
       
    17  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
       
    18  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
       
    19  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
       
    20  * JPEG textbook (see REFERENCES section in file README).  The following code
       
    21  * is based directly on figure 4-8 in P&M.
       
    22  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
       
    23  * possible to arrange the computation so that many of the multiplies are
       
    24  * simple scalings of the final outputs.  These multiplies can then be
       
    25  * folded into the multiplications or divisions by the JPEG quantization
       
    26  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
       
    27  * to be done in the DCT itself.
       
    28  * The primary disadvantage of this method is that with fixed-point math,
       
    29  * accuracy is lost due to imprecise representation of the scaled
       
    30  * quantization values.  The smaller the quantization table entry, the less
       
    31  * precise the scaled value, so this implementation does worse with high-
       
    32  * quality-setting files than with low-quality ones.
       
    33  */
       
    34 
       
    35 #define JPEG_INTERNALS
       
    36 #include "jinclude.h"
       
    37 #include "jpeglib.h"
       
    38 #include "jdct.h"		/* Private declarations for DCT subsystem */
       
    39 
       
    40 #ifdef DCT_IFAST_SUPPORTED
       
    41 
       
    42 
       
    43 /*
       
    44  * This module is specialized to the case DCTSIZE = 8.
       
    45  */
       
    46 
       
    47 #if DCTSIZE != 8
       
    48   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
       
    49 #endif
       
    50 
       
    51 
       
    52 /* Scaling decisions are generally the same as in the LL&M algorithm;
       
    53  * see jidctint.c for more details.  However, we choose to descale
       
    54  * (right shift) multiplication products as soon as they are formed,
       
    55  * rather than carrying additional fractional bits into subsequent additions.
       
    56  * This compromises accuracy slightly, but it lets us save a few shifts.
       
    57  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
       
    58  * everywhere except in the multiplications proper; this saves a good deal
       
    59  * of work on 16-bit-int machines.
       
    60  *
       
    61  * The dequantized coefficients are not integers because the AA&N scaling
       
    62  * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
       
    63  * so that the first and second IDCT rounds have the same input scaling.
       
    64  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
       
    65  * avoid a descaling shift; this compromises accuracy rather drastically
       
    66  * for small quantization table entries, but it saves a lot of shifts.
       
    67  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
       
    68  * so we use a much larger scaling factor to preserve accuracy.
       
    69  *
       
    70  * A final compromise is to represent the multiplicative constants to only
       
    71  * 8 fractional bits, rather than 13.  This saves some shifting work on some
       
    72  * machines, and may also reduce the cost of multiplication (since there
       
    73  * are fewer one-bits in the constants).
       
    74  */
       
    75 
       
    76 #if BITS_IN_JSAMPLE == 8
       
    77 #define CONST_BITS  8
       
    78 #define PASS1_BITS  2
       
    79 #else
       
    80 #define CONST_BITS  8
       
    81 #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
       
    82 #endif
       
    83 
       
    84 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
       
    85  * causing a lot of useless floating-point operations at run time.
       
    86  * To get around this we use the following pre-calculated constants.
       
    87  * If you change CONST_BITS you may want to add appropriate values.
       
    88  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
       
    89  */
       
    90 
       
    91 #if CONST_BITS == 8
       
    92 #define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
       
    93 #define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
       
    94 #define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
       
    95 #define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
       
    96 #else
       
    97 #define FIX_1_082392200  FIX(1.082392200)
       
    98 #define FIX_1_414213562  FIX(1.414213562)
       
    99 #define FIX_1_847759065  FIX(1.847759065)
       
   100 #define FIX_2_613125930  FIX(2.613125930)
       
   101 #endif
       
   102 
       
   103 
       
   104 /* We can gain a little more speed, with a further compromise in accuracy,
       
   105  * by omitting the addition in a descaling shift.  This yields an incorrectly
       
   106  * rounded result half the time...
       
   107  */
       
   108 
       
   109 #ifndef USE_ACCURATE_ROUNDING
       
   110 #undef DESCALE
       
   111 #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
       
   112 #endif
       
   113 
       
   114 
       
   115 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
       
   116  * descale to yield a DCTELEM result.
       
   117  */
       
   118 
       
   119 #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
       
   120 
       
   121 
       
   122 /* Dequantize a coefficient by multiplying it by the multiplier-table
       
   123  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
       
   124  * multiplication will do.  For 12-bit data, the multiplier table is
       
   125  * declared INT32, so a 32-bit multiply will be used.
       
   126  */
       
   127 
       
   128 #if BITS_IN_JSAMPLE == 8
       
   129 #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
       
   130 #else
       
   131 #define DEQUANTIZE(coef,quantval)  \
       
   132 	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
       
   133 #endif
       
   134 
       
   135 
       
   136 /* Like DESCALE, but applies to a DCTELEM and produces an int.
       
   137  * We assume that int right shift is unsigned if INT32 right shift is.
       
   138  */
       
   139 
       
   140 #ifdef RIGHT_SHIFT_IS_UNSIGNED
       
   141 #define ISHIFT_TEMPS	DCTELEM ishift_temp;
       
   142 #if BITS_IN_JSAMPLE == 8
       
   143 #define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */
       
   144 #else
       
   145 #define DCTELEMBITS  32		/* DCTELEM must be 32 bits */
       
   146 #endif
       
   147 #define IRIGHT_SHIFT(x,shft)  \
       
   148     ((ishift_temp = (x)) < 0 ? \
       
   149      (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
       
   150      (ishift_temp >> (shft)))
       
   151 #else
       
   152 #define ISHIFT_TEMPS
       
   153 #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
       
   154 #endif
       
   155 
       
   156 #ifdef USE_ACCURATE_ROUNDING
       
   157 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
       
   158 #else
       
   159 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
       
   160 #endif
       
   161 
       
   162 
       
   163 /*
       
   164  * Perform dequantization and inverse DCT on one block of coefficients.
       
   165  */
       
   166 
       
   167 GLOBAL(void)
       
   168 jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
       
   169 		 JCOEFPTR coef_block,
       
   170 		 JSAMPARRAY output_buf, JDIMENSION output_col)
       
   171 {
       
   172   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
       
   173   DCTELEM tmp10, tmp11, tmp12, tmp13;
       
   174   DCTELEM z5, z10, z11, z12, z13;
       
   175   JCOEFPTR inptr;
       
   176   IFAST_MULT_TYPE * quantptr;
       
   177   int * wsptr;
       
   178   JSAMPROW outptr;
       
   179   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
       
   180   int ctr;
       
   181   int workspace[DCTSIZE2];	/* buffers data between passes */
       
   182   SHIFT_TEMPS			/* for DESCALE */
       
   183   ISHIFT_TEMPS			/* for IDESCALE */
       
   184 
       
   185   /* Pass 1: process columns from input, store into work array. */
       
   186 
       
   187   inptr = coef_block;
       
   188   quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
       
   189   wsptr = workspace;
       
   190   for (ctr = DCTSIZE; ctr > 0; ctr--) {
       
   191     /* Due to quantization, we will usually find that many of the input
       
   192      * coefficients are zero, especially the AC terms.  We can exploit this
       
   193      * by short-circuiting the IDCT calculation for any column in which all
       
   194      * the AC terms are zero.  In that case each output is equal to the
       
   195      * DC coefficient (with scale factor as needed).
       
   196      * With typical images and quantization tables, half or more of the
       
   197      * column DCT calculations can be simplified this way.
       
   198      */
       
   199     
       
   200     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
       
   201 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
       
   202 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
       
   203 	inptr[DCTSIZE*7] == 0) {
       
   204       /* AC terms all zero */
       
   205       int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
       
   206 
       
   207       wsptr[DCTSIZE*0] = dcval;
       
   208       wsptr[DCTSIZE*1] = dcval;
       
   209       wsptr[DCTSIZE*2] = dcval;
       
   210       wsptr[DCTSIZE*3] = dcval;
       
   211       wsptr[DCTSIZE*4] = dcval;
       
   212       wsptr[DCTSIZE*5] = dcval;
       
   213       wsptr[DCTSIZE*6] = dcval;
       
   214       wsptr[DCTSIZE*7] = dcval;
       
   215       
       
   216       inptr++;			/* advance pointers to next column */
       
   217       quantptr++;
       
   218       wsptr++;
       
   219       continue;
       
   220     }
       
   221     
       
   222     /* Even part */
       
   223 
       
   224     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
       
   225     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
       
   226     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
       
   227     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
       
   228 
       
   229     tmp10 = tmp0 + tmp2;	/* phase 3 */
       
   230     tmp11 = tmp0 - tmp2;
       
   231 
       
   232     tmp13 = tmp1 + tmp3;	/* phases 5-3 */
       
   233     tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
       
   234 
       
   235     tmp0 = tmp10 + tmp13;	/* phase 2 */
       
   236     tmp3 = tmp10 - tmp13;
       
   237     tmp1 = tmp11 + tmp12;
       
   238     tmp2 = tmp11 - tmp12;
       
   239     
       
   240     /* Odd part */
       
   241 
       
   242     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
       
   243     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
       
   244     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
       
   245     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
       
   246 
       
   247     z13 = tmp6 + tmp5;		/* phase 6 */
       
   248     z10 = tmp6 - tmp5;
       
   249     z11 = tmp4 + tmp7;
       
   250     z12 = tmp4 - tmp7;
       
   251 
       
   252     tmp7 = z11 + z13;		/* phase 5 */
       
   253     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
       
   254 
       
   255     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
       
   256     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
       
   257     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
       
   258 
       
   259     tmp6 = tmp12 - tmp7;	/* phase 2 */
       
   260     tmp5 = tmp11 - tmp6;
       
   261     tmp4 = tmp10 + tmp5;
       
   262 
       
   263     wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
       
   264     wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
       
   265     wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
       
   266     wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
       
   267     wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
       
   268     wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
       
   269     wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
       
   270     wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
       
   271 
       
   272     inptr++;			/* advance pointers to next column */
       
   273     quantptr++;
       
   274     wsptr++;
       
   275   }
       
   276   
       
   277   /* Pass 2: process rows from work array, store into output array. */
       
   278   /* Note that we must descale the results by a factor of 8 == 2**3, */
       
   279   /* and also undo the PASS1_BITS scaling. */
       
   280 
       
   281   wsptr = workspace;
       
   282   for (ctr = 0; ctr < DCTSIZE; ctr++) {
       
   283     outptr = output_buf[ctr] + output_col;
       
   284     /* Rows of zeroes can be exploited in the same way as we did with columns.
       
   285      * However, the column calculation has created many nonzero AC terms, so
       
   286      * the simplification applies less often (typically 5% to 10% of the time).
       
   287      * On machines with very fast multiplication, it's possible that the
       
   288      * test takes more time than it's worth.  In that case this section
       
   289      * may be commented out.
       
   290      */
       
   291     
       
   292 #ifndef NO_ZERO_ROW_TEST
       
   293     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
       
   294 	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
       
   295       /* AC terms all zero */
       
   296       JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
       
   297 				  & RANGE_MASK];
       
   298       
       
   299       outptr[0] = dcval;
       
   300       outptr[1] = dcval;
       
   301       outptr[2] = dcval;
       
   302       outptr[3] = dcval;
       
   303       outptr[4] = dcval;
       
   304       outptr[5] = dcval;
       
   305       outptr[6] = dcval;
       
   306       outptr[7] = dcval;
       
   307 
       
   308       wsptr += DCTSIZE;		/* advance pointer to next row */
       
   309       continue;
       
   310     }
       
   311 #endif
       
   312     
       
   313     /* Even part */
       
   314 
       
   315     tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
       
   316     tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
       
   317 
       
   318     tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
       
   319     tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
       
   320 	    - tmp13;
       
   321 
       
   322     tmp0 = tmp10 + tmp13;
       
   323     tmp3 = tmp10 - tmp13;
       
   324     tmp1 = tmp11 + tmp12;
       
   325     tmp2 = tmp11 - tmp12;
       
   326 
       
   327     /* Odd part */
       
   328 
       
   329     z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
       
   330     z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
       
   331     z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
       
   332     z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
       
   333 
       
   334     tmp7 = z11 + z13;		/* phase 5 */
       
   335     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
       
   336 
       
   337     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
       
   338     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
       
   339     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
       
   340 
       
   341     tmp6 = tmp12 - tmp7;	/* phase 2 */
       
   342     tmp5 = tmp11 - tmp6;
       
   343     tmp4 = tmp10 + tmp5;
       
   344 
       
   345     /* Final output stage: scale down by a factor of 8 and range-limit */
       
   346 
       
   347     outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
       
   348 			    & RANGE_MASK];
       
   349     outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
       
   350 			    & RANGE_MASK];
       
   351     outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
       
   352 			    & RANGE_MASK];
       
   353     outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
       
   354 			    & RANGE_MASK];
       
   355     outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
       
   356 			    & RANGE_MASK];
       
   357     outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
       
   358 			    & RANGE_MASK];
       
   359     outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
       
   360 			    & RANGE_MASK];
       
   361     outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
       
   362 			    & RANGE_MASK];
       
   363 
       
   364     wsptr += DCTSIZE;		/* advance pointer to next row */
       
   365   }
       
   366 }
       
   367 
       
   368 #endif /* DCT_IFAST_SUPPORTED */