0
|
1 |
// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
2 |
// All rights reserved.
|
|
3 |
// This component and the accompanying materials are made available
|
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
|
5 |
// which accompanies this distribution, and is available
|
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
7 |
//
|
|
8 |
// Initial Contributors:
|
|
9 |
// Nokia Corporation - initial contribution.
|
|
10 |
//
|
|
11 |
// Contributors:
|
|
12 |
//
|
|
13 |
// Description:
|
|
14 |
// e32\euser\maths\um_ln.cpp
|
|
15 |
// Natural log.
|
|
16 |
//
|
|
17 |
//
|
|
18 |
|
|
19 |
#include "um_std.h"
|
|
20 |
|
|
21 |
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
|
|
22 |
#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
|
|
23 |
#endif
|
|
24 |
|
|
25 |
|
|
26 |
#ifndef __USE_VFP_MATH
|
|
27 |
|
|
28 |
LOCAL_D const TUint32 ArtanhCoeffs[] =
|
|
29 |
{
|
|
30 |
0x5C17F0BC,0xB8AA3B29,0x80010000, // polynomial approximation to (4/ln2)artanh(x)
|
|
31 |
0xD02489EE,0xF6384EE1,0x7FFF0000, // for |x| <= (sqr2-1)/(sqr2+1)
|
|
32 |
0x7008CA5F,0x93BB6287,0x7FFF0000,
|
|
33 |
0xE32D1D6B,0xD30BB16D,0x7FFE0000,
|
|
34 |
0x461D071E,0xA4257CE2,0x7FFE0000,
|
|
35 |
0xC3B0EC87,0x8650D459,0x7FFE0000,
|
|
36 |
0x53BEC0CD,0xE23137E3,0x7FFD0000,
|
|
37 |
0xC523F21B,0xDAF79221,0x7FFD0000
|
|
38 |
};
|
|
39 |
|
|
40 |
LOCAL_D const TUint32 Ln2By2data[] = {0xD1CF79AC,0xB17217F7,0x7FFD0000}; // (ln2)/2
|
|
41 |
LOCAL_D const TUint32 Sqr2data[] = {0xF9DE6484,0xB504F333,0x7FFF0000}; // sqr2
|
|
42 |
LOCAL_D const TUint32 Sqr2Invdata[] = {0xF9DE6484,0xB504F333,0x7FFE0000}; // 1/sqr2
|
|
43 |
LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000}; // 1.0
|
|
44 |
|
|
45 |
|
|
46 |
|
|
47 |
|
|
48 |
EXPORT_C TInt Math::Ln(TReal& aTrg, const TReal& aSrc)
|
|
49 |
/**
|
|
50 |
Calculates the natural logarithm of a number.
|
|
51 |
|
|
52 |
@param aTrg A reference containing the result.
|
|
53 |
@param aSrc The number whose natural logarithm is required.
|
|
54 |
|
|
55 |
@return KErrNone if successful, otherwise another of
|
|
56 |
the system-wide error codes.
|
|
57 |
*/
|
|
58 |
{
|
|
59 |
// Calculate ln(aSrc) and write to aTrg
|
|
60 |
// Algorithm:
|
|
61 |
// Calculate log2(aSrc) and multiply by ln2
|
|
62 |
// log2(aSrc)=log2(2^e.m) e=exponent of aSrc, m=mantissa 1<=m<2
|
|
63 |
// log2(aSrc)=e+log2(m)
|
|
64 |
// If e=-1 (0.5<=aSrc<1), let x=aSrc else let x=mantissa(aSrc)
|
|
65 |
// If x>Sqr2, replace x with x/Sqr2
|
|
66 |
// If x<Sqr2/2, replace x with x*Sqr2
|
|
67 |
// Replace x with (x-1)/(x+1)
|
|
68 |
// Use polynomial to calculate artanh(x) for |x| <= (sqr2-1)/(sqr2+1)
|
|
69 |
// ( use identity ln(x) = 2artanh((x-1)/(x+1)) )
|
|
70 |
|
|
71 |
TRealX x;
|
|
72 |
const TRealX& Ln2By2=*(const TRealX*)Ln2By2data;
|
|
73 |
const TRealX& Sqr2=*(const TRealX*)Sqr2data;
|
|
74 |
const TRealX& Sqr2Inv=*(const TRealX*)Sqr2Invdata;
|
|
75 |
const TRealX& One=*(const TRealX*)Onedata;
|
|
76 |
|
|
77 |
TInt r=x.Set(aSrc);
|
|
78 |
if (r==KErrNone)
|
|
79 |
{
|
|
80 |
if (x.iExp==0)
|
|
81 |
{
|
|
82 |
SetInfinite(aTrg,1);
|
|
83 |
return KErrOverflow;
|
|
84 |
}
|
|
85 |
if (x.iSign&1)
|
|
86 |
{
|
|
87 |
SetNaN(aTrg);
|
|
88 |
return KErrArgument;
|
|
89 |
}
|
|
90 |
TInt n=(x.iExp-0x7FFF)<<1;
|
|
91 |
x.iExp=0x7FFF;
|
|
92 |
if (n!=-2)
|
|
93 |
{
|
|
94 |
if (x>Sqr2)
|
|
95 |
{
|
|
96 |
x*=Sqr2Inv;
|
|
97 |
n++;
|
|
98 |
}
|
|
99 |
}
|
|
100 |
else
|
|
101 |
{
|
|
102 |
n=0;
|
|
103 |
x.iExp=0x7FFE;
|
|
104 |
if (x<Sqr2Inv)
|
|
105 |
{
|
|
106 |
x*=Sqr2;
|
|
107 |
n--;
|
|
108 |
}
|
|
109 |
}
|
|
110 |
x=(x-One)/(x+One); // ln(x)=2artanh((x-1)/(x+1))
|
|
111 |
TRealX y;
|
|
112 |
PolyX(y,x*x,7,(const TRealX*)ArtanhCoeffs);
|
|
113 |
y*=x;
|
|
114 |
y+=TRealX(n);
|
|
115 |
y*=Ln2By2;
|
|
116 |
return y.GetTReal(aTrg);
|
|
117 |
}
|
|
118 |
if (r==KErrArgument || (r==KErrOverflow && (x.iSign&1)))
|
|
119 |
{
|
|
120 |
SetNaN(aTrg);
|
|
121 |
return KErrArgument;
|
|
122 |
}
|
|
123 |
SetInfinite(aTrg,0);
|
|
124 |
return KErrOverflow;
|
|
125 |
}
|
|
126 |
|
|
127 |
#else // __USE_VFP_MATH
|
|
128 |
|
|
129 |
// definitions come from RVCT math library
|
|
130 |
extern "C" TReal log(TReal);
|
|
131 |
|
|
132 |
EXPORT_C TInt Math::Ln(TReal& aTrg, const TReal& aSrc)
|
|
133 |
{
|
|
134 |
aTrg = log(aSrc);
|
|
135 |
if (Math::IsFinite(aTrg))
|
|
136 |
return KErrNone;
|
|
137 |
if (Math::IsInfinite(aTrg))
|
|
138 |
return KErrOverflow;
|
|
139 |
SetNaN(aTrg);
|
|
140 |
return KErrArgument;
|
|
141 |
}
|
|
142 |
|
|
143 |
#endif
|