doc/src/examples/moveblocks.qdoc
author Eckhart Koeppen <eckhart.koppen@nokia.com>
Thu, 08 Apr 2010 14:19:33 +0300
branchRCL_3
changeset 7 3f74d0d4af4c
permissions -rw-r--r--
qt:70947f0f93d948bc89b3b43d00da758a51f1ef84

/****************************************************************************
**
** Copyright (C) 2010 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the documentation of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file.  Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights.  These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/

/*!
    \example animation/moveblocks
    \title Move Blocks Example

    The Move Blocks example shows how to animate items in a
    QGraphicsScene using a QStateMachine with a custom transition.

    \image moveblocks-example.png

    The example animates the blue blocks that you can see in the image
    above. The animation moves the blocks between four preset positions.

    The example consists of the following classes:

    \list
        \o \c StateSwitcher inherits QState and can add
              \c {StateSwitchTransition}s to other states.
              When entered, it will randomly transition to one of these
              states. 
        \o \c StateSwitchTransition is a custom transition that
           triggers on \c{StateSwitchEvent}s.
        \o \c StateSwitchEvent is a QEvent that triggers \c{StateSwitchTransition}s.
        \o \c QGraphicsRectWidget is a QGraphicsWidget that simply
           paints its background in a solid \l{Qt::}{blue} color.
    \endlist

    The blocks are instances of \c QGraphicsRectWidget and are
    animated in a QGraphicsScene. We do this by building a state
    graph, which we insert animations into. The graph is then executed
    in a QStateMachine. All this is done in \c main().
    Let's look at the \c main() function first.

    \section1 The \c main() Function

    After QApplication has been initialized, we set up the
    QGraphicsScene with its \c{QGraphicsRectWidget}s.

    \snippet examples/animation/moveblocks/main.cpp 1

    After adding the scene to a QGraphicsView, it is time to build the
    state graph. Let's first look at a statechart of what we are
    trying to build.

    \image move-blocks-chart.png

    Note that the \c group has seven sub states, but we have only
    included three of them in the diagram. The code that builds this
    graph will be examined line-by-line, and will show how the graph
    works. First off, we construct the \c group state:

    \snippet examples/animation/moveblocks/main.cpp 2

    The timer is used to add a delay between each time the blocks are
    moved. The timer is started when \c group is entered. As we will
    see later, \c group has a transition back to the \c StateSwitcher
    when the timer times out. \c group is the initial state in the
    machine, so an animation will be scheduled when the example is
    started.

    \snippet examples/animation/moveblocks/main.cpp 3
    \dots
    \snippet examples/animation/moveblocks/main.cpp 4

    \c createGeometryState() returns a QState that will set the
    geometry of our items upon entry. It also assigns \c group as the
    parent of this state.

    A QPropertyAnimation inserted into a transition will use the
    values assigned to a QState (with QState::assignProperty()), i.e.,
    the animation will interpolate between the current values of the
    properties and the values in the target state. We add animated
    transitions to the state graph later.

    \snippet examples/animation/moveblocks/main.cpp 5

    We move the items in parallel. Each item is added to \c
    animationGroup, which is the animation that is inserted into the
    transitions.

    \snippet examples/animation/moveblocks/main.cpp 6 

    The sequential animation group, \c subGroup, helps us insert a
    delay between the animation of each item.

    \snippet examples/animation/moveblocks/main.cpp 7
    \dots
    \snippet examples/animation/moveblocks/main.cpp 8

    A StateSwitchTransition is added to the state switcher
    in \c StateSwitcher::addState(). We also add the animation in this
    function. Since QPropertyAnimation uses the values from the
    states, we can insert the same QPropertyAnimation instance in all
    \c {StateSwitchTransition}s.

    As mentioned previously, we add a transition to the state switcher
    that triggers when the timer times out.

    \snippet examples/animation/moveblocks/main.cpp 9

    Finally, we can create the state machine, add our initial state,
    and start execution of the state graph.

    \section2 The \c createGeometryState() Function

    In \c createGeometryState(), we set up the geometry for each
    graphics item.

    \snippet examples/animation/moveblocks/main.cpp 13

    As mentioned before, QAbstractTransition will set up an animation
    added with \l{QAbstractTransition::}{addAnimation()} using
    property values set with \l{QState::}{assignProperty()}.

    \section1 The StateSwitcher Class

    \c StateSwitcher has state switch transitions to each \l{QState}s
    we created with \c createGeometryState(). Its job is to transition
    to one of these states at random when it is entered.

    All functions in \c StateSwitcher are inlined. We'll step through
    its definition.

    \snippet examples/animation/moveblocks/main.cpp 10

    \c StateSwitcher is a state designed for a particular purpose and
    will always be a top-level state. We use \c m_stateCount to keep
    track of how many states we are managing, and \c m_lastIndex to
    remember which state was the last state to which we transitioned. 

    \snippet examples/animation/moveblocks/main.cpp 11

    We select the next state we are going to transition to, and post a
    \c StateSwitchEvent, which we know will trigger the \c
    StateSwitchTransition to the selected state.

    \snippet examples/animation/moveblocks/main.cpp 12

    This is where the magic happens. We assign a number to each state
    added. This number is given to both a StateSwitchTransition and to
    StateSwitchEvents. As we have seen, state switch events will
    trigger a transition with the same number.

    \section1 The StateSwitchTransition Class

    \c StateSwitchTransition inherits QAbstractTransition and triggers
    on \c{StateSwitchEvent}s. It contains only inline functions, so
    let's take a look at its \l{QAbstractTransition::}{eventTest()}
    function, which is the only function that we define..

    \snippet examples/animation/moveblocks/main.cpp 14

    \c eventTest is called by QStateMachine when it checks whether a
    transition should be triggered--a return value of true means that
    it will. We simply check if our assigned number is equal to the
    event's number (in which case we fire away).

    \section1 The StateSwitchEvent Class

    \c StateSwitchEvent inherits QEvent, and holds a number that has
    been assigned to a state and state switch transition by
    \c StateSwitcher. We have already seen how it is used to trigger
    \c{StateSwitchTransition}s in \c StateSwitcher.

    \snippet examples/animation/moveblocks/main.cpp 15

    We only have inlined functions in this class, so a look at its
    definition will do.

    \section1 The QGraphicsRectWidget Class

    QGraphicsRectWidget inherits QGraphicsWidget and simply paints its
    \l{QWidget::}{rect()} blue. We inline \l{QWidget::}{paintEvent()},
    which is the only function we define. Here is the
    QGraphicsRectWidget class definition:

    \snippet examples/animation/moveblocks/main.cpp 16

    \section1 Moving On

    The technique shown in this example works equally well for all
    \l{QPropertyAnimation}s. As long as the value to be animated is a
    Qt property, you can insert an animation of it into a state graph.

    QState::addAnimation() takes a QAbstractAnimation, so any type
    of animation can be inserted into the graph.
*/