src/3rdparty/libjpeg/jmemmgr.c
changeset 0 1918ee327afb
equal deleted inserted replaced
-1:000000000000 0:1918ee327afb
       
     1 /*
       
     2  * jmemmgr.c
       
     3  *
       
     4  * Copyright (C) 1991-1997, Thomas G. Lane.
       
     5  * This file is part of the Independent JPEG Group's software.
       
     6  * For conditions of distribution and use, see the accompanying README file.
       
     7  *
       
     8  * This file contains the JPEG system-independent memory management
       
     9  * routines.  This code is usable across a wide variety of machines; most
       
    10  * of the system dependencies have been isolated in a separate file.
       
    11  * The major functions provided here are:
       
    12  *   * pool-based allocation and freeing of memory;
       
    13  *   * policy decisions about how to divide available memory among the
       
    14  *     virtual arrays;
       
    15  *   * control logic for swapping virtual arrays between main memory and
       
    16  *     backing storage.
       
    17  * The separate system-dependent file provides the actual backing-storage
       
    18  * access code, and it contains the policy decision about how much total
       
    19  * main memory to use.
       
    20  * This file is system-dependent in the sense that some of its functions
       
    21  * are unnecessary in some systems.  For example, if there is enough virtual
       
    22  * memory so that backing storage will never be used, much of the virtual
       
    23  * array control logic could be removed.  (Of course, if you have that much
       
    24  * memory then you shouldn't care about a little bit of unused code...)
       
    25  */
       
    26 
       
    27 #define JPEG_INTERNALS
       
    28 #define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
       
    29 #include "jinclude.h"
       
    30 #include "jpeglib.h"
       
    31 #include "jmemsys.h"		/* import the system-dependent declarations */
       
    32 
       
    33 #ifndef NO_GETENV
       
    34 #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
       
    35 extern char * getenv JPP((const char * name));
       
    36 #endif
       
    37 #endif
       
    38 
       
    39 
       
    40 /*
       
    41  * Some important notes:
       
    42  *   The allocation routines provided here must never return NULL.
       
    43  *   They should exit to error_exit if unsuccessful.
       
    44  *
       
    45  *   It's not a good idea to try to merge the sarray and barray routines,
       
    46  *   even though they are textually almost the same, because samples are
       
    47  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
       
    48  *   in machines where byte pointers have a different representation from
       
    49  *   word pointers, the resulting machine code could not be the same.
       
    50  */
       
    51 
       
    52 
       
    53 /*
       
    54  * Many machines require storage alignment: longs must start on 4-byte
       
    55  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
       
    56  * always returns pointers that are multiples of the worst-case alignment
       
    57  * requirement, and we had better do so too.
       
    58  * There isn't any really portable way to determine the worst-case alignment
       
    59  * requirement.  This module assumes that the alignment requirement is
       
    60  * multiples of sizeof(ALIGN_TYPE).
       
    61  * By default, we define ALIGN_TYPE as double.  This is necessary on some
       
    62  * workstations (where doubles really do need 8-byte alignment) and will work
       
    63  * fine on nearly everything.  If your machine has lesser alignment needs,
       
    64  * you can save a few bytes by making ALIGN_TYPE smaller.
       
    65  * The only place I know of where this will NOT work is certain Macintosh
       
    66  * 680x0 compilers that define double as a 10-byte IEEE extended float.
       
    67  * Doing 10-byte alignment is counterproductive because longwords won't be
       
    68  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
       
    69  * such a compiler.
       
    70  */
       
    71 
       
    72 #ifndef ALIGN_TYPE		/* so can override from jconfig.h */
       
    73 #define ALIGN_TYPE  double
       
    74 #endif
       
    75 
       
    76 
       
    77 /*
       
    78  * We allocate objects from "pools", where each pool is gotten with a single
       
    79  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
       
    80  * overhead within a pool, except for alignment padding.  Each pool has a
       
    81  * header with a link to the next pool of the same class.
       
    82  * Small and large pool headers are identical except that the latter's
       
    83  * link pointer must be FAR on 80x86 machines.
       
    84  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
       
    85  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
       
    86  * of the alignment requirement of ALIGN_TYPE.
       
    87  */
       
    88 
       
    89 typedef union small_pool_struct * small_pool_ptr;
       
    90 
       
    91 typedef union small_pool_struct {
       
    92   struct {
       
    93     small_pool_ptr next;	/* next in list of pools */
       
    94     size_t bytes_used;		/* how many bytes already used within pool */
       
    95     size_t bytes_left;		/* bytes still available in this pool */
       
    96   } hdr;
       
    97   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
       
    98 } small_pool_hdr;
       
    99 
       
   100 typedef union large_pool_struct FAR * large_pool_ptr;
       
   101 
       
   102 typedef union large_pool_struct {
       
   103   struct {
       
   104     large_pool_ptr next;	/* next in list of pools */
       
   105     size_t bytes_used;		/* how many bytes already used within pool */
       
   106     size_t bytes_left;		/* bytes still available in this pool */
       
   107   } hdr;
       
   108   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
       
   109 } large_pool_hdr;
       
   110 
       
   111 
       
   112 /*
       
   113  * Here is the full definition of a memory manager object.
       
   114  */
       
   115 
       
   116 typedef struct {
       
   117   struct jpeg_memory_mgr pub;	/* public fields */
       
   118 
       
   119   /* Each pool identifier (lifetime class) names a linked list of pools. */
       
   120   small_pool_ptr small_list[JPOOL_NUMPOOLS];
       
   121   large_pool_ptr large_list[JPOOL_NUMPOOLS];
       
   122 
       
   123   /* Since we only have one lifetime class of virtual arrays, only one
       
   124    * linked list is necessary (for each datatype).  Note that the virtual
       
   125    * array control blocks being linked together are actually stored somewhere
       
   126    * in the small-pool list.
       
   127    */
       
   128   jvirt_sarray_ptr virt_sarray_list;
       
   129   jvirt_barray_ptr virt_barray_list;
       
   130 
       
   131   /* This counts total space obtained from jpeg_get_small/large */
       
   132   long total_space_allocated;
       
   133 
       
   134   /* alloc_sarray and alloc_barray set this value for use by virtual
       
   135    * array routines.
       
   136    */
       
   137   JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
       
   138 } my_memory_mgr;
       
   139 
       
   140 typedef my_memory_mgr * my_mem_ptr;
       
   141 
       
   142 
       
   143 /*
       
   144  * The control blocks for virtual arrays.
       
   145  * Note that these blocks are allocated in the "small" pool area.
       
   146  * System-dependent info for the associated backing store (if any) is hidden
       
   147  * inside the backing_store_info struct.
       
   148  */
       
   149 
       
   150 struct jvirt_sarray_control {
       
   151   JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
       
   152   JDIMENSION rows_in_array;	/* total virtual array height */
       
   153   JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
       
   154   JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
       
   155   JDIMENSION rows_in_mem;	/* height of memory buffer */
       
   156   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
       
   157   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
       
   158   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
       
   159   boolean pre_zero;		/* pre-zero mode requested? */
       
   160   boolean dirty;		/* do current buffer contents need written? */
       
   161   boolean b_s_open;		/* is backing-store data valid? */
       
   162   jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
       
   163   backing_store_info b_s_info;	/* System-dependent control info */
       
   164 };
       
   165 
       
   166 struct jvirt_barray_control {
       
   167   JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
       
   168   JDIMENSION rows_in_array;	/* total virtual array height */
       
   169   JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
       
   170   JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
       
   171   JDIMENSION rows_in_mem;	/* height of memory buffer */
       
   172   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
       
   173   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
       
   174   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
       
   175   boolean pre_zero;		/* pre-zero mode requested? */
       
   176   boolean dirty;		/* do current buffer contents need written? */
       
   177   boolean b_s_open;		/* is backing-store data valid? */
       
   178   jvirt_barray_ptr next;	/* link to next virtual barray control block */
       
   179   backing_store_info b_s_info;	/* System-dependent control info */
       
   180 };
       
   181 
       
   182 
       
   183 #ifdef MEM_STATS		/* optional extra stuff for statistics */
       
   184 
       
   185 LOCAL(void)
       
   186 print_mem_stats (j_common_ptr cinfo, int pool_id)
       
   187 {
       
   188   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
       
   189   small_pool_ptr shdr_ptr;
       
   190   large_pool_ptr lhdr_ptr;
       
   191 
       
   192   /* Since this is only a debugging stub, we can cheat a little by using
       
   193    * fprintf directly rather than going through the trace message code.
       
   194    * This is helpful because message parm array can't handle longs.
       
   195    */
       
   196   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
       
   197 	  pool_id, mem->total_space_allocated);
       
   198 
       
   199   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
       
   200        lhdr_ptr = lhdr_ptr->hdr.next) {
       
   201     fprintf(stderr, "  Large chunk used %ld\n",
       
   202 	    (long) lhdr_ptr->hdr.bytes_used);
       
   203   }
       
   204 
       
   205   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
       
   206        shdr_ptr = shdr_ptr->hdr.next) {
       
   207     fprintf(stderr, "  Small chunk used %ld free %ld\n",
       
   208 	    (long) shdr_ptr->hdr.bytes_used,
       
   209 	    (long) shdr_ptr->hdr.bytes_left);
       
   210   }
       
   211 }
       
   212 
       
   213 #endif /* MEM_STATS */
       
   214 
       
   215 
       
   216 LOCAL(void)
       
   217 out_of_memory (j_common_ptr cinfo, int which)
       
   218 /* Report an out-of-memory error and stop execution */
       
   219 /* If we compiled MEM_STATS support, report alloc requests before dying */
       
   220 {
       
   221 #ifdef MEM_STATS
       
   222   cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
       
   223 #endif
       
   224   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
       
   225 }
       
   226 
       
   227 
       
   228 /*
       
   229  * Allocation of "small" objects.
       
   230  *
       
   231  * For these, we use pooled storage.  When a new pool must be created,
       
   232  * we try to get enough space for the current request plus a "slop" factor,
       
   233  * where the slop will be the amount of leftover space in the new pool.
       
   234  * The speed vs. space tradeoff is largely determined by the slop values.
       
   235  * A different slop value is provided for each pool class (lifetime),
       
   236  * and we also distinguish the first pool of a class from later ones.
       
   237  * NOTE: the values given work fairly well on both 16- and 32-bit-int
       
   238  * machines, but may be too small if longs are 64 bits or more.
       
   239  */
       
   240 
       
   241 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = 
       
   242 {
       
   243 	1600,			/* first PERMANENT pool */
       
   244 	16000			/* first IMAGE pool */
       
   245 };
       
   246 
       
   247 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = 
       
   248 {
       
   249 	0,			/* additional PERMANENT pools */
       
   250 	5000			/* additional IMAGE pools */
       
   251 };
       
   252 
       
   253 #define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
       
   254 
       
   255 
       
   256 METHODDEF(void *)
       
   257 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
       
   258 /* Allocate a "small" object */
       
   259 {
       
   260   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
       
   261   small_pool_ptr hdr_ptr, prev_hdr_ptr;
       
   262   char * data_ptr;
       
   263   size_t odd_bytes, min_request, slop;
       
   264 
       
   265   /* Check for unsatisfiable request (do now to ensure no overflow below) */
       
   266   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
       
   267     out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
       
   268 
       
   269   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
       
   270   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
       
   271   if (odd_bytes > 0)
       
   272     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
       
   273 
       
   274   /* See if space is available in any existing pool */
       
   275   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
       
   276     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
       
   277   prev_hdr_ptr = NULL;
       
   278   hdr_ptr = mem->small_list[pool_id];
       
   279   while (hdr_ptr != NULL) {
       
   280     if (hdr_ptr->hdr.bytes_left >= sizeofobject)
       
   281       break;			/* found pool with enough space */
       
   282     prev_hdr_ptr = hdr_ptr;
       
   283     hdr_ptr = hdr_ptr->hdr.next;
       
   284   }
       
   285 
       
   286   /* Time to make a new pool? */
       
   287   if (hdr_ptr == NULL) {
       
   288     /* min_request is what we need now, slop is what will be leftover */
       
   289     min_request = sizeofobject + SIZEOF(small_pool_hdr);
       
   290     if (prev_hdr_ptr == NULL)	/* first pool in class? */
       
   291       slop = first_pool_slop[pool_id];
       
   292     else
       
   293       slop = extra_pool_slop[pool_id];
       
   294     /* Don't ask for more than MAX_ALLOC_CHUNK */
       
   295     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
       
   296       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
       
   297     /* Try to get space, if fail reduce slop and try again */
       
   298     for (;;) {
       
   299       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
       
   300       if (hdr_ptr != NULL)
       
   301 	break;
       
   302       slop /= 2;
       
   303       if (slop < MIN_SLOP)	/* give up when it gets real small */
       
   304 	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
       
   305     }
       
   306     mem->total_space_allocated += min_request + slop;
       
   307     /* Success, initialize the new pool header and add to end of list */
       
   308     hdr_ptr->hdr.next = NULL;
       
   309     hdr_ptr->hdr.bytes_used = 0;
       
   310     hdr_ptr->hdr.bytes_left = sizeofobject + slop;
       
   311     if (prev_hdr_ptr == NULL)	/* first pool in class? */
       
   312       mem->small_list[pool_id] = hdr_ptr;
       
   313     else
       
   314       prev_hdr_ptr->hdr.next = hdr_ptr;
       
   315   }
       
   316 
       
   317   /* OK, allocate the object from the current pool */
       
   318   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
       
   319   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
       
   320   hdr_ptr->hdr.bytes_used += sizeofobject;
       
   321   hdr_ptr->hdr.bytes_left -= sizeofobject;
       
   322 
       
   323   return (void *) data_ptr;
       
   324 }
       
   325 
       
   326 
       
   327 /*
       
   328  * Allocation of "large" objects.
       
   329  *
       
   330  * The external semantics of these are the same as "small" objects,
       
   331  * except that FAR pointers are used on 80x86.  However the pool
       
   332  * management heuristics are quite different.  We assume that each
       
   333  * request is large enough that it may as well be passed directly to
       
   334  * jpeg_get_large; the pool management just links everything together
       
   335  * so that we can free it all on demand.
       
   336  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
       
   337  * structures.  The routines that create these structures (see below)
       
   338  * deliberately bunch rows together to ensure a large request size.
       
   339  */
       
   340 
       
   341 METHODDEF(void FAR *)
       
   342 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
       
   343 /* Allocate a "large" object */
       
   344 {
       
   345   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
       
   346   large_pool_ptr hdr_ptr;
       
   347   size_t odd_bytes;
       
   348 
       
   349   /* Check for unsatisfiable request (do now to ensure no overflow below) */
       
   350   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
       
   351     out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
       
   352 
       
   353   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
       
   354   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
       
   355   if (odd_bytes > 0)
       
   356     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
       
   357 
       
   358   /* Always make a new pool */
       
   359   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
       
   360     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
       
   361 
       
   362   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
       
   363 					    SIZEOF(large_pool_hdr));
       
   364   if (hdr_ptr == NULL)
       
   365     out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
       
   366   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
       
   367 
       
   368   /* Success, initialize the new pool header and add to list */
       
   369   hdr_ptr->hdr.next = mem->large_list[pool_id];
       
   370   /* We maintain space counts in each pool header for statistical purposes,
       
   371    * even though they are not needed for allocation.
       
   372    */
       
   373   hdr_ptr->hdr.bytes_used = sizeofobject;
       
   374   hdr_ptr->hdr.bytes_left = 0;
       
   375   mem->large_list[pool_id] = hdr_ptr;
       
   376 
       
   377   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
       
   378 }
       
   379 
       
   380 
       
   381 /*
       
   382  * Creation of 2-D sample arrays.
       
   383  * The pointers are in near heap, the samples themselves in FAR heap.
       
   384  *
       
   385  * To minimize allocation overhead and to allow I/O of large contiguous
       
   386  * blocks, we allocate the sample rows in groups of as many rows as possible
       
   387  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
       
   388  * NB: the virtual array control routines, later in this file, know about
       
   389  * this chunking of rows.  The rowsperchunk value is left in the mem manager
       
   390  * object so that it can be saved away if this sarray is the workspace for
       
   391  * a virtual array.
       
   392  */
       
   393 
       
   394 METHODDEF(JSAMPARRAY)
       
   395 alloc_sarray (j_common_ptr cinfo, int pool_id,
       
   396 	      JDIMENSION samplesperrow, JDIMENSION numrows)
       
   397 /* Allocate a 2-D sample array */
       
   398 {
       
   399   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
       
   400   JSAMPARRAY result;
       
   401   JSAMPROW workspace;
       
   402   JDIMENSION rowsperchunk, currow, i;
       
   403   long ltemp;
       
   404 
       
   405   /* Calculate max # of rows allowed in one allocation chunk */
       
   406   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
       
   407 	  ((long) samplesperrow * SIZEOF(JSAMPLE));
       
   408   if (ltemp <= 0)
       
   409     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
       
   410   if (ltemp < (long) numrows)
       
   411     rowsperchunk = (JDIMENSION) ltemp;
       
   412   else
       
   413     rowsperchunk = numrows;
       
   414   mem->last_rowsperchunk = rowsperchunk;
       
   415 
       
   416   /* Get space for row pointers (small object) */
       
   417   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
       
   418 				    (size_t) (numrows * SIZEOF(JSAMPROW)));
       
   419 
       
   420   /* Get the rows themselves (large objects) */
       
   421   currow = 0;
       
   422   while (currow < numrows) {
       
   423     rowsperchunk = MIN(rowsperchunk, numrows - currow);
       
   424     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
       
   425 	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
       
   426 		  * SIZEOF(JSAMPLE)));
       
   427     for (i = rowsperchunk; i > 0; i--) {
       
   428       result[currow++] = workspace;
       
   429       workspace += samplesperrow;
       
   430     }
       
   431   }
       
   432 
       
   433   return result;
       
   434 }
       
   435 
       
   436 
       
   437 /*
       
   438  * Creation of 2-D coefficient-block arrays.
       
   439  * This is essentially the same as the code for sample arrays, above.
       
   440  */
       
   441 
       
   442 METHODDEF(JBLOCKARRAY)
       
   443 alloc_barray (j_common_ptr cinfo, int pool_id,
       
   444 	      JDIMENSION blocksperrow, JDIMENSION numrows)
       
   445 /* Allocate a 2-D coefficient-block array */
       
   446 {
       
   447   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
       
   448   JBLOCKARRAY result;
       
   449   JBLOCKROW workspace;
       
   450   JDIMENSION rowsperchunk, currow, i;
       
   451   long ltemp;
       
   452 
       
   453   /* Calculate max # of rows allowed in one allocation chunk */
       
   454   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
       
   455 	  ((long) blocksperrow * SIZEOF(JBLOCK));
       
   456   if (ltemp <= 0)
       
   457     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
       
   458   if (ltemp < (long) numrows)
       
   459     rowsperchunk = (JDIMENSION) ltemp;
       
   460   else
       
   461     rowsperchunk = numrows;
       
   462   mem->last_rowsperchunk = rowsperchunk;
       
   463 
       
   464   /* Get space for row pointers (small object) */
       
   465   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
       
   466 				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
       
   467 
       
   468   /* Get the rows themselves (large objects) */
       
   469   currow = 0;
       
   470   while (currow < numrows) {
       
   471     rowsperchunk = MIN(rowsperchunk, numrows - currow);
       
   472     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
       
   473 	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
       
   474 		  * SIZEOF(JBLOCK)));
       
   475     for (i = rowsperchunk; i > 0; i--) {
       
   476       result[currow++] = workspace;
       
   477       workspace += blocksperrow;
       
   478     }
       
   479   }
       
   480 
       
   481   return result;
       
   482 }
       
   483 
       
   484 
       
   485 /*
       
   486  * About virtual array management:
       
   487  *
       
   488  * The above "normal" array routines are only used to allocate strip buffers
       
   489  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
       
   490  * are handled as "virtual" arrays.  The array is still accessed a strip at a
       
   491  * time, but the memory manager must save the whole array for repeated
       
   492  * accesses.  The intended implementation is that there is a strip buffer in
       
   493  * memory (as high as is possible given the desired memory limit), plus a
       
   494  * backing file that holds the rest of the array.
       
   495  *
       
   496  * The request_virt_array routines are told the total size of the image and
       
   497  * the maximum number of rows that will be accessed at once.  The in-memory
       
   498  * buffer must be at least as large as the maxaccess value.
       
   499  *
       
   500  * The request routines create control blocks but not the in-memory buffers.
       
   501  * That is postponed until realize_virt_arrays is called.  At that time the
       
   502  * total amount of space needed is known (approximately, anyway), so free
       
   503  * memory can be divided up fairly.
       
   504  *
       
   505  * The access_virt_array routines are responsible for making a specific strip
       
   506  * area accessible (after reading or writing the backing file, if necessary).
       
   507  * Note that the access routines are told whether the caller intends to modify
       
   508  * the accessed strip; during a read-only pass this saves having to rewrite
       
   509  * data to disk.  The access routines are also responsible for pre-zeroing
       
   510  * any newly accessed rows, if pre-zeroing was requested.
       
   511  *
       
   512  * In current usage, the access requests are usually for nonoverlapping
       
   513  * strips; that is, successive access start_row numbers differ by exactly
       
   514  * num_rows = maxaccess.  This means we can get good performance with simple
       
   515  * buffer dump/reload logic, by making the in-memory buffer be a multiple
       
   516  * of the access height; then there will never be accesses across bufferload
       
   517  * boundaries.  The code will still work with overlapping access requests,
       
   518  * but it doesn't handle bufferload overlaps very efficiently.
       
   519  */
       
   520 
       
   521 
       
   522 METHODDEF(jvirt_sarray_ptr)
       
   523 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
       
   524 		     JDIMENSION samplesperrow, JDIMENSION numrows,
       
   525 		     JDIMENSION maxaccess)
       
   526 /* Request a virtual 2-D sample array */
       
   527 {
       
   528   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
       
   529   jvirt_sarray_ptr result;
       
   530 
       
   531   /* Only IMAGE-lifetime virtual arrays are currently supported */
       
   532   if (pool_id != JPOOL_IMAGE)
       
   533     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
       
   534 
       
   535   /* get control block */
       
   536   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
       
   537 					  SIZEOF(struct jvirt_sarray_control));
       
   538 
       
   539   result->mem_buffer = NULL;	/* marks array not yet realized */
       
   540   result->rows_in_array = numrows;
       
   541   result->samplesperrow = samplesperrow;
       
   542   result->maxaccess = maxaccess;
       
   543   result->pre_zero = pre_zero;
       
   544   result->b_s_open = FALSE;	/* no associated backing-store object */
       
   545   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
       
   546   mem->virt_sarray_list = result;
       
   547 
       
   548   return result;
       
   549 }
       
   550 
       
   551 
       
   552 METHODDEF(jvirt_barray_ptr)
       
   553 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
       
   554 		     JDIMENSION blocksperrow, JDIMENSION numrows,
       
   555 		     JDIMENSION maxaccess)
       
   556 /* Request a virtual 2-D coefficient-block array */
       
   557 {
       
   558   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
       
   559   jvirt_barray_ptr result;
       
   560 
       
   561   /* Only IMAGE-lifetime virtual arrays are currently supported */
       
   562   if (pool_id != JPOOL_IMAGE)
       
   563     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
       
   564 
       
   565   /* get control block */
       
   566   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
       
   567 					  SIZEOF(struct jvirt_barray_control));
       
   568 
       
   569   result->mem_buffer = NULL;	/* marks array not yet realized */
       
   570   result->rows_in_array = numrows;
       
   571   result->blocksperrow = blocksperrow;
       
   572   result->maxaccess = maxaccess;
       
   573   result->pre_zero = pre_zero;
       
   574   result->b_s_open = FALSE;	/* no associated backing-store object */
       
   575   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
       
   576   mem->virt_barray_list = result;
       
   577 
       
   578   return result;
       
   579 }
       
   580 
       
   581 
       
   582 METHODDEF(void)
       
   583 realize_virt_arrays (j_common_ptr cinfo)
       
   584 /* Allocate the in-memory buffers for any unrealized virtual arrays */
       
   585 {
       
   586   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
       
   587   long space_per_minheight, maximum_space, avail_mem;
       
   588   long minheights, max_minheights;
       
   589   jvirt_sarray_ptr sptr;
       
   590   jvirt_barray_ptr bptr;
       
   591 
       
   592   /* Compute the minimum space needed (maxaccess rows in each buffer)
       
   593    * and the maximum space needed (full image height in each buffer).
       
   594    * These may be of use to the system-dependent jpeg_mem_available routine.
       
   595    */
       
   596   space_per_minheight = 0;
       
   597   maximum_space = 0;
       
   598   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
       
   599     if (sptr->mem_buffer == NULL) { /* if not realized yet */
       
   600       space_per_minheight += (long) sptr->maxaccess *
       
   601 			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
       
   602       maximum_space += (long) sptr->rows_in_array *
       
   603 		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
       
   604     }
       
   605   }
       
   606   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
       
   607     if (bptr->mem_buffer == NULL) { /* if not realized yet */
       
   608       space_per_minheight += (long) bptr->maxaccess *
       
   609 			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
       
   610       maximum_space += (long) bptr->rows_in_array *
       
   611 		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
       
   612     }
       
   613   }
       
   614 
       
   615   if (space_per_minheight <= 0)
       
   616     return;			/* no unrealized arrays, no work */
       
   617 
       
   618   /* Determine amount of memory to actually use; this is system-dependent. */
       
   619   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
       
   620 				 mem->total_space_allocated);
       
   621 
       
   622   /* If the maximum space needed is available, make all the buffers full
       
   623    * height; otherwise parcel it out with the same number of minheights
       
   624    * in each buffer.
       
   625    */
       
   626   if (avail_mem >= maximum_space)
       
   627     max_minheights = 1000000000L;
       
   628   else {
       
   629     max_minheights = avail_mem / space_per_minheight;
       
   630     /* If there doesn't seem to be enough space, try to get the minimum
       
   631      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
       
   632      */
       
   633     if (max_minheights <= 0)
       
   634       max_minheights = 1;
       
   635   }
       
   636 
       
   637   /* Allocate the in-memory buffers and initialize backing store as needed. */
       
   638 
       
   639   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
       
   640     if (sptr->mem_buffer == NULL) { /* if not realized yet */
       
   641       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
       
   642       if (minheights <= max_minheights) {
       
   643 	/* This buffer fits in memory */
       
   644 	sptr->rows_in_mem = sptr->rows_in_array;
       
   645       } else {
       
   646 	/* It doesn't fit in memory, create backing store. */
       
   647 	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
       
   648 	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
       
   649 				(long) sptr->rows_in_array *
       
   650 				(long) sptr->samplesperrow *
       
   651 				(long) SIZEOF(JSAMPLE));
       
   652 	sptr->b_s_open = TRUE;
       
   653       }
       
   654       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
       
   655 				      sptr->samplesperrow, sptr->rows_in_mem);
       
   656       sptr->rowsperchunk = mem->last_rowsperchunk;
       
   657       sptr->cur_start_row = 0;
       
   658       sptr->first_undef_row = 0;
       
   659       sptr->dirty = FALSE;
       
   660     }
       
   661   }
       
   662 
       
   663   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
       
   664     if (bptr->mem_buffer == NULL) { /* if not realized yet */
       
   665       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
       
   666       if (minheights <= max_minheights) {
       
   667 	/* This buffer fits in memory */
       
   668 	bptr->rows_in_mem = bptr->rows_in_array;
       
   669       } else {
       
   670 	/* It doesn't fit in memory, create backing store. */
       
   671 	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
       
   672 	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
       
   673 				(long) bptr->rows_in_array *
       
   674 				(long) bptr->blocksperrow *
       
   675 				(long) SIZEOF(JBLOCK));
       
   676 	bptr->b_s_open = TRUE;
       
   677       }
       
   678       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
       
   679 				      bptr->blocksperrow, bptr->rows_in_mem);
       
   680       bptr->rowsperchunk = mem->last_rowsperchunk;
       
   681       bptr->cur_start_row = 0;
       
   682       bptr->first_undef_row = 0;
       
   683       bptr->dirty = FALSE;
       
   684     }
       
   685   }
       
   686 }
       
   687 
       
   688 
       
   689 LOCAL(void)
       
   690 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
       
   691 /* Do backing store read or write of a virtual sample array */
       
   692 {
       
   693   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
       
   694 
       
   695   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
       
   696   file_offset = ptr->cur_start_row * bytesperrow;
       
   697   /* Loop to read or write each allocation chunk in mem_buffer */
       
   698   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
       
   699     /* One chunk, but check for short chunk at end of buffer */
       
   700     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
       
   701     /* Transfer no more than is currently defined */
       
   702     thisrow = (long) ptr->cur_start_row + i;
       
   703     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
       
   704     /* Transfer no more than fits in file */
       
   705     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
       
   706     if (rows <= 0)		/* this chunk might be past end of file! */
       
   707       break;
       
   708     byte_count = rows * bytesperrow;
       
   709     if (writing)
       
   710       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
       
   711 					    (void FAR *) ptr->mem_buffer[i],
       
   712 					    file_offset, byte_count);
       
   713     else
       
   714       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
       
   715 					   (void FAR *) ptr->mem_buffer[i],
       
   716 					   file_offset, byte_count);
       
   717     file_offset += byte_count;
       
   718   }
       
   719 }
       
   720 
       
   721 
       
   722 LOCAL(void)
       
   723 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
       
   724 /* Do backing store read or write of a virtual coefficient-block array */
       
   725 {
       
   726   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
       
   727 
       
   728   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
       
   729   file_offset = ptr->cur_start_row * bytesperrow;
       
   730   /* Loop to read or write each allocation chunk in mem_buffer */
       
   731   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
       
   732     /* One chunk, but check for short chunk at end of buffer */
       
   733     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
       
   734     /* Transfer no more than is currently defined */
       
   735     thisrow = (long) ptr->cur_start_row + i;
       
   736     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
       
   737     /* Transfer no more than fits in file */
       
   738     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
       
   739     if (rows <= 0)		/* this chunk might be past end of file! */
       
   740       break;
       
   741     byte_count = rows * bytesperrow;
       
   742     if (writing)
       
   743       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
       
   744 					    (void FAR *) ptr->mem_buffer[i],
       
   745 					    file_offset, byte_count);
       
   746     else
       
   747       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
       
   748 					   (void FAR *) ptr->mem_buffer[i],
       
   749 					   file_offset, byte_count);
       
   750     file_offset += byte_count;
       
   751   }
       
   752 }
       
   753 
       
   754 
       
   755 METHODDEF(JSAMPARRAY)
       
   756 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
       
   757 		    JDIMENSION start_row, JDIMENSION num_rows,
       
   758 		    boolean writable)
       
   759 /* Access the part of a virtual sample array starting at start_row */
       
   760 /* and extending for num_rows rows.  writable is true if  */
       
   761 /* caller intends to modify the accessed area. */
       
   762 {
       
   763   JDIMENSION end_row = start_row + num_rows;
       
   764   JDIMENSION undef_row;
       
   765 
       
   766   /* debugging check */
       
   767   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
       
   768       ptr->mem_buffer == NULL)
       
   769     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
       
   770 
       
   771   /* Make the desired part of the virtual array accessible */
       
   772   if (start_row < ptr->cur_start_row ||
       
   773       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
       
   774     if (! ptr->b_s_open)
       
   775       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
       
   776     /* Flush old buffer contents if necessary */
       
   777     if (ptr->dirty) {
       
   778       do_sarray_io(cinfo, ptr, TRUE);
       
   779       ptr->dirty = FALSE;
       
   780     }
       
   781     /* Decide what part of virtual array to access.
       
   782      * Algorithm: if target address > current window, assume forward scan,
       
   783      * load starting at target address.  If target address < current window,
       
   784      * assume backward scan, load so that target area is top of window.
       
   785      * Note that when switching from forward write to forward read, will have
       
   786      * start_row = 0, so the limiting case applies and we load from 0 anyway.
       
   787      */
       
   788     if (start_row > ptr->cur_start_row) {
       
   789       ptr->cur_start_row = start_row;
       
   790     } else {
       
   791       /* use long arithmetic here to avoid overflow & unsigned problems */
       
   792       long ltemp;
       
   793 
       
   794       ltemp = (long) end_row - (long) ptr->rows_in_mem;
       
   795       if (ltemp < 0)
       
   796 	ltemp = 0;		/* don't fall off front end of file */
       
   797       ptr->cur_start_row = (JDIMENSION) ltemp;
       
   798     }
       
   799     /* Read in the selected part of the array.
       
   800      * During the initial write pass, we will do no actual read
       
   801      * because the selected part is all undefined.
       
   802      */
       
   803     do_sarray_io(cinfo, ptr, FALSE);
       
   804   }
       
   805   /* Ensure the accessed part of the array is defined; prezero if needed.
       
   806    * To improve locality of access, we only prezero the part of the array
       
   807    * that the caller is about to access, not the entire in-memory array.
       
   808    */
       
   809   if (ptr->first_undef_row < end_row) {
       
   810     if (ptr->first_undef_row < start_row) {
       
   811       if (writable)		/* writer skipped over a section of array */
       
   812 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
       
   813       undef_row = start_row;	/* but reader is allowed to read ahead */
       
   814     } else {
       
   815       undef_row = ptr->first_undef_row;
       
   816     }
       
   817     if (writable)
       
   818       ptr->first_undef_row = end_row;
       
   819     if (ptr->pre_zero) {
       
   820       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
       
   821       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
       
   822       end_row -= ptr->cur_start_row;
       
   823       while (undef_row < end_row) {
       
   824 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
       
   825 	undef_row++;
       
   826       }
       
   827     } else {
       
   828       if (! writable)		/* reader looking at undefined data */
       
   829 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
       
   830     }
       
   831   }
       
   832   /* Flag the buffer dirty if caller will write in it */
       
   833   if (writable)
       
   834     ptr->dirty = TRUE;
       
   835   /* Return address of proper part of the buffer */
       
   836   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
       
   837 }
       
   838 
       
   839 
       
   840 METHODDEF(JBLOCKARRAY)
       
   841 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
       
   842 		    JDIMENSION start_row, JDIMENSION num_rows,
       
   843 		    boolean writable)
       
   844 /* Access the part of a virtual block array starting at start_row */
       
   845 /* and extending for num_rows rows.  writable is true if  */
       
   846 /* caller intends to modify the accessed area. */
       
   847 {
       
   848   JDIMENSION end_row = start_row + num_rows;
       
   849   JDIMENSION undef_row;
       
   850 
       
   851   /* debugging check */
       
   852   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
       
   853       ptr->mem_buffer == NULL)
       
   854     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
       
   855 
       
   856   /* Make the desired part of the virtual array accessible */
       
   857   if (start_row < ptr->cur_start_row ||
       
   858       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
       
   859     if (! ptr->b_s_open)
       
   860       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
       
   861     /* Flush old buffer contents if necessary */
       
   862     if (ptr->dirty) {
       
   863       do_barray_io(cinfo, ptr, TRUE);
       
   864       ptr->dirty = FALSE;
       
   865     }
       
   866     /* Decide what part of virtual array to access.
       
   867      * Algorithm: if target address > current window, assume forward scan,
       
   868      * load starting at target address.  If target address < current window,
       
   869      * assume backward scan, load so that target area is top of window.
       
   870      * Note that when switching from forward write to forward read, will have
       
   871      * start_row = 0, so the limiting case applies and we load from 0 anyway.
       
   872      */
       
   873     if (start_row > ptr->cur_start_row) {
       
   874       ptr->cur_start_row = start_row;
       
   875     } else {
       
   876       /* use long arithmetic here to avoid overflow & unsigned problems */
       
   877       long ltemp;
       
   878 
       
   879       ltemp = (long) end_row - (long) ptr->rows_in_mem;
       
   880       if (ltemp < 0)
       
   881 	ltemp = 0;		/* don't fall off front end of file */
       
   882       ptr->cur_start_row = (JDIMENSION) ltemp;
       
   883     }
       
   884     /* Read in the selected part of the array.
       
   885      * During the initial write pass, we will do no actual read
       
   886      * because the selected part is all undefined.
       
   887      */
       
   888     do_barray_io(cinfo, ptr, FALSE);
       
   889   }
       
   890   /* Ensure the accessed part of the array is defined; prezero if needed.
       
   891    * To improve locality of access, we only prezero the part of the array
       
   892    * that the caller is about to access, not the entire in-memory array.
       
   893    */
       
   894   if (ptr->first_undef_row < end_row) {
       
   895     if (ptr->first_undef_row < start_row) {
       
   896       if (writable)		/* writer skipped over a section of array */
       
   897 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
       
   898       undef_row = start_row;	/* but reader is allowed to read ahead */
       
   899     } else {
       
   900       undef_row = ptr->first_undef_row;
       
   901     }
       
   902     if (writable)
       
   903       ptr->first_undef_row = end_row;
       
   904     if (ptr->pre_zero) {
       
   905       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
       
   906       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
       
   907       end_row -= ptr->cur_start_row;
       
   908       while (undef_row < end_row) {
       
   909 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
       
   910 	undef_row++;
       
   911       }
       
   912     } else {
       
   913       if (! writable)		/* reader looking at undefined data */
       
   914 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
       
   915     }
       
   916   }
       
   917   /* Flag the buffer dirty if caller will write in it */
       
   918   if (writable)
       
   919     ptr->dirty = TRUE;
       
   920   /* Return address of proper part of the buffer */
       
   921   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
       
   922 }
       
   923 
       
   924 
       
   925 /*
       
   926  * Release all objects belonging to a specified pool.
       
   927  */
       
   928 
       
   929 METHODDEF(void)
       
   930 free_pool (j_common_ptr cinfo, int pool_id)
       
   931 {
       
   932   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
       
   933   small_pool_ptr shdr_ptr;
       
   934   large_pool_ptr lhdr_ptr;
       
   935   size_t space_freed;
       
   936 
       
   937   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
       
   938     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
       
   939 
       
   940 #ifdef MEM_STATS
       
   941   if (cinfo->err->trace_level > 1)
       
   942     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
       
   943 #endif
       
   944 
       
   945   /* If freeing IMAGE pool, close any virtual arrays first */
       
   946   if (pool_id == JPOOL_IMAGE) {
       
   947     jvirt_sarray_ptr sptr;
       
   948     jvirt_barray_ptr bptr;
       
   949 
       
   950     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
       
   951       if (sptr->b_s_open) {	/* there may be no backing store */
       
   952 	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
       
   953 	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
       
   954       }
       
   955     }
       
   956     mem->virt_sarray_list = NULL;
       
   957     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
       
   958       if (bptr->b_s_open) {	/* there may be no backing store */
       
   959 	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
       
   960 	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
       
   961       }
       
   962     }
       
   963     mem->virt_barray_list = NULL;
       
   964   }
       
   965 
       
   966   /* Release large objects */
       
   967   lhdr_ptr = mem->large_list[pool_id];
       
   968   mem->large_list[pool_id] = NULL;
       
   969 
       
   970   while (lhdr_ptr != NULL) {
       
   971     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
       
   972     space_freed = lhdr_ptr->hdr.bytes_used +
       
   973 		  lhdr_ptr->hdr.bytes_left +
       
   974 		  SIZEOF(large_pool_hdr);
       
   975     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
       
   976     mem->total_space_allocated -= space_freed;
       
   977     lhdr_ptr = next_lhdr_ptr;
       
   978   }
       
   979 
       
   980   /* Release small objects */
       
   981   shdr_ptr = mem->small_list[pool_id];
       
   982   mem->small_list[pool_id] = NULL;
       
   983 
       
   984   while (shdr_ptr != NULL) {
       
   985     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
       
   986     space_freed = shdr_ptr->hdr.bytes_used +
       
   987 		  shdr_ptr->hdr.bytes_left +
       
   988 		  SIZEOF(small_pool_hdr);
       
   989     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
       
   990     mem->total_space_allocated -= space_freed;
       
   991     shdr_ptr = next_shdr_ptr;
       
   992   }
       
   993 }
       
   994 
       
   995 
       
   996 /*
       
   997  * Close up shop entirely.
       
   998  * Note that this cannot be called unless cinfo->mem is non-NULL.
       
   999  */
       
  1000 
       
  1001 METHODDEF(void)
       
  1002 self_destruct (j_common_ptr cinfo)
       
  1003 {
       
  1004   int pool;
       
  1005 
       
  1006   /* Close all backing store, release all memory.
       
  1007    * Releasing pools in reverse order might help avoid fragmentation
       
  1008    * with some (brain-damaged) malloc libraries.
       
  1009    */
       
  1010   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
       
  1011     free_pool(cinfo, pool);
       
  1012   }
       
  1013 
       
  1014   /* Release the memory manager control block too. */
       
  1015   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
       
  1016   cinfo->mem = NULL;		/* ensures I will be called only once */
       
  1017 
       
  1018   jpeg_mem_term(cinfo);		/* system-dependent cleanup */
       
  1019 }
       
  1020 
       
  1021 
       
  1022 /*
       
  1023  * Memory manager initialization.
       
  1024  * When this is called, only the error manager pointer is valid in cinfo!
       
  1025  */
       
  1026 
       
  1027 GLOBAL(void)
       
  1028 jinit_memory_mgr (j_common_ptr cinfo)
       
  1029 {
       
  1030   my_mem_ptr mem;
       
  1031   long max_to_use;
       
  1032   int pool;
       
  1033   size_t test_mac;
       
  1034 
       
  1035   cinfo->mem = NULL;		/* for safety if init fails */
       
  1036 
       
  1037   /* Check for configuration errors.
       
  1038    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
       
  1039    * doesn't reflect any real hardware alignment requirement.
       
  1040    * The test is a little tricky: for X>0, X and X-1 have no one-bits
       
  1041    * in common if and only if X is a power of 2, ie has only one one-bit.
       
  1042    * Some compilers may give an "unreachable code" warning here; ignore it.
       
  1043    */
       
  1044   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
       
  1045     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
       
  1046   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
       
  1047    * a multiple of SIZEOF(ALIGN_TYPE).
       
  1048    * Again, an "unreachable code" warning may be ignored here.
       
  1049    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
       
  1050    */
       
  1051   test_mac = (size_t) MAX_ALLOC_CHUNK;
       
  1052   if ((long) test_mac != MAX_ALLOC_CHUNK ||
       
  1053       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
       
  1054     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
       
  1055 
       
  1056   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
       
  1057 
       
  1058   /* Attempt to allocate memory manager's control block */
       
  1059   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
       
  1060 
       
  1061   if (mem == NULL) {
       
  1062     jpeg_mem_term(cinfo);	/* system-dependent cleanup */
       
  1063     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
       
  1064   }
       
  1065 
       
  1066   /* OK, fill in the method pointers */
       
  1067   mem->pub.alloc_small = alloc_small;
       
  1068   mem->pub.alloc_large = alloc_large;
       
  1069   mem->pub.alloc_sarray = alloc_sarray;
       
  1070   mem->pub.alloc_barray = alloc_barray;
       
  1071   mem->pub.request_virt_sarray = request_virt_sarray;
       
  1072   mem->pub.request_virt_barray = request_virt_barray;
       
  1073   mem->pub.realize_virt_arrays = realize_virt_arrays;
       
  1074   mem->pub.access_virt_sarray = access_virt_sarray;
       
  1075   mem->pub.access_virt_barray = access_virt_barray;
       
  1076   mem->pub.free_pool = free_pool;
       
  1077   mem->pub.self_destruct = self_destruct;
       
  1078 
       
  1079   /* Make MAX_ALLOC_CHUNK accessible to other modules */
       
  1080   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
       
  1081 
       
  1082   /* Initialize working state */
       
  1083   mem->pub.max_memory_to_use = max_to_use;
       
  1084 
       
  1085   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
       
  1086     mem->small_list[pool] = NULL;
       
  1087     mem->large_list[pool] = NULL;
       
  1088   }
       
  1089   mem->virt_sarray_list = NULL;
       
  1090   mem->virt_barray_list = NULL;
       
  1091 
       
  1092   mem->total_space_allocated = SIZEOF(my_memory_mgr);
       
  1093 
       
  1094   /* Declare ourselves open for business */
       
  1095   cinfo->mem = & mem->pub;
       
  1096 
       
  1097   /* Check for an environment variable JPEGMEM; if found, override the
       
  1098    * default max_memory setting from jpeg_mem_init.  Note that the
       
  1099    * surrounding application may again override this value.
       
  1100    * If your system doesn't support getenv(), define NO_GETENV to disable
       
  1101    * this feature.
       
  1102    */
       
  1103 #ifndef NO_GETENV
       
  1104   { char * memenv;
       
  1105 
       
  1106     if ((memenv = getenv("JPEGMEM")) != NULL) {
       
  1107       char ch = 'x';
       
  1108 
       
  1109       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
       
  1110 	if (ch == 'm' || ch == 'M')
       
  1111 	  max_to_use *= 1000L;
       
  1112 	mem->pub.max_memory_to_use = max_to_use * 1000L;
       
  1113       }
       
  1114     }
       
  1115   }
       
  1116 #endif
       
  1117 
       
  1118 }