// Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
// All rights reserved.
// This component and the accompanying materials are made available
// under the terms of the License "Eclipse Public License v1.0"
// which accompanies this distribution, and is available
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
//
// Initial Contributors:
// Nokia Corporation - initial contribution.
//
// Contributors:
//
// Description:
// e32\euser\maths\um_ln.cpp
// Natural log.
//
//
#include "um_std.h"
#if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
#error __USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh
#endif
#ifndef __USE_VFP_MATH
LOCAL_D const TUint32 ArtanhCoeffs[] =
{
0x5C17F0BC,0xB8AA3B29,0x80010000, // polynomial approximation to (4/ln2)artanh(x)
0xD02489EE,0xF6384EE1,0x7FFF0000, // for |x| <= (sqr2-1)/(sqr2+1)
0x7008CA5F,0x93BB6287,0x7FFF0000,
0xE32D1D6B,0xD30BB16D,0x7FFE0000,
0x461D071E,0xA4257CE2,0x7FFE0000,
0xC3B0EC87,0x8650D459,0x7FFE0000,
0x53BEC0CD,0xE23137E3,0x7FFD0000,
0xC523F21B,0xDAF79221,0x7FFD0000
};
LOCAL_D const TUint32 Ln2By2data[] = {0xD1CF79AC,0xB17217F7,0x7FFD0000}; // (ln2)/2
LOCAL_D const TUint32 Sqr2data[] = {0xF9DE6484,0xB504F333,0x7FFF0000}; // sqr2
LOCAL_D const TUint32 Sqr2Invdata[] = {0xF9DE6484,0xB504F333,0x7FFE0000}; // 1/sqr2
LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000}; // 1.0
EXPORT_C TInt Math::Ln(TReal& aTrg, const TReal& aSrc)
/**
Calculates the natural logarithm of a number.
@param aTrg A reference containing the result.
@param aSrc The number whose natural logarithm is required.
@return KErrNone if successful, otherwise another of
the system-wide error codes.
*/
{
// Calculate ln(aSrc) and write to aTrg
// Algorithm:
// Calculate log2(aSrc) and multiply by ln2
// log2(aSrc)=log2(2^e.m) e=exponent of aSrc, m=mantissa 1<=m<2
// log2(aSrc)=e+log2(m)
// If e=-1 (0.5<=aSrc<1), let x=aSrc else let x=mantissa(aSrc)
// If x>Sqr2, replace x with x/Sqr2
// If x<Sqr2/2, replace x with x*Sqr2
// Replace x with (x-1)/(x+1)
// Use polynomial to calculate artanh(x) for |x| <= (sqr2-1)/(sqr2+1)
// ( use identity ln(x) = 2artanh((x-1)/(x+1)) )
TRealX x;
const TRealX& Ln2By2=*(const TRealX*)Ln2By2data;
const TRealX& Sqr2=*(const TRealX*)Sqr2data;
const TRealX& Sqr2Inv=*(const TRealX*)Sqr2Invdata;
const TRealX& One=*(const TRealX*)Onedata;
TInt r=x.Set(aSrc);
if (r==KErrNone)
{
if (x.iExp==0)
{
SetInfinite(aTrg,1);
return KErrOverflow;
}
if (x.iSign&1)
{
SetNaN(aTrg);
return KErrArgument;
}
TInt n=(x.iExp-0x7FFF)<<1;
x.iExp=0x7FFF;
if (n!=-2)
{
if (x>Sqr2)
{
x*=Sqr2Inv;
n++;
}
}
else
{
n=0;
x.iExp=0x7FFE;
if (x<Sqr2Inv)
{
x*=Sqr2;
n--;
}
}
x=(x-One)/(x+One); // ln(x)=2artanh((x-1)/(x+1))
TRealX y;
PolyX(y,x*x,7,(const TRealX*)ArtanhCoeffs);
y*=x;
y+=TRealX(n);
y*=Ln2By2;
return y.GetTReal(aTrg);
}
if (r==KErrArgument || (r==KErrOverflow && (x.iSign&1)))
{
SetNaN(aTrg);
return KErrArgument;
}
SetInfinite(aTrg,0);
return KErrOverflow;
}
#else // __USE_VFP_MATH
// definitions come from RVCT math library
extern "C" TReal log(TReal);
EXPORT_C TInt Math::Ln(TReal& aTrg, const TReal& aSrc)
{
aTrg = log(aSrc);
if (Math::IsFinite(aTrg))
return KErrNone;
if (Math::IsInfinite(aTrg))
return KErrOverflow;
SetNaN(aTrg);
return KErrArgument;
}
#endif