0
|
1 |
/*
|
|
2 |
* jidctfst.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1994-1998, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains a fast, not so accurate integer implementation of the
|
|
9 |
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
|
10 |
* must also perform dequantization of the input coefficients.
|
|
11 |
*
|
|
12 |
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
|
|
13 |
* on each row (or vice versa, but it's more convenient to emit a row at
|
|
14 |
* a time). Direct algorithms are also available, but they are much more
|
|
15 |
* complex and seem not to be any faster when reduced to code.
|
|
16 |
*
|
|
17 |
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
|
18 |
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
|
19 |
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
|
20 |
* JPEG textbook (see REFERENCES section in file README). The following code
|
|
21 |
* is based directly on figure 4-8 in P&M.
|
|
22 |
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
|
23 |
* possible to arrange the computation so that many of the multiplies are
|
|
24 |
* simple scalings of the final outputs. These multiplies can then be
|
|
25 |
* folded into the multiplications or divisions by the JPEG quantization
|
|
26 |
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
|
27 |
* to be done in the DCT itself.
|
|
28 |
* The primary disadvantage of this method is that with fixed-point math,
|
|
29 |
* accuracy is lost due to imprecise representation of the scaled
|
|
30 |
* quantization values. The smaller the quantization table entry, the less
|
|
31 |
* precise the scaled value, so this implementation does worse with high-
|
|
32 |
* quality-setting files than with low-quality ones.
|
|
33 |
*/
|
|
34 |
|
|
35 |
#define JPEG_INTERNALS
|
|
36 |
#include "jinclude.h"
|
|
37 |
#include "jpeglib.h"
|
|
38 |
#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
39 |
|
|
40 |
#ifdef DCT_IFAST_SUPPORTED
|
|
41 |
|
|
42 |
|
|
43 |
/*
|
|
44 |
* This module is specialized to the case DCTSIZE = 8.
|
|
45 |
*/
|
|
46 |
|
|
47 |
#if DCTSIZE != 8
|
|
48 |
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
|
|
49 |
#endif
|
|
50 |
|
|
51 |
|
|
52 |
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
|
53 |
* see jidctint.c for more details. However, we choose to descale
|
|
54 |
* (right shift) multiplication products as soon as they are formed,
|
|
55 |
* rather than carrying additional fractional bits into subsequent additions.
|
|
56 |
* This compromises accuracy slightly, but it lets us save a few shifts.
|
|
57 |
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
|
58 |
* everywhere except in the multiplications proper; this saves a good deal
|
|
59 |
* of work on 16-bit-int machines.
|
|
60 |
*
|
|
61 |
* The dequantized coefficients are not integers because the AA&N scaling
|
|
62 |
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
|
|
63 |
* so that the first and second IDCT rounds have the same input scaling.
|
|
64 |
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
|
|
65 |
* avoid a descaling shift; this compromises accuracy rather drastically
|
|
66 |
* for small quantization table entries, but it saves a lot of shifts.
|
|
67 |
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
|
|
68 |
* so we use a much larger scaling factor to preserve accuracy.
|
|
69 |
*
|
|
70 |
* A final compromise is to represent the multiplicative constants to only
|
|
71 |
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
|
72 |
* machines, and may also reduce the cost of multiplication (since there
|
|
73 |
* are fewer one-bits in the constants).
|
|
74 |
*/
|
|
75 |
|
|
76 |
#if BITS_IN_JSAMPLE == 8
|
|
77 |
#define CONST_BITS 8
|
|
78 |
#define PASS1_BITS 2
|
|
79 |
#else
|
|
80 |
#define CONST_BITS 8
|
|
81 |
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
|
|
82 |
#endif
|
|
83 |
|
|
84 |
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
|
85 |
* causing a lot of useless floating-point operations at run time.
|
|
86 |
* To get around this we use the following pre-calculated constants.
|
|
87 |
* If you change CONST_BITS you may want to add appropriate values.
|
|
88 |
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
|
89 |
*/
|
|
90 |
|
|
91 |
#if CONST_BITS == 8
|
|
92 |
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
|
|
93 |
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
|
|
94 |
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
|
|
95 |
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
|
|
96 |
#else
|
|
97 |
#define FIX_1_082392200 FIX(1.082392200)
|
|
98 |
#define FIX_1_414213562 FIX(1.414213562)
|
|
99 |
#define FIX_1_847759065 FIX(1.847759065)
|
|
100 |
#define FIX_2_613125930 FIX(2.613125930)
|
|
101 |
#endif
|
|
102 |
|
|
103 |
|
|
104 |
/* We can gain a little more speed, with a further compromise in accuracy,
|
|
105 |
* by omitting the addition in a descaling shift. This yields an incorrectly
|
|
106 |
* rounded result half the time...
|
|
107 |
*/
|
|
108 |
|
|
109 |
#ifndef USE_ACCURATE_ROUNDING
|
|
110 |
#undef DESCALE
|
|
111 |
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
|
112 |
#endif
|
|
113 |
|
|
114 |
|
|
115 |
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
|
|
116 |
* descale to yield a DCTELEM result.
|
|
117 |
*/
|
|
118 |
|
|
119 |
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
|
120 |
|
|
121 |
|
|
122 |
/* Dequantize a coefficient by multiplying it by the multiplier-table
|
|
123 |
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
|
|
124 |
* multiplication will do. For 12-bit data, the multiplier table is
|
|
125 |
* declared INT32, so a 32-bit multiply will be used.
|
|
126 |
*/
|
|
127 |
|
|
128 |
#if BITS_IN_JSAMPLE == 8
|
|
129 |
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
|
|
130 |
#else
|
|
131 |
#define DEQUANTIZE(coef,quantval) \
|
|
132 |
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
|
|
133 |
#endif
|
|
134 |
|
|
135 |
|
|
136 |
/* Like DESCALE, but applies to a DCTELEM and produces an int.
|
|
137 |
* We assume that int right shift is unsigned if INT32 right shift is.
|
|
138 |
*/
|
|
139 |
|
|
140 |
#ifdef RIGHT_SHIFT_IS_UNSIGNED
|
|
141 |
#define ISHIFT_TEMPS DCTELEM ishift_temp;
|
|
142 |
#if BITS_IN_JSAMPLE == 8
|
|
143 |
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
|
|
144 |
#else
|
|
145 |
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
|
|
146 |
#endif
|
|
147 |
#define IRIGHT_SHIFT(x,shft) \
|
|
148 |
((ishift_temp = (x)) < 0 ? \
|
|
149 |
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
|
|
150 |
(ishift_temp >> (shft)))
|
|
151 |
#else
|
|
152 |
#define ISHIFT_TEMPS
|
|
153 |
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
|
|
154 |
#endif
|
|
155 |
|
|
156 |
#ifdef USE_ACCURATE_ROUNDING
|
|
157 |
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
|
|
158 |
#else
|
|
159 |
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
|
|
160 |
#endif
|
|
161 |
|
|
162 |
|
|
163 |
/*
|
|
164 |
* Perform dequantization and inverse DCT on one block of coefficients.
|
|
165 |
*/
|
|
166 |
|
|
167 |
GLOBAL(void)
|
|
168 |
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
|
|
169 |
JCOEFPTR coef_block,
|
|
170 |
JSAMPARRAY output_buf, JDIMENSION output_col)
|
|
171 |
{
|
|
172 |
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
|
173 |
DCTELEM tmp10, tmp11, tmp12, tmp13;
|
|
174 |
DCTELEM z5, z10, z11, z12, z13;
|
|
175 |
JCOEFPTR inptr;
|
|
176 |
IFAST_MULT_TYPE * quantptr;
|
|
177 |
int * wsptr;
|
|
178 |
JSAMPROW outptr;
|
|
179 |
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
|
|
180 |
int ctr;
|
|
181 |
int workspace[DCTSIZE2]; /* buffers data between passes */
|
|
182 |
SHIFT_TEMPS /* for DESCALE */
|
|
183 |
ISHIFT_TEMPS /* for IDESCALE */
|
|
184 |
|
|
185 |
/* Pass 1: process columns from input, store into work array. */
|
|
186 |
|
|
187 |
inptr = coef_block;
|
|
188 |
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
|
|
189 |
wsptr = workspace;
|
|
190 |
for (ctr = DCTSIZE; ctr > 0; ctr--) {
|
|
191 |
/* Due to quantization, we will usually find that many of the input
|
|
192 |
* coefficients are zero, especially the AC terms. We can exploit this
|
|
193 |
* by short-circuiting the IDCT calculation for any column in which all
|
|
194 |
* the AC terms are zero. In that case each output is equal to the
|
|
195 |
* DC coefficient (with scale factor as needed).
|
|
196 |
* With typical images and quantization tables, half or more of the
|
|
197 |
* column DCT calculations can be simplified this way.
|
|
198 |
*/
|
|
199 |
|
|
200 |
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
|
|
201 |
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
|
|
202 |
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
|
|
203 |
inptr[DCTSIZE*7] == 0) {
|
|
204 |
/* AC terms all zero */
|
|
205 |
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
206 |
|
|
207 |
wsptr[DCTSIZE*0] = dcval;
|
|
208 |
wsptr[DCTSIZE*1] = dcval;
|
|
209 |
wsptr[DCTSIZE*2] = dcval;
|
|
210 |
wsptr[DCTSIZE*3] = dcval;
|
|
211 |
wsptr[DCTSIZE*4] = dcval;
|
|
212 |
wsptr[DCTSIZE*5] = dcval;
|
|
213 |
wsptr[DCTSIZE*6] = dcval;
|
|
214 |
wsptr[DCTSIZE*7] = dcval;
|
|
215 |
|
|
216 |
inptr++; /* advance pointers to next column */
|
|
217 |
quantptr++;
|
|
218 |
wsptr++;
|
|
219 |
continue;
|
|
220 |
}
|
|
221 |
|
|
222 |
/* Even part */
|
|
223 |
|
|
224 |
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
|
|
225 |
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
|
|
226 |
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
|
|
227 |
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
|
|
228 |
|
|
229 |
tmp10 = tmp0 + tmp2; /* phase 3 */
|
|
230 |
tmp11 = tmp0 - tmp2;
|
|
231 |
|
|
232 |
tmp13 = tmp1 + tmp3; /* phases 5-3 */
|
|
233 |
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
|
|
234 |
|
|
235 |
tmp0 = tmp10 + tmp13; /* phase 2 */
|
|
236 |
tmp3 = tmp10 - tmp13;
|
|
237 |
tmp1 = tmp11 + tmp12;
|
|
238 |
tmp2 = tmp11 - tmp12;
|
|
239 |
|
|
240 |
/* Odd part */
|
|
241 |
|
|
242 |
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
|
|
243 |
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
|
|
244 |
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
|
|
245 |
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
|
|
246 |
|
|
247 |
z13 = tmp6 + tmp5; /* phase 6 */
|
|
248 |
z10 = tmp6 - tmp5;
|
|
249 |
z11 = tmp4 + tmp7;
|
|
250 |
z12 = tmp4 - tmp7;
|
|
251 |
|
|
252 |
tmp7 = z11 + z13; /* phase 5 */
|
|
253 |
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
|
254 |
|
|
255 |
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
|
256 |
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
|
|
257 |
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
|
|
258 |
|
|
259 |
tmp6 = tmp12 - tmp7; /* phase 2 */
|
|
260 |
tmp5 = tmp11 - tmp6;
|
|
261 |
tmp4 = tmp10 + tmp5;
|
|
262 |
|
|
263 |
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
|
|
264 |
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
|
|
265 |
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
|
|
266 |
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
|
|
267 |
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
|
|
268 |
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
|
|
269 |
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
|
|
270 |
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
|
|
271 |
|
|
272 |
inptr++; /* advance pointers to next column */
|
|
273 |
quantptr++;
|
|
274 |
wsptr++;
|
|
275 |
}
|
|
276 |
|
|
277 |
/* Pass 2: process rows from work array, store into output array. */
|
|
278 |
/* Note that we must descale the results by a factor of 8 == 2**3, */
|
|
279 |
/* and also undo the PASS1_BITS scaling. */
|
|
280 |
|
|
281 |
wsptr = workspace;
|
|
282 |
for (ctr = 0; ctr < DCTSIZE; ctr++) {
|
|
283 |
outptr = output_buf[ctr] + output_col;
|
|
284 |
/* Rows of zeroes can be exploited in the same way as we did with columns.
|
|
285 |
* However, the column calculation has created many nonzero AC terms, so
|
|
286 |
* the simplification applies less often (typically 5% to 10% of the time).
|
|
287 |
* On machines with very fast multiplication, it's possible that the
|
|
288 |
* test takes more time than it's worth. In that case this section
|
|
289 |
* may be commented out.
|
|
290 |
*/
|
|
291 |
|
|
292 |
#ifndef NO_ZERO_ROW_TEST
|
|
293 |
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
|
|
294 |
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
|
|
295 |
/* AC terms all zero */
|
|
296 |
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
|
|
297 |
& RANGE_MASK];
|
|
298 |
|
|
299 |
outptr[0] = dcval;
|
|
300 |
outptr[1] = dcval;
|
|
301 |
outptr[2] = dcval;
|
|
302 |
outptr[3] = dcval;
|
|
303 |
outptr[4] = dcval;
|
|
304 |
outptr[5] = dcval;
|
|
305 |
outptr[6] = dcval;
|
|
306 |
outptr[7] = dcval;
|
|
307 |
|
|
308 |
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
309 |
continue;
|
|
310 |
}
|
|
311 |
#endif
|
|
312 |
|
|
313 |
/* Even part */
|
|
314 |
|
|
315 |
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
|
|
316 |
tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
|
|
317 |
|
|
318 |
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
|
|
319 |
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
|
|
320 |
- tmp13;
|
|
321 |
|
|
322 |
tmp0 = tmp10 + tmp13;
|
|
323 |
tmp3 = tmp10 - tmp13;
|
|
324 |
tmp1 = tmp11 + tmp12;
|
|
325 |
tmp2 = tmp11 - tmp12;
|
|
326 |
|
|
327 |
/* Odd part */
|
|
328 |
|
|
329 |
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
|
|
330 |
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
|
|
331 |
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
|
|
332 |
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
|
|
333 |
|
|
334 |
tmp7 = z11 + z13; /* phase 5 */
|
|
335 |
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
|
|
336 |
|
|
337 |
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
|
|
338 |
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
|
|
339 |
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
|
|
340 |
|
|
341 |
tmp6 = tmp12 - tmp7; /* phase 2 */
|
|
342 |
tmp5 = tmp11 - tmp6;
|
|
343 |
tmp4 = tmp10 + tmp5;
|
|
344 |
|
|
345 |
/* Final output stage: scale down by a factor of 8 and range-limit */
|
|
346 |
|
|
347 |
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
|
|
348 |
& RANGE_MASK];
|
|
349 |
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
|
|
350 |
& RANGE_MASK];
|
|
351 |
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
|
|
352 |
& RANGE_MASK];
|
|
353 |
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
|
|
354 |
& RANGE_MASK];
|
|
355 |
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
|
|
356 |
& RANGE_MASK];
|
|
357 |
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
|
|
358 |
& RANGE_MASK];
|
|
359 |
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
|
|
360 |
& RANGE_MASK];
|
|
361 |
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
|
|
362 |
& RANGE_MASK];
|
|
363 |
|
|
364 |
wsptr += DCTSIZE; /* advance pointer to next row */
|
|
365 |
}
|
|
366 |
}
|
|
367 |
|
|
368 |
#endif /* DCT_IFAST_SUPPORTED */
|