0
|
1 |
/*
|
|
2 |
* jmemmgr.c
|
|
3 |
*
|
|
4 |
* Copyright (C) 1991-1997, Thomas G. Lane.
|
|
5 |
* This file is part of the Independent JPEG Group's software.
|
|
6 |
* For conditions of distribution and use, see the accompanying README file.
|
|
7 |
*
|
|
8 |
* This file contains the JPEG system-independent memory management
|
|
9 |
* routines. This code is usable across a wide variety of machines; most
|
|
10 |
* of the system dependencies have been isolated in a separate file.
|
|
11 |
* The major functions provided here are:
|
|
12 |
* * pool-based allocation and freeing of memory;
|
|
13 |
* * policy decisions about how to divide available memory among the
|
|
14 |
* virtual arrays;
|
|
15 |
* * control logic for swapping virtual arrays between main memory and
|
|
16 |
* backing storage.
|
|
17 |
* The separate system-dependent file provides the actual backing-storage
|
|
18 |
* access code, and it contains the policy decision about how much total
|
|
19 |
* main memory to use.
|
|
20 |
* This file is system-dependent in the sense that some of its functions
|
|
21 |
* are unnecessary in some systems. For example, if there is enough virtual
|
|
22 |
* memory so that backing storage will never be used, much of the virtual
|
|
23 |
* array control logic could be removed. (Of course, if you have that much
|
|
24 |
* memory then you shouldn't care about a little bit of unused code...)
|
|
25 |
*/
|
|
26 |
|
|
27 |
#define JPEG_INTERNALS
|
|
28 |
#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
|
|
29 |
#include "jinclude.h"
|
|
30 |
#include "jpeglib.h"
|
|
31 |
#include "jmemsys.h" /* import the system-dependent declarations */
|
|
32 |
|
|
33 |
#ifndef NO_GETENV
|
|
34 |
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
|
|
35 |
extern char * getenv JPP((const char * name));
|
|
36 |
#endif
|
|
37 |
#endif
|
|
38 |
|
|
39 |
|
|
40 |
/*
|
|
41 |
* Some important notes:
|
|
42 |
* The allocation routines provided here must never return NULL.
|
|
43 |
* They should exit to error_exit if unsuccessful.
|
|
44 |
*
|
|
45 |
* It's not a good idea to try to merge the sarray and barray routines,
|
|
46 |
* even though they are textually almost the same, because samples are
|
|
47 |
* usually stored as bytes while coefficients are shorts or ints. Thus,
|
|
48 |
* in machines where byte pointers have a different representation from
|
|
49 |
* word pointers, the resulting machine code could not be the same.
|
|
50 |
*/
|
|
51 |
|
|
52 |
|
|
53 |
/*
|
|
54 |
* Many machines require storage alignment: longs must start on 4-byte
|
|
55 |
* boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
|
|
56 |
* always returns pointers that are multiples of the worst-case alignment
|
|
57 |
* requirement, and we had better do so too.
|
|
58 |
* There isn't any really portable way to determine the worst-case alignment
|
|
59 |
* requirement. This module assumes that the alignment requirement is
|
|
60 |
* multiples of sizeof(ALIGN_TYPE).
|
|
61 |
* By default, we define ALIGN_TYPE as double. This is necessary on some
|
|
62 |
* workstations (where doubles really do need 8-byte alignment) and will work
|
|
63 |
* fine on nearly everything. If your machine has lesser alignment needs,
|
|
64 |
* you can save a few bytes by making ALIGN_TYPE smaller.
|
|
65 |
* The only place I know of where this will NOT work is certain Macintosh
|
|
66 |
* 680x0 compilers that define double as a 10-byte IEEE extended float.
|
|
67 |
* Doing 10-byte alignment is counterproductive because longwords won't be
|
|
68 |
* aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
|
|
69 |
* such a compiler.
|
|
70 |
*/
|
|
71 |
|
|
72 |
#ifndef ALIGN_TYPE /* so can override from jconfig.h */
|
|
73 |
#define ALIGN_TYPE double
|
|
74 |
#endif
|
|
75 |
|
|
76 |
|
|
77 |
/*
|
|
78 |
* We allocate objects from "pools", where each pool is gotten with a single
|
|
79 |
* request to jpeg_get_small() or jpeg_get_large(). There is no per-object
|
|
80 |
* overhead within a pool, except for alignment padding. Each pool has a
|
|
81 |
* header with a link to the next pool of the same class.
|
|
82 |
* Small and large pool headers are identical except that the latter's
|
|
83 |
* link pointer must be FAR on 80x86 machines.
|
|
84 |
* Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
|
|
85 |
* field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
|
|
86 |
* of the alignment requirement of ALIGN_TYPE.
|
|
87 |
*/
|
|
88 |
|
|
89 |
typedef union small_pool_struct * small_pool_ptr;
|
|
90 |
|
|
91 |
typedef union small_pool_struct {
|
|
92 |
struct {
|
|
93 |
small_pool_ptr next; /* next in list of pools */
|
|
94 |
size_t bytes_used; /* how many bytes already used within pool */
|
|
95 |
size_t bytes_left; /* bytes still available in this pool */
|
|
96 |
} hdr;
|
|
97 |
ALIGN_TYPE dummy; /* included in union to ensure alignment */
|
|
98 |
} small_pool_hdr;
|
|
99 |
|
|
100 |
typedef union large_pool_struct FAR * large_pool_ptr;
|
|
101 |
|
|
102 |
typedef union large_pool_struct {
|
|
103 |
struct {
|
|
104 |
large_pool_ptr next; /* next in list of pools */
|
|
105 |
size_t bytes_used; /* how many bytes already used within pool */
|
|
106 |
size_t bytes_left; /* bytes still available in this pool */
|
|
107 |
} hdr;
|
|
108 |
ALIGN_TYPE dummy; /* included in union to ensure alignment */
|
|
109 |
} large_pool_hdr;
|
|
110 |
|
|
111 |
|
|
112 |
/*
|
|
113 |
* Here is the full definition of a memory manager object.
|
|
114 |
*/
|
|
115 |
|
|
116 |
typedef struct {
|
|
117 |
struct jpeg_memory_mgr pub; /* public fields */
|
|
118 |
|
|
119 |
/* Each pool identifier (lifetime class) names a linked list of pools. */
|
|
120 |
small_pool_ptr small_list[JPOOL_NUMPOOLS];
|
|
121 |
large_pool_ptr large_list[JPOOL_NUMPOOLS];
|
|
122 |
|
|
123 |
/* Since we only have one lifetime class of virtual arrays, only one
|
|
124 |
* linked list is necessary (for each datatype). Note that the virtual
|
|
125 |
* array control blocks being linked together are actually stored somewhere
|
|
126 |
* in the small-pool list.
|
|
127 |
*/
|
|
128 |
jvirt_sarray_ptr virt_sarray_list;
|
|
129 |
jvirt_barray_ptr virt_barray_list;
|
|
130 |
|
|
131 |
/* This counts total space obtained from jpeg_get_small/large */
|
|
132 |
long total_space_allocated;
|
|
133 |
|
|
134 |
/* alloc_sarray and alloc_barray set this value for use by virtual
|
|
135 |
* array routines.
|
|
136 |
*/
|
|
137 |
JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
|
|
138 |
} my_memory_mgr;
|
|
139 |
|
|
140 |
typedef my_memory_mgr * my_mem_ptr;
|
|
141 |
|
|
142 |
|
|
143 |
/*
|
|
144 |
* The control blocks for virtual arrays.
|
|
145 |
* Note that these blocks are allocated in the "small" pool area.
|
|
146 |
* System-dependent info for the associated backing store (if any) is hidden
|
|
147 |
* inside the backing_store_info struct.
|
|
148 |
*/
|
|
149 |
|
|
150 |
struct jvirt_sarray_control {
|
|
151 |
JSAMPARRAY mem_buffer; /* => the in-memory buffer */
|
|
152 |
JDIMENSION rows_in_array; /* total virtual array height */
|
|
153 |
JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
|
|
154 |
JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
|
|
155 |
JDIMENSION rows_in_mem; /* height of memory buffer */
|
|
156 |
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
|
|
157 |
JDIMENSION cur_start_row; /* first logical row # in the buffer */
|
|
158 |
JDIMENSION first_undef_row; /* row # of first uninitialized row */
|
|
159 |
boolean pre_zero; /* pre-zero mode requested? */
|
|
160 |
boolean dirty; /* do current buffer contents need written? */
|
|
161 |
boolean b_s_open; /* is backing-store data valid? */
|
|
162 |
jvirt_sarray_ptr next; /* link to next virtual sarray control block */
|
|
163 |
backing_store_info b_s_info; /* System-dependent control info */
|
|
164 |
};
|
|
165 |
|
|
166 |
struct jvirt_barray_control {
|
|
167 |
JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
|
|
168 |
JDIMENSION rows_in_array; /* total virtual array height */
|
|
169 |
JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
|
|
170 |
JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
|
|
171 |
JDIMENSION rows_in_mem; /* height of memory buffer */
|
|
172 |
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
|
|
173 |
JDIMENSION cur_start_row; /* first logical row # in the buffer */
|
|
174 |
JDIMENSION first_undef_row; /* row # of first uninitialized row */
|
|
175 |
boolean pre_zero; /* pre-zero mode requested? */
|
|
176 |
boolean dirty; /* do current buffer contents need written? */
|
|
177 |
boolean b_s_open; /* is backing-store data valid? */
|
|
178 |
jvirt_barray_ptr next; /* link to next virtual barray control block */
|
|
179 |
backing_store_info b_s_info; /* System-dependent control info */
|
|
180 |
};
|
|
181 |
|
|
182 |
|
|
183 |
#ifdef MEM_STATS /* optional extra stuff for statistics */
|
|
184 |
|
|
185 |
LOCAL(void)
|
|
186 |
print_mem_stats (j_common_ptr cinfo, int pool_id)
|
|
187 |
{
|
|
188 |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
|
189 |
small_pool_ptr shdr_ptr;
|
|
190 |
large_pool_ptr lhdr_ptr;
|
|
191 |
|
|
192 |
/* Since this is only a debugging stub, we can cheat a little by using
|
|
193 |
* fprintf directly rather than going through the trace message code.
|
|
194 |
* This is helpful because message parm array can't handle longs.
|
|
195 |
*/
|
|
196 |
fprintf(stderr, "Freeing pool %d, total space = %ld\n",
|
|
197 |
pool_id, mem->total_space_allocated);
|
|
198 |
|
|
199 |
for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
|
|
200 |
lhdr_ptr = lhdr_ptr->hdr.next) {
|
|
201 |
fprintf(stderr, " Large chunk used %ld\n",
|
|
202 |
(long) lhdr_ptr->hdr.bytes_used);
|
|
203 |
}
|
|
204 |
|
|
205 |
for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
|
|
206 |
shdr_ptr = shdr_ptr->hdr.next) {
|
|
207 |
fprintf(stderr, " Small chunk used %ld free %ld\n",
|
|
208 |
(long) shdr_ptr->hdr.bytes_used,
|
|
209 |
(long) shdr_ptr->hdr.bytes_left);
|
|
210 |
}
|
|
211 |
}
|
|
212 |
|
|
213 |
#endif /* MEM_STATS */
|
|
214 |
|
|
215 |
|
|
216 |
LOCAL(void)
|
|
217 |
out_of_memory (j_common_ptr cinfo, int which)
|
|
218 |
/* Report an out-of-memory error and stop execution */
|
|
219 |
/* If we compiled MEM_STATS support, report alloc requests before dying */
|
|
220 |
{
|
|
221 |
#ifdef MEM_STATS
|
|
222 |
cinfo->err->trace_level = 2; /* force self_destruct to report stats */
|
|
223 |
#endif
|
|
224 |
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
|
|
225 |
}
|
|
226 |
|
|
227 |
|
|
228 |
/*
|
|
229 |
* Allocation of "small" objects.
|
|
230 |
*
|
|
231 |
* For these, we use pooled storage. When a new pool must be created,
|
|
232 |
* we try to get enough space for the current request plus a "slop" factor,
|
|
233 |
* where the slop will be the amount of leftover space in the new pool.
|
|
234 |
* The speed vs. space tradeoff is largely determined by the slop values.
|
|
235 |
* A different slop value is provided for each pool class (lifetime),
|
|
236 |
* and we also distinguish the first pool of a class from later ones.
|
|
237 |
* NOTE: the values given work fairly well on both 16- and 32-bit-int
|
|
238 |
* machines, but may be too small if longs are 64 bits or more.
|
|
239 |
*/
|
|
240 |
|
|
241 |
static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
|
|
242 |
{
|
|
243 |
1600, /* first PERMANENT pool */
|
|
244 |
16000 /* first IMAGE pool */
|
|
245 |
};
|
|
246 |
|
|
247 |
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
|
|
248 |
{
|
|
249 |
0, /* additional PERMANENT pools */
|
|
250 |
5000 /* additional IMAGE pools */
|
|
251 |
};
|
|
252 |
|
|
253 |
#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
|
|
254 |
|
|
255 |
|
|
256 |
METHODDEF(void *)
|
|
257 |
alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
|
|
258 |
/* Allocate a "small" object */
|
|
259 |
{
|
|
260 |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
|
261 |
small_pool_ptr hdr_ptr, prev_hdr_ptr;
|
|
262 |
char * data_ptr;
|
|
263 |
size_t odd_bytes, min_request, slop;
|
|
264 |
|
|
265 |
/* Check for unsatisfiable request (do now to ensure no overflow below) */
|
|
266 |
if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
|
|
267 |
out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
|
|
268 |
|
|
269 |
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
|
|
270 |
odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
|
|
271 |
if (odd_bytes > 0)
|
|
272 |
sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
|
|
273 |
|
|
274 |
/* See if space is available in any existing pool */
|
|
275 |
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
|
|
276 |
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
|
277 |
prev_hdr_ptr = NULL;
|
|
278 |
hdr_ptr = mem->small_list[pool_id];
|
|
279 |
while (hdr_ptr != NULL) {
|
|
280 |
if (hdr_ptr->hdr.bytes_left >= sizeofobject)
|
|
281 |
break; /* found pool with enough space */
|
|
282 |
prev_hdr_ptr = hdr_ptr;
|
|
283 |
hdr_ptr = hdr_ptr->hdr.next;
|
|
284 |
}
|
|
285 |
|
|
286 |
/* Time to make a new pool? */
|
|
287 |
if (hdr_ptr == NULL) {
|
|
288 |
/* min_request is what we need now, slop is what will be leftover */
|
|
289 |
min_request = sizeofobject + SIZEOF(small_pool_hdr);
|
|
290 |
if (prev_hdr_ptr == NULL) /* first pool in class? */
|
|
291 |
slop = first_pool_slop[pool_id];
|
|
292 |
else
|
|
293 |
slop = extra_pool_slop[pool_id];
|
|
294 |
/* Don't ask for more than MAX_ALLOC_CHUNK */
|
|
295 |
if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
|
|
296 |
slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
|
|
297 |
/* Try to get space, if fail reduce slop and try again */
|
|
298 |
for (;;) {
|
|
299 |
hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
|
|
300 |
if (hdr_ptr != NULL)
|
|
301 |
break;
|
|
302 |
slop /= 2;
|
|
303 |
if (slop < MIN_SLOP) /* give up when it gets real small */
|
|
304 |
out_of_memory(cinfo, 2); /* jpeg_get_small failed */
|
|
305 |
}
|
|
306 |
mem->total_space_allocated += min_request + slop;
|
|
307 |
/* Success, initialize the new pool header and add to end of list */
|
|
308 |
hdr_ptr->hdr.next = NULL;
|
|
309 |
hdr_ptr->hdr.bytes_used = 0;
|
|
310 |
hdr_ptr->hdr.bytes_left = sizeofobject + slop;
|
|
311 |
if (prev_hdr_ptr == NULL) /* first pool in class? */
|
|
312 |
mem->small_list[pool_id] = hdr_ptr;
|
|
313 |
else
|
|
314 |
prev_hdr_ptr->hdr.next = hdr_ptr;
|
|
315 |
}
|
|
316 |
|
|
317 |
/* OK, allocate the object from the current pool */
|
|
318 |
data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
|
|
319 |
data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
|
|
320 |
hdr_ptr->hdr.bytes_used += sizeofobject;
|
|
321 |
hdr_ptr->hdr.bytes_left -= sizeofobject;
|
|
322 |
|
|
323 |
return (void *) data_ptr;
|
|
324 |
}
|
|
325 |
|
|
326 |
|
|
327 |
/*
|
|
328 |
* Allocation of "large" objects.
|
|
329 |
*
|
|
330 |
* The external semantics of these are the same as "small" objects,
|
|
331 |
* except that FAR pointers are used on 80x86. However the pool
|
|
332 |
* management heuristics are quite different. We assume that each
|
|
333 |
* request is large enough that it may as well be passed directly to
|
|
334 |
* jpeg_get_large; the pool management just links everything together
|
|
335 |
* so that we can free it all on demand.
|
|
336 |
* Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
|
|
337 |
* structures. The routines that create these structures (see below)
|
|
338 |
* deliberately bunch rows together to ensure a large request size.
|
|
339 |
*/
|
|
340 |
|
|
341 |
METHODDEF(void FAR *)
|
|
342 |
alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
|
|
343 |
/* Allocate a "large" object */
|
|
344 |
{
|
|
345 |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
|
346 |
large_pool_ptr hdr_ptr;
|
|
347 |
size_t odd_bytes;
|
|
348 |
|
|
349 |
/* Check for unsatisfiable request (do now to ensure no overflow below) */
|
|
350 |
if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
|
|
351 |
out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
|
|
352 |
|
|
353 |
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
|
|
354 |
odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
|
|
355 |
if (odd_bytes > 0)
|
|
356 |
sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
|
|
357 |
|
|
358 |
/* Always make a new pool */
|
|
359 |
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
|
|
360 |
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
|
361 |
|
|
362 |
hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
|
|
363 |
SIZEOF(large_pool_hdr));
|
|
364 |
if (hdr_ptr == NULL)
|
|
365 |
out_of_memory(cinfo, 4); /* jpeg_get_large failed */
|
|
366 |
mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
|
|
367 |
|
|
368 |
/* Success, initialize the new pool header and add to list */
|
|
369 |
hdr_ptr->hdr.next = mem->large_list[pool_id];
|
|
370 |
/* We maintain space counts in each pool header for statistical purposes,
|
|
371 |
* even though they are not needed for allocation.
|
|
372 |
*/
|
|
373 |
hdr_ptr->hdr.bytes_used = sizeofobject;
|
|
374 |
hdr_ptr->hdr.bytes_left = 0;
|
|
375 |
mem->large_list[pool_id] = hdr_ptr;
|
|
376 |
|
|
377 |
return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
|
|
378 |
}
|
|
379 |
|
|
380 |
|
|
381 |
/*
|
|
382 |
* Creation of 2-D sample arrays.
|
|
383 |
* The pointers are in near heap, the samples themselves in FAR heap.
|
|
384 |
*
|
|
385 |
* To minimize allocation overhead and to allow I/O of large contiguous
|
|
386 |
* blocks, we allocate the sample rows in groups of as many rows as possible
|
|
387 |
* without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
|
|
388 |
* NB: the virtual array control routines, later in this file, know about
|
|
389 |
* this chunking of rows. The rowsperchunk value is left in the mem manager
|
|
390 |
* object so that it can be saved away if this sarray is the workspace for
|
|
391 |
* a virtual array.
|
|
392 |
*/
|
|
393 |
|
|
394 |
METHODDEF(JSAMPARRAY)
|
|
395 |
alloc_sarray (j_common_ptr cinfo, int pool_id,
|
|
396 |
JDIMENSION samplesperrow, JDIMENSION numrows)
|
|
397 |
/* Allocate a 2-D sample array */
|
|
398 |
{
|
|
399 |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
|
400 |
JSAMPARRAY result;
|
|
401 |
JSAMPROW workspace;
|
|
402 |
JDIMENSION rowsperchunk, currow, i;
|
|
403 |
long ltemp;
|
|
404 |
|
|
405 |
/* Calculate max # of rows allowed in one allocation chunk */
|
|
406 |
ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
|
|
407 |
((long) samplesperrow * SIZEOF(JSAMPLE));
|
|
408 |
if (ltemp <= 0)
|
|
409 |
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
|
410 |
if (ltemp < (long) numrows)
|
|
411 |
rowsperchunk = (JDIMENSION) ltemp;
|
|
412 |
else
|
|
413 |
rowsperchunk = numrows;
|
|
414 |
mem->last_rowsperchunk = rowsperchunk;
|
|
415 |
|
|
416 |
/* Get space for row pointers (small object) */
|
|
417 |
result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
|
|
418 |
(size_t) (numrows * SIZEOF(JSAMPROW)));
|
|
419 |
|
|
420 |
/* Get the rows themselves (large objects) */
|
|
421 |
currow = 0;
|
|
422 |
while (currow < numrows) {
|
|
423 |
rowsperchunk = MIN(rowsperchunk, numrows - currow);
|
|
424 |
workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
|
|
425 |
(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
|
|
426 |
* SIZEOF(JSAMPLE)));
|
|
427 |
for (i = rowsperchunk; i > 0; i--) {
|
|
428 |
result[currow++] = workspace;
|
|
429 |
workspace += samplesperrow;
|
|
430 |
}
|
|
431 |
}
|
|
432 |
|
|
433 |
return result;
|
|
434 |
}
|
|
435 |
|
|
436 |
|
|
437 |
/*
|
|
438 |
* Creation of 2-D coefficient-block arrays.
|
|
439 |
* This is essentially the same as the code for sample arrays, above.
|
|
440 |
*/
|
|
441 |
|
|
442 |
METHODDEF(JBLOCKARRAY)
|
|
443 |
alloc_barray (j_common_ptr cinfo, int pool_id,
|
|
444 |
JDIMENSION blocksperrow, JDIMENSION numrows)
|
|
445 |
/* Allocate a 2-D coefficient-block array */
|
|
446 |
{
|
|
447 |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
|
448 |
JBLOCKARRAY result;
|
|
449 |
JBLOCKROW workspace;
|
|
450 |
JDIMENSION rowsperchunk, currow, i;
|
|
451 |
long ltemp;
|
|
452 |
|
|
453 |
/* Calculate max # of rows allowed in one allocation chunk */
|
|
454 |
ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
|
|
455 |
((long) blocksperrow * SIZEOF(JBLOCK));
|
|
456 |
if (ltemp <= 0)
|
|
457 |
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
|
|
458 |
if (ltemp < (long) numrows)
|
|
459 |
rowsperchunk = (JDIMENSION) ltemp;
|
|
460 |
else
|
|
461 |
rowsperchunk = numrows;
|
|
462 |
mem->last_rowsperchunk = rowsperchunk;
|
|
463 |
|
|
464 |
/* Get space for row pointers (small object) */
|
|
465 |
result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
|
|
466 |
(size_t) (numrows * SIZEOF(JBLOCKROW)));
|
|
467 |
|
|
468 |
/* Get the rows themselves (large objects) */
|
|
469 |
currow = 0;
|
|
470 |
while (currow < numrows) {
|
|
471 |
rowsperchunk = MIN(rowsperchunk, numrows - currow);
|
|
472 |
workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
|
|
473 |
(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
|
|
474 |
* SIZEOF(JBLOCK)));
|
|
475 |
for (i = rowsperchunk; i > 0; i--) {
|
|
476 |
result[currow++] = workspace;
|
|
477 |
workspace += blocksperrow;
|
|
478 |
}
|
|
479 |
}
|
|
480 |
|
|
481 |
return result;
|
|
482 |
}
|
|
483 |
|
|
484 |
|
|
485 |
/*
|
|
486 |
* About virtual array management:
|
|
487 |
*
|
|
488 |
* The above "normal" array routines are only used to allocate strip buffers
|
|
489 |
* (as wide as the image, but just a few rows high). Full-image-sized buffers
|
|
490 |
* are handled as "virtual" arrays. The array is still accessed a strip at a
|
|
491 |
* time, but the memory manager must save the whole array for repeated
|
|
492 |
* accesses. The intended implementation is that there is a strip buffer in
|
|
493 |
* memory (as high as is possible given the desired memory limit), plus a
|
|
494 |
* backing file that holds the rest of the array.
|
|
495 |
*
|
|
496 |
* The request_virt_array routines are told the total size of the image and
|
|
497 |
* the maximum number of rows that will be accessed at once. The in-memory
|
|
498 |
* buffer must be at least as large as the maxaccess value.
|
|
499 |
*
|
|
500 |
* The request routines create control blocks but not the in-memory buffers.
|
|
501 |
* That is postponed until realize_virt_arrays is called. At that time the
|
|
502 |
* total amount of space needed is known (approximately, anyway), so free
|
|
503 |
* memory can be divided up fairly.
|
|
504 |
*
|
|
505 |
* The access_virt_array routines are responsible for making a specific strip
|
|
506 |
* area accessible (after reading or writing the backing file, if necessary).
|
|
507 |
* Note that the access routines are told whether the caller intends to modify
|
|
508 |
* the accessed strip; during a read-only pass this saves having to rewrite
|
|
509 |
* data to disk. The access routines are also responsible for pre-zeroing
|
|
510 |
* any newly accessed rows, if pre-zeroing was requested.
|
|
511 |
*
|
|
512 |
* In current usage, the access requests are usually for nonoverlapping
|
|
513 |
* strips; that is, successive access start_row numbers differ by exactly
|
|
514 |
* num_rows = maxaccess. This means we can get good performance with simple
|
|
515 |
* buffer dump/reload logic, by making the in-memory buffer be a multiple
|
|
516 |
* of the access height; then there will never be accesses across bufferload
|
|
517 |
* boundaries. The code will still work with overlapping access requests,
|
|
518 |
* but it doesn't handle bufferload overlaps very efficiently.
|
|
519 |
*/
|
|
520 |
|
|
521 |
|
|
522 |
METHODDEF(jvirt_sarray_ptr)
|
|
523 |
request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
|
|
524 |
JDIMENSION samplesperrow, JDIMENSION numrows,
|
|
525 |
JDIMENSION maxaccess)
|
|
526 |
/* Request a virtual 2-D sample array */
|
|
527 |
{
|
|
528 |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
|
529 |
jvirt_sarray_ptr result;
|
|
530 |
|
|
531 |
/* Only IMAGE-lifetime virtual arrays are currently supported */
|
|
532 |
if (pool_id != JPOOL_IMAGE)
|
|
533 |
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
|
534 |
|
|
535 |
/* get control block */
|
|
536 |
result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
|
|
537 |
SIZEOF(struct jvirt_sarray_control));
|
|
538 |
|
|
539 |
result->mem_buffer = NULL; /* marks array not yet realized */
|
|
540 |
result->rows_in_array = numrows;
|
|
541 |
result->samplesperrow = samplesperrow;
|
|
542 |
result->maxaccess = maxaccess;
|
|
543 |
result->pre_zero = pre_zero;
|
|
544 |
result->b_s_open = FALSE; /* no associated backing-store object */
|
|
545 |
result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
|
|
546 |
mem->virt_sarray_list = result;
|
|
547 |
|
|
548 |
return result;
|
|
549 |
}
|
|
550 |
|
|
551 |
|
|
552 |
METHODDEF(jvirt_barray_ptr)
|
|
553 |
request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
|
|
554 |
JDIMENSION blocksperrow, JDIMENSION numrows,
|
|
555 |
JDIMENSION maxaccess)
|
|
556 |
/* Request a virtual 2-D coefficient-block array */
|
|
557 |
{
|
|
558 |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
|
559 |
jvirt_barray_ptr result;
|
|
560 |
|
|
561 |
/* Only IMAGE-lifetime virtual arrays are currently supported */
|
|
562 |
if (pool_id != JPOOL_IMAGE)
|
|
563 |
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
|
564 |
|
|
565 |
/* get control block */
|
|
566 |
result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
|
|
567 |
SIZEOF(struct jvirt_barray_control));
|
|
568 |
|
|
569 |
result->mem_buffer = NULL; /* marks array not yet realized */
|
|
570 |
result->rows_in_array = numrows;
|
|
571 |
result->blocksperrow = blocksperrow;
|
|
572 |
result->maxaccess = maxaccess;
|
|
573 |
result->pre_zero = pre_zero;
|
|
574 |
result->b_s_open = FALSE; /* no associated backing-store object */
|
|
575 |
result->next = mem->virt_barray_list; /* add to list of virtual arrays */
|
|
576 |
mem->virt_barray_list = result;
|
|
577 |
|
|
578 |
return result;
|
|
579 |
}
|
|
580 |
|
|
581 |
|
|
582 |
METHODDEF(void)
|
|
583 |
realize_virt_arrays (j_common_ptr cinfo)
|
|
584 |
/* Allocate the in-memory buffers for any unrealized virtual arrays */
|
|
585 |
{
|
|
586 |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
|
587 |
long space_per_minheight, maximum_space, avail_mem;
|
|
588 |
long minheights, max_minheights;
|
|
589 |
jvirt_sarray_ptr sptr;
|
|
590 |
jvirt_barray_ptr bptr;
|
|
591 |
|
|
592 |
/* Compute the minimum space needed (maxaccess rows in each buffer)
|
|
593 |
* and the maximum space needed (full image height in each buffer).
|
|
594 |
* These may be of use to the system-dependent jpeg_mem_available routine.
|
|
595 |
*/
|
|
596 |
space_per_minheight = 0;
|
|
597 |
maximum_space = 0;
|
|
598 |
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
|
|
599 |
if (sptr->mem_buffer == NULL) { /* if not realized yet */
|
|
600 |
space_per_minheight += (long) sptr->maxaccess *
|
|
601 |
(long) sptr->samplesperrow * SIZEOF(JSAMPLE);
|
|
602 |
maximum_space += (long) sptr->rows_in_array *
|
|
603 |
(long) sptr->samplesperrow * SIZEOF(JSAMPLE);
|
|
604 |
}
|
|
605 |
}
|
|
606 |
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
|
|
607 |
if (bptr->mem_buffer == NULL) { /* if not realized yet */
|
|
608 |
space_per_minheight += (long) bptr->maxaccess *
|
|
609 |
(long) bptr->blocksperrow * SIZEOF(JBLOCK);
|
|
610 |
maximum_space += (long) bptr->rows_in_array *
|
|
611 |
(long) bptr->blocksperrow * SIZEOF(JBLOCK);
|
|
612 |
}
|
|
613 |
}
|
|
614 |
|
|
615 |
if (space_per_minheight <= 0)
|
|
616 |
return; /* no unrealized arrays, no work */
|
|
617 |
|
|
618 |
/* Determine amount of memory to actually use; this is system-dependent. */
|
|
619 |
avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
|
|
620 |
mem->total_space_allocated);
|
|
621 |
|
|
622 |
/* If the maximum space needed is available, make all the buffers full
|
|
623 |
* height; otherwise parcel it out with the same number of minheights
|
|
624 |
* in each buffer.
|
|
625 |
*/
|
|
626 |
if (avail_mem >= maximum_space)
|
|
627 |
max_minheights = 1000000000L;
|
|
628 |
else {
|
|
629 |
max_minheights = avail_mem / space_per_minheight;
|
|
630 |
/* If there doesn't seem to be enough space, try to get the minimum
|
|
631 |
* anyway. This allows a "stub" implementation of jpeg_mem_available().
|
|
632 |
*/
|
|
633 |
if (max_minheights <= 0)
|
|
634 |
max_minheights = 1;
|
|
635 |
}
|
|
636 |
|
|
637 |
/* Allocate the in-memory buffers and initialize backing store as needed. */
|
|
638 |
|
|
639 |
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
|
|
640 |
if (sptr->mem_buffer == NULL) { /* if not realized yet */
|
|
641 |
minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
|
|
642 |
if (minheights <= max_minheights) {
|
|
643 |
/* This buffer fits in memory */
|
|
644 |
sptr->rows_in_mem = sptr->rows_in_array;
|
|
645 |
} else {
|
|
646 |
/* It doesn't fit in memory, create backing store. */
|
|
647 |
sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
|
|
648 |
jpeg_open_backing_store(cinfo, & sptr->b_s_info,
|
|
649 |
(long) sptr->rows_in_array *
|
|
650 |
(long) sptr->samplesperrow *
|
|
651 |
(long) SIZEOF(JSAMPLE));
|
|
652 |
sptr->b_s_open = TRUE;
|
|
653 |
}
|
|
654 |
sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
|
|
655 |
sptr->samplesperrow, sptr->rows_in_mem);
|
|
656 |
sptr->rowsperchunk = mem->last_rowsperchunk;
|
|
657 |
sptr->cur_start_row = 0;
|
|
658 |
sptr->first_undef_row = 0;
|
|
659 |
sptr->dirty = FALSE;
|
|
660 |
}
|
|
661 |
}
|
|
662 |
|
|
663 |
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
|
|
664 |
if (bptr->mem_buffer == NULL) { /* if not realized yet */
|
|
665 |
minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
|
|
666 |
if (minheights <= max_minheights) {
|
|
667 |
/* This buffer fits in memory */
|
|
668 |
bptr->rows_in_mem = bptr->rows_in_array;
|
|
669 |
} else {
|
|
670 |
/* It doesn't fit in memory, create backing store. */
|
|
671 |
bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
|
|
672 |
jpeg_open_backing_store(cinfo, & bptr->b_s_info,
|
|
673 |
(long) bptr->rows_in_array *
|
|
674 |
(long) bptr->blocksperrow *
|
|
675 |
(long) SIZEOF(JBLOCK));
|
|
676 |
bptr->b_s_open = TRUE;
|
|
677 |
}
|
|
678 |
bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
|
|
679 |
bptr->blocksperrow, bptr->rows_in_mem);
|
|
680 |
bptr->rowsperchunk = mem->last_rowsperchunk;
|
|
681 |
bptr->cur_start_row = 0;
|
|
682 |
bptr->first_undef_row = 0;
|
|
683 |
bptr->dirty = FALSE;
|
|
684 |
}
|
|
685 |
}
|
|
686 |
}
|
|
687 |
|
|
688 |
|
|
689 |
LOCAL(void)
|
|
690 |
do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
|
|
691 |
/* Do backing store read or write of a virtual sample array */
|
|
692 |
{
|
|
693 |
long bytesperrow, file_offset, byte_count, rows, thisrow, i;
|
|
694 |
|
|
695 |
bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
|
|
696 |
file_offset = ptr->cur_start_row * bytesperrow;
|
|
697 |
/* Loop to read or write each allocation chunk in mem_buffer */
|
|
698 |
for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
|
|
699 |
/* One chunk, but check for short chunk at end of buffer */
|
|
700 |
rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
|
|
701 |
/* Transfer no more than is currently defined */
|
|
702 |
thisrow = (long) ptr->cur_start_row + i;
|
|
703 |
rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
|
|
704 |
/* Transfer no more than fits in file */
|
|
705 |
rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
|
|
706 |
if (rows <= 0) /* this chunk might be past end of file! */
|
|
707 |
break;
|
|
708 |
byte_count = rows * bytesperrow;
|
|
709 |
if (writing)
|
|
710 |
(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
|
|
711 |
(void FAR *) ptr->mem_buffer[i],
|
|
712 |
file_offset, byte_count);
|
|
713 |
else
|
|
714 |
(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
|
|
715 |
(void FAR *) ptr->mem_buffer[i],
|
|
716 |
file_offset, byte_count);
|
|
717 |
file_offset += byte_count;
|
|
718 |
}
|
|
719 |
}
|
|
720 |
|
|
721 |
|
|
722 |
LOCAL(void)
|
|
723 |
do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
|
|
724 |
/* Do backing store read or write of a virtual coefficient-block array */
|
|
725 |
{
|
|
726 |
long bytesperrow, file_offset, byte_count, rows, thisrow, i;
|
|
727 |
|
|
728 |
bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
|
|
729 |
file_offset = ptr->cur_start_row * bytesperrow;
|
|
730 |
/* Loop to read or write each allocation chunk in mem_buffer */
|
|
731 |
for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
|
|
732 |
/* One chunk, but check for short chunk at end of buffer */
|
|
733 |
rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
|
|
734 |
/* Transfer no more than is currently defined */
|
|
735 |
thisrow = (long) ptr->cur_start_row + i;
|
|
736 |
rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
|
|
737 |
/* Transfer no more than fits in file */
|
|
738 |
rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
|
|
739 |
if (rows <= 0) /* this chunk might be past end of file! */
|
|
740 |
break;
|
|
741 |
byte_count = rows * bytesperrow;
|
|
742 |
if (writing)
|
|
743 |
(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
|
|
744 |
(void FAR *) ptr->mem_buffer[i],
|
|
745 |
file_offset, byte_count);
|
|
746 |
else
|
|
747 |
(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
|
|
748 |
(void FAR *) ptr->mem_buffer[i],
|
|
749 |
file_offset, byte_count);
|
|
750 |
file_offset += byte_count;
|
|
751 |
}
|
|
752 |
}
|
|
753 |
|
|
754 |
|
|
755 |
METHODDEF(JSAMPARRAY)
|
|
756 |
access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
|
|
757 |
JDIMENSION start_row, JDIMENSION num_rows,
|
|
758 |
boolean writable)
|
|
759 |
/* Access the part of a virtual sample array starting at start_row */
|
|
760 |
/* and extending for num_rows rows. writable is true if */
|
|
761 |
/* caller intends to modify the accessed area. */
|
|
762 |
{
|
|
763 |
JDIMENSION end_row = start_row + num_rows;
|
|
764 |
JDIMENSION undef_row;
|
|
765 |
|
|
766 |
/* debugging check */
|
|
767 |
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
|
|
768 |
ptr->mem_buffer == NULL)
|
|
769 |
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
|
770 |
|
|
771 |
/* Make the desired part of the virtual array accessible */
|
|
772 |
if (start_row < ptr->cur_start_row ||
|
|
773 |
end_row > ptr->cur_start_row+ptr->rows_in_mem) {
|
|
774 |
if (! ptr->b_s_open)
|
|
775 |
ERREXIT(cinfo, JERR_VIRTUAL_BUG);
|
|
776 |
/* Flush old buffer contents if necessary */
|
|
777 |
if (ptr->dirty) {
|
|
778 |
do_sarray_io(cinfo, ptr, TRUE);
|
|
779 |
ptr->dirty = FALSE;
|
|
780 |
}
|
|
781 |
/* Decide what part of virtual array to access.
|
|
782 |
* Algorithm: if target address > current window, assume forward scan,
|
|
783 |
* load starting at target address. If target address < current window,
|
|
784 |
* assume backward scan, load so that target area is top of window.
|
|
785 |
* Note that when switching from forward write to forward read, will have
|
|
786 |
* start_row = 0, so the limiting case applies and we load from 0 anyway.
|
|
787 |
*/
|
|
788 |
if (start_row > ptr->cur_start_row) {
|
|
789 |
ptr->cur_start_row = start_row;
|
|
790 |
} else {
|
|
791 |
/* use long arithmetic here to avoid overflow & unsigned problems */
|
|
792 |
long ltemp;
|
|
793 |
|
|
794 |
ltemp = (long) end_row - (long) ptr->rows_in_mem;
|
|
795 |
if (ltemp < 0)
|
|
796 |
ltemp = 0; /* don't fall off front end of file */
|
|
797 |
ptr->cur_start_row = (JDIMENSION) ltemp;
|
|
798 |
}
|
|
799 |
/* Read in the selected part of the array.
|
|
800 |
* During the initial write pass, we will do no actual read
|
|
801 |
* because the selected part is all undefined.
|
|
802 |
*/
|
|
803 |
do_sarray_io(cinfo, ptr, FALSE);
|
|
804 |
}
|
|
805 |
/* Ensure the accessed part of the array is defined; prezero if needed.
|
|
806 |
* To improve locality of access, we only prezero the part of the array
|
|
807 |
* that the caller is about to access, not the entire in-memory array.
|
|
808 |
*/
|
|
809 |
if (ptr->first_undef_row < end_row) {
|
|
810 |
if (ptr->first_undef_row < start_row) {
|
|
811 |
if (writable) /* writer skipped over a section of array */
|
|
812 |
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
|
813 |
undef_row = start_row; /* but reader is allowed to read ahead */
|
|
814 |
} else {
|
|
815 |
undef_row = ptr->first_undef_row;
|
|
816 |
}
|
|
817 |
if (writable)
|
|
818 |
ptr->first_undef_row = end_row;
|
|
819 |
if (ptr->pre_zero) {
|
|
820 |
size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
|
|
821 |
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
|
|
822 |
end_row -= ptr->cur_start_row;
|
|
823 |
while (undef_row < end_row) {
|
|
824 |
jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
|
|
825 |
undef_row++;
|
|
826 |
}
|
|
827 |
} else {
|
|
828 |
if (! writable) /* reader looking at undefined data */
|
|
829 |
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
|
830 |
}
|
|
831 |
}
|
|
832 |
/* Flag the buffer dirty if caller will write in it */
|
|
833 |
if (writable)
|
|
834 |
ptr->dirty = TRUE;
|
|
835 |
/* Return address of proper part of the buffer */
|
|
836 |
return ptr->mem_buffer + (start_row - ptr->cur_start_row);
|
|
837 |
}
|
|
838 |
|
|
839 |
|
|
840 |
METHODDEF(JBLOCKARRAY)
|
|
841 |
access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
|
|
842 |
JDIMENSION start_row, JDIMENSION num_rows,
|
|
843 |
boolean writable)
|
|
844 |
/* Access the part of a virtual block array starting at start_row */
|
|
845 |
/* and extending for num_rows rows. writable is true if */
|
|
846 |
/* caller intends to modify the accessed area. */
|
|
847 |
{
|
|
848 |
JDIMENSION end_row = start_row + num_rows;
|
|
849 |
JDIMENSION undef_row;
|
|
850 |
|
|
851 |
/* debugging check */
|
|
852 |
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
|
|
853 |
ptr->mem_buffer == NULL)
|
|
854 |
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
|
855 |
|
|
856 |
/* Make the desired part of the virtual array accessible */
|
|
857 |
if (start_row < ptr->cur_start_row ||
|
|
858 |
end_row > ptr->cur_start_row+ptr->rows_in_mem) {
|
|
859 |
if (! ptr->b_s_open)
|
|
860 |
ERREXIT(cinfo, JERR_VIRTUAL_BUG);
|
|
861 |
/* Flush old buffer contents if necessary */
|
|
862 |
if (ptr->dirty) {
|
|
863 |
do_barray_io(cinfo, ptr, TRUE);
|
|
864 |
ptr->dirty = FALSE;
|
|
865 |
}
|
|
866 |
/* Decide what part of virtual array to access.
|
|
867 |
* Algorithm: if target address > current window, assume forward scan,
|
|
868 |
* load starting at target address. If target address < current window,
|
|
869 |
* assume backward scan, load so that target area is top of window.
|
|
870 |
* Note that when switching from forward write to forward read, will have
|
|
871 |
* start_row = 0, so the limiting case applies and we load from 0 anyway.
|
|
872 |
*/
|
|
873 |
if (start_row > ptr->cur_start_row) {
|
|
874 |
ptr->cur_start_row = start_row;
|
|
875 |
} else {
|
|
876 |
/* use long arithmetic here to avoid overflow & unsigned problems */
|
|
877 |
long ltemp;
|
|
878 |
|
|
879 |
ltemp = (long) end_row - (long) ptr->rows_in_mem;
|
|
880 |
if (ltemp < 0)
|
|
881 |
ltemp = 0; /* don't fall off front end of file */
|
|
882 |
ptr->cur_start_row = (JDIMENSION) ltemp;
|
|
883 |
}
|
|
884 |
/* Read in the selected part of the array.
|
|
885 |
* During the initial write pass, we will do no actual read
|
|
886 |
* because the selected part is all undefined.
|
|
887 |
*/
|
|
888 |
do_barray_io(cinfo, ptr, FALSE);
|
|
889 |
}
|
|
890 |
/* Ensure the accessed part of the array is defined; prezero if needed.
|
|
891 |
* To improve locality of access, we only prezero the part of the array
|
|
892 |
* that the caller is about to access, not the entire in-memory array.
|
|
893 |
*/
|
|
894 |
if (ptr->first_undef_row < end_row) {
|
|
895 |
if (ptr->first_undef_row < start_row) {
|
|
896 |
if (writable) /* writer skipped over a section of array */
|
|
897 |
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
|
898 |
undef_row = start_row; /* but reader is allowed to read ahead */
|
|
899 |
} else {
|
|
900 |
undef_row = ptr->first_undef_row;
|
|
901 |
}
|
|
902 |
if (writable)
|
|
903 |
ptr->first_undef_row = end_row;
|
|
904 |
if (ptr->pre_zero) {
|
|
905 |
size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
|
|
906 |
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
|
|
907 |
end_row -= ptr->cur_start_row;
|
|
908 |
while (undef_row < end_row) {
|
|
909 |
jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
|
|
910 |
undef_row++;
|
|
911 |
}
|
|
912 |
} else {
|
|
913 |
if (! writable) /* reader looking at undefined data */
|
|
914 |
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
|
|
915 |
}
|
|
916 |
}
|
|
917 |
/* Flag the buffer dirty if caller will write in it */
|
|
918 |
if (writable)
|
|
919 |
ptr->dirty = TRUE;
|
|
920 |
/* Return address of proper part of the buffer */
|
|
921 |
return ptr->mem_buffer + (start_row - ptr->cur_start_row);
|
|
922 |
}
|
|
923 |
|
|
924 |
|
|
925 |
/*
|
|
926 |
* Release all objects belonging to a specified pool.
|
|
927 |
*/
|
|
928 |
|
|
929 |
METHODDEF(void)
|
|
930 |
free_pool (j_common_ptr cinfo, int pool_id)
|
|
931 |
{
|
|
932 |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
|
|
933 |
small_pool_ptr shdr_ptr;
|
|
934 |
large_pool_ptr lhdr_ptr;
|
|
935 |
size_t space_freed;
|
|
936 |
|
|
937 |
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
|
|
938 |
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
|
|
939 |
|
|
940 |
#ifdef MEM_STATS
|
|
941 |
if (cinfo->err->trace_level > 1)
|
|
942 |
print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
|
|
943 |
#endif
|
|
944 |
|
|
945 |
/* If freeing IMAGE pool, close any virtual arrays first */
|
|
946 |
if (pool_id == JPOOL_IMAGE) {
|
|
947 |
jvirt_sarray_ptr sptr;
|
|
948 |
jvirt_barray_ptr bptr;
|
|
949 |
|
|
950 |
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
|
|
951 |
if (sptr->b_s_open) { /* there may be no backing store */
|
|
952 |
sptr->b_s_open = FALSE; /* prevent recursive close if error */
|
|
953 |
(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
|
|
954 |
}
|
|
955 |
}
|
|
956 |
mem->virt_sarray_list = NULL;
|
|
957 |
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
|
|
958 |
if (bptr->b_s_open) { /* there may be no backing store */
|
|
959 |
bptr->b_s_open = FALSE; /* prevent recursive close if error */
|
|
960 |
(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
|
|
961 |
}
|
|
962 |
}
|
|
963 |
mem->virt_barray_list = NULL;
|
|
964 |
}
|
|
965 |
|
|
966 |
/* Release large objects */
|
|
967 |
lhdr_ptr = mem->large_list[pool_id];
|
|
968 |
mem->large_list[pool_id] = NULL;
|
|
969 |
|
|
970 |
while (lhdr_ptr != NULL) {
|
|
971 |
large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
|
|
972 |
space_freed = lhdr_ptr->hdr.bytes_used +
|
|
973 |
lhdr_ptr->hdr.bytes_left +
|
|
974 |
SIZEOF(large_pool_hdr);
|
|
975 |
jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
|
|
976 |
mem->total_space_allocated -= space_freed;
|
|
977 |
lhdr_ptr = next_lhdr_ptr;
|
|
978 |
}
|
|
979 |
|
|
980 |
/* Release small objects */
|
|
981 |
shdr_ptr = mem->small_list[pool_id];
|
|
982 |
mem->small_list[pool_id] = NULL;
|
|
983 |
|
|
984 |
while (shdr_ptr != NULL) {
|
|
985 |
small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
|
|
986 |
space_freed = shdr_ptr->hdr.bytes_used +
|
|
987 |
shdr_ptr->hdr.bytes_left +
|
|
988 |
SIZEOF(small_pool_hdr);
|
|
989 |
jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
|
|
990 |
mem->total_space_allocated -= space_freed;
|
|
991 |
shdr_ptr = next_shdr_ptr;
|
|
992 |
}
|
|
993 |
}
|
|
994 |
|
|
995 |
|
|
996 |
/*
|
|
997 |
* Close up shop entirely.
|
|
998 |
* Note that this cannot be called unless cinfo->mem is non-NULL.
|
|
999 |
*/
|
|
1000 |
|
|
1001 |
METHODDEF(void)
|
|
1002 |
self_destruct (j_common_ptr cinfo)
|
|
1003 |
{
|
|
1004 |
int pool;
|
|
1005 |
|
|
1006 |
/* Close all backing store, release all memory.
|
|
1007 |
* Releasing pools in reverse order might help avoid fragmentation
|
|
1008 |
* with some (brain-damaged) malloc libraries.
|
|
1009 |
*/
|
|
1010 |
for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
|
|
1011 |
free_pool(cinfo, pool);
|
|
1012 |
}
|
|
1013 |
|
|
1014 |
/* Release the memory manager control block too. */
|
|
1015 |
jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
|
|
1016 |
cinfo->mem = NULL; /* ensures I will be called only once */
|
|
1017 |
|
|
1018 |
jpeg_mem_term(cinfo); /* system-dependent cleanup */
|
|
1019 |
}
|
|
1020 |
|
|
1021 |
|
|
1022 |
/*
|
|
1023 |
* Memory manager initialization.
|
|
1024 |
* When this is called, only the error manager pointer is valid in cinfo!
|
|
1025 |
*/
|
|
1026 |
|
|
1027 |
GLOBAL(void)
|
|
1028 |
jinit_memory_mgr (j_common_ptr cinfo)
|
|
1029 |
{
|
|
1030 |
my_mem_ptr mem;
|
|
1031 |
long max_to_use;
|
|
1032 |
int pool;
|
|
1033 |
size_t test_mac;
|
|
1034 |
|
|
1035 |
cinfo->mem = NULL; /* for safety if init fails */
|
|
1036 |
|
|
1037 |
/* Check for configuration errors.
|
|
1038 |
* SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
|
|
1039 |
* doesn't reflect any real hardware alignment requirement.
|
|
1040 |
* The test is a little tricky: for X>0, X and X-1 have no one-bits
|
|
1041 |
* in common if and only if X is a power of 2, ie has only one one-bit.
|
|
1042 |
* Some compilers may give an "unreachable code" warning here; ignore it.
|
|
1043 |
*/
|
|
1044 |
if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
|
|
1045 |
ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
|
|
1046 |
/* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
|
|
1047 |
* a multiple of SIZEOF(ALIGN_TYPE).
|
|
1048 |
* Again, an "unreachable code" warning may be ignored here.
|
|
1049 |
* But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
|
|
1050 |
*/
|
|
1051 |
test_mac = (size_t) MAX_ALLOC_CHUNK;
|
|
1052 |
if ((long) test_mac != MAX_ALLOC_CHUNK ||
|
|
1053 |
(MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
|
|
1054 |
ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
|
|
1055 |
|
|
1056 |
max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
|
|
1057 |
|
|
1058 |
/* Attempt to allocate memory manager's control block */
|
|
1059 |
mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
|
|
1060 |
|
|
1061 |
if (mem == NULL) {
|
|
1062 |
jpeg_mem_term(cinfo); /* system-dependent cleanup */
|
|
1063 |
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
|
|
1064 |
}
|
|
1065 |
|
|
1066 |
/* OK, fill in the method pointers */
|
|
1067 |
mem->pub.alloc_small = alloc_small;
|
|
1068 |
mem->pub.alloc_large = alloc_large;
|
|
1069 |
mem->pub.alloc_sarray = alloc_sarray;
|
|
1070 |
mem->pub.alloc_barray = alloc_barray;
|
|
1071 |
mem->pub.request_virt_sarray = request_virt_sarray;
|
|
1072 |
mem->pub.request_virt_barray = request_virt_barray;
|
|
1073 |
mem->pub.realize_virt_arrays = realize_virt_arrays;
|
|
1074 |
mem->pub.access_virt_sarray = access_virt_sarray;
|
|
1075 |
mem->pub.access_virt_barray = access_virt_barray;
|
|
1076 |
mem->pub.free_pool = free_pool;
|
|
1077 |
mem->pub.self_destruct = self_destruct;
|
|
1078 |
|
|
1079 |
/* Make MAX_ALLOC_CHUNK accessible to other modules */
|
|
1080 |
mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
|
|
1081 |
|
|
1082 |
/* Initialize working state */
|
|
1083 |
mem->pub.max_memory_to_use = max_to_use;
|
|
1084 |
|
|
1085 |
for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
|
|
1086 |
mem->small_list[pool] = NULL;
|
|
1087 |
mem->large_list[pool] = NULL;
|
|
1088 |
}
|
|
1089 |
mem->virt_sarray_list = NULL;
|
|
1090 |
mem->virt_barray_list = NULL;
|
|
1091 |
|
|
1092 |
mem->total_space_allocated = SIZEOF(my_memory_mgr);
|
|
1093 |
|
|
1094 |
/* Declare ourselves open for business */
|
|
1095 |
cinfo->mem = & mem->pub;
|
|
1096 |
|
|
1097 |
/* Check for an environment variable JPEGMEM; if found, override the
|
|
1098 |
* default max_memory setting from jpeg_mem_init. Note that the
|
|
1099 |
* surrounding application may again override this value.
|
|
1100 |
* If your system doesn't support getenv(), define NO_GETENV to disable
|
|
1101 |
* this feature.
|
|
1102 |
*/
|
|
1103 |
#ifndef NO_GETENV
|
|
1104 |
{ char * memenv;
|
|
1105 |
|
|
1106 |
if ((memenv = getenv("JPEGMEM")) != NULL) {
|
|
1107 |
char ch = 'x';
|
|
1108 |
|
|
1109 |
if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
|
|
1110 |
if (ch == 'm' || ch == 'M')
|
|
1111 |
max_to_use *= 1000L;
|
|
1112 |
mem->pub.max_memory_to_use = max_to_use * 1000L;
|
|
1113 |
}
|
|
1114 |
}
|
|
1115 |
}
|
|
1116 |
#endif
|
|
1117 |
|
|
1118 |
}
|